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Abstract—The combination of Spike Timing Dependent Plas-
ticity (STDP) and latency coding used in a spiking neural network
has been shown to learn hierarchical features. In this paper we
propose a new way to classify images using an SVM. Prototype
images are built from the weights learned in an unsupervised
manner using STDP. The prototype images are cross correlated
with the input image and the peak of the cross correlation with
each prototype image is used as additional features for an SVM.
The network, demonstrated on the MNIST data set, achieves
99.15% testing accuracy which is the best reported accuracy for
a SNN with unsupervised training.

Index Terms—STDP, Image Classification

I. INTRODUCTION

Visual object recognition in the primate brain is possible

through largely feed forward computations [1]. Methods to

develop computational visual object recognition has drawn

inspiration from the hierarchical feed forward processing of

the primate brain [3]. While the state of the art of such methods

shows high performance in terms of recognition accuracy [4]

they have some fundamental differences from the primate

visual cortex. In order to avoid over fitting, these models need

to be presented with a large database of examples which are

labelled which is in contrast with primates where learning

occurs with fewer examples and mostly unlabeled data. These

Deep Convolutional Neural Networks (DCNNs) use back-

propagation for training of weights which has no evidence

of a biological basis.

The feed forward computations in the human brain are done

in the estimated 1.6 – 4 billion neurons of the visual cortex

[2]. In spite of the large number of neurons involved in the

speed of processing, a short time period of 100-150 ms appears

to be enough to process an image [5]. The processing in the

human brain has been shown to be accurate better than random

chance even when the input images are presented for a very

short duration of 13 ms without inter stimulus intervals [6].

In order to understand the remarkable speed and accuracy

of the primate visual cortex, it is essential to study spiking

neural networks where information between two neurons are

passed in the form of spikes. Recent research into spiking

neural networks can be classified into 3 types

1) Direct supervised learning

2) Artificial neural network converted to work in the spik-

ing domain

3) Unsupervised learning in the spiking domain (like

STDP)

Methods for direct supervised learning(1) in the spiking do-

main include coding in the time of spike to have a differen-

tiable relationship with a subset of previous spikes and hence

compatible with the gradient descent back-propagation rule

[7]. Other methods include approximating the spiking activity

to be differentiable [8].

Conversion from a pre-trained ANN model (2)- CNN units

can be translated into biologically inspired spiking units with

leaks and refractory periods [9]. Spiking equivalents of DCNN

operations can be used which allow the conversion of any

arbitrary DCNN network to the spiking domain [10]. They

report the best performance of 0.54% error rate on the MNIST

database for a supervised learning SNN.

In this paper we present an SNN with unsupervised learning

(3). Unsupervised learning with STDP has been demonstrated

with both rate based poisson coding and latency based one

spike per neuron coding [11] [12]. The use of biologically

plausible neuron and synapse models in a 2 layer network

has shown 95% test accuracy on the MNIST data set [11].

Convolution and pooling layers in cascade with the network

performing layer by layer learning to learn hierarchical fea-

tures has shown the best performance reported to date for

an unsupervised learning SNN [12] [15]. Once the weights

of the neurons are trained using STDP, for classification the

learning rate can be set to zero and each neuron assigned to

the class which gives highest response [11]. The use of a fully

connected (FC) layer at the output has also been demonstrated

[15]. Alternatively, after the training is done, the threshold can

be set to infinity and the maximum potentials of the neurons

in the final layer can be used as a feature vector for a Support

Vector Machine (SVM) [12]. In this work, we propose to

include cross correlation values in the feature vector along

with the final potential values of the neurons of the final layer.

We demonstrate that the inclusion of these features increase

the network performance.

II. METHODS

The network used contains a coding layer, convolutional

layers and a pooling layer in cascade. The architecture of the

network used is shown in Fig. 1. Learning happens only in the

convolutional layers and all potentials are set to zero before

every pass of an image.
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Fig. 1. Network has 2 convolution layers and one pooling layer. The input image is encoded in spikes by the Difference Of Gaussian(DoG) layer and passed
to the first convolution layer. Learning happens only in the convolutional layers and layer by layer with Conv Layer 1 learning low level features. The type of
feature learned is dictated by the size of the layer weight maps. The size of C1 weight maps (HC1xLC1) is smaller than the size of C2 weight maps (H2xL2)
which is the same size as Conv Layer2. The pooling layer passes along only the first incoming spike in a window of the first convolutional layer thereby
compressing information. After the convolution weights of C1 and C2 layers are learnt, for each of the N2 maps there are 2 prototype images generated.
Cross convolution of the input image with the prototype images and the maximum potential of the learned C2 maps together form the feature vector that
goes into the SVM for every input image.

A. Temporal coding

The input image is filtered with a difference of gaussian

(DoG) filter in order to detect the spatial features at every

location of the image. The higher activation value indicates the

presence of a stronger contrast in that image location. Similar

to [12] we use an inverse relation to generate spikes in the

temporal domain so that a neuron with higher activation fires

first. There is a threshold set to allow a neuron to fire. A

set number of discrete time steps is used. The neurons with

activation value above the firing threshold fire one spike each

with a spike time between 1 and Ntimesteps. Both ON and OFF

center DoG maps are used to get both positive and negative i.e.

solid and edge contrasts. This coding scheme ensures that there

is only one spike per neuron propagated and the information

is encoded in the time of the spike.

B. First Convolution Layer

This layer learns from spikes generated from both the ON

and OFF center DoG maps in the coding layer. The weight

maps are of size 5 x 5 and each map learns the same feature

but at different locations due to the use of weight sharing

i.e. once a map learns a feature, the learned map is updated

for all locations. The neurons in this layer are leaky integrate

and fire neurons where at every time step if a pre synaptic

neuron fires, the weight of that pre-synaptic neuron is added

to the potential of the post synaptic neuron. The leak is equal

to one hundredth of its potential and this small leak ensures

that random noise does not have an impact and also once the

neurons are in an advanced stage of learning, this small leak

ensures that the effect of stray spikes is minimal.

Vi(t) = 0.99 ∗ Vi(t− 1) +
∑
j

wijSj(t− 1) (1)

where Vi is the potential of the ith neuron at time step t. wij

is the synaptic weight between the jth presynaptic neuron and

the ith post synaptic neuron and Sj(t-1) takes a value 1 if the

jth presynaptic neuron has fired at time t-1.

All neurons in the map are initialised with uniform weights

of value 0.8. At every time step, the neurons with potential

greater than or equal to the threshold are allowed to fire. In

case of multiple neurons with potentials above the threshold,

only the neuron with the greatest potential is allowed to fire. In

the case that multiple neurons have the exact same potential,

the first indexed neuron is allowed to fire to limit the network

to one spike per neuron.

Once a neuron crosses the potential threshold and fires, the

weights are updated with the simplified STDP rule for pre and

post synaptic neuron j and i:

Δwij =

{
c.a+wij(1− wij), if tj − ti ≤ 0
c.a−wij(1− wij), if tj − ti > 0

(2)

c = (Nt − ti + ti,prev + 1)/Nt (3)
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where tiand tj refer to the time of spike of the post and pre

synaptic neurons. ti,prev is the previous time step at which

neuron i spiked. Nt refers to the number of time steps used per

image presentation. a+ and a- are fixed parameters that scale

the positive and negative weight change in the STDP rule.

Once a set of weights is updated, the potentials of all

neurons of the same map are reset to zero. The potentials of the

firing neuron and 2 neurons surrounding it in all directions, are

reset to zero and the weight change shared with all neurons of

the same map. The feature weights are allowed to be updated

again should any neuron potential cross the firing threshold

with the updated weights. In order to differentiate between

weight changes that occurs at latter time steps, a constant c is

used in the STDP formula to scale the weight update in relation

to the time step at which it occurs. Supposing a weight update

occurs for the first time at the last time step, the weight change

is multiplied by a factor of (Nt-ti+0+1)/Nt = 1/Nt. But if the

same set of weights had previously been updated at timestep

5, then the weight update at the last timestep is scaled by a

factor of (Nt-ti+5+1)/Nt = 6/Nt. The value of a+ is set to 0.4

and a- is set to -0.3. By allowing the feature weights to be

updated more than once, all information in an image is learnt

while the earlier updates have more weightage.

Since each feature learnt has two sets of weights for the

ON and OFF center DoG responses, when a feature weight is

updated the contributions of the ON and OFF center maps are

updated separately. The locations of a pre spike get a positive

weight change while other locations irrespective of a post spike

or no spike get a negative weight change. Since the temporal

coding scheme ensures that only one of the two maps spike

per neuron, this means that the location of positive weight

change update in one is a negative weight change in the other

set of weights of the same map.

Learning occurs layer by layer and only in the convolution

layers. The learning in the first convolutional layer is stopped

when the convergence value falls below 0.01 [12]. The con-

vergence C at time t is

Ct =
∑
f

∑
i

wf,i(1− wf,i)/nw (4)

where nw is the number of weights and there are i weights in

the f features.

C. Pooling Layer

The pooling layer performs an operation where only the

first incoming spike in a window is propagated. The pooling

layer effectively compresses the data to be presented to the

next convolution layer and introduces a degree of translation

invariance.

D. Second Convolution Layer

This is the final convolutional layer consisting of features

which are the same size as the pooling layer output and

learning happens by the same simplified STDP rule used for

the first convolution layer. But, in this layer only one feature

is allowed to learn per input presentation and only once. In

this way, there is competition to learn the total representation

of the image.

E. Classification

Classification is done by SVM. The feature vector used is

made up of two components

1) The threshold of the second convolution layer is set to

infinity and the maximum of the final potential reached

as a fraction of the sum of weights of each feature map

is used as the feature value of the map. There will be

N2 number of these features.

2) The peak values of cross correlation of input image with

prototype images are used as additional features. There

will be 2*N2 number of these features.

For each feature map in the last convolution layer, 2 prototype

images are generated solely from the learned weights of the

two convolution layers.

1) prototype max: For each N2 neuronal map, at each

location there are N1 weights. This image is formed

by multiplying the maximum of these weights at each

location with the corresponding C1 weight map.

2) prototype sum: For each N2 map at each location multi-

plying and summing all N1 weights with its correspond-

ing C1 weight map.

So, for a feature of size H2*L2, the prototype images will be of

size (H2*HC1) x (L2*LC1) where HC1 and LC1 are the sizes of

the features of the first layer. The prototype sum images will

lie in a greater range because of the summing of weights, while

prototype max images will lie in the range 0 to 1. Each image

in the training set will have 3*N2 number of features and this

Nimgs X 3*N2 vector is trained by the SVM for classification.

Fig. 2. Illustrating prototype images. (a) Learnt L1 weights of size 5x5 for
all the C1 feature maps (b) Learnt L2 weights of size 14x14 for a particular
C2 feature map (c) Corresponding ’Prototype-max’ image (d) Corresponding
’Prototype-sum’ image.

III. RESULTS

We applied the network on the full MNIST dataset which

contains 60,000 images in the training set and 10,000 images

in the test set [14]. We obtained an accuracy of 99.15% for the

test set. The network used was 28x28x2 - 9C5 - 2P - 200C14

where C describes a convolution layer and P is a pooling layer.
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A. DoG layer and first convolutional layer

We used both ON and OFF center DoG to generate spikes.

We used a spiking threshold of 1/10th of the maximum

activation. The spike times which have an inverse correlation

to the activation value were scaled between 1 and 15 timesteps.

The number of spikes at each timestep is not fixed and it

depends on the number of activation values corresponding to

that discrete time step. At most one spike is generated per

pixel.

For the first convolutional layer we use 9 features of size

5x5. The firing threshold used is 10. As described earlier,

each feature is allowed to learn more than once per image

presentation. The learned features indicate that at his level the

edge features are learnt. Fig 2. shows the learned features with

the contribution of the ON and OFF center DoG spikes.

Fig. 3. C1 features showing the learned weights of both the ON and OFF
center DoG spikes.

B. Pooling layer and second convolutional layer

The output of the first convolutional layer is spikes from

28x28 neurons. The pooling layer used is of size 2x2 and stride

2. It effectively halves each input dimension to the second

convolutional layer by passing along only the first incoming

spike in a 2x2 window.

In the second convolutional layer there are 200 N2 features

that take input spikes from a 14x14x9 input. The weights in

this layer are also initialised with a uniform value of 0.8. In this

layer since each convolution window is of size H2*L2=14x14,

each feature is learning on the entire image as opposed to

learning any feature in a window of an image such as edges

which were learnt in the first convolution layer, hence each

feature learns only once per image and only one feature learns

per image presentation. Similar to the first convolution layer,

learning is finished when the convergence value is less than

0.01.

Fig. 4. Examples of Prototype images

C. Classification
After the weights are learnt in an unsupervised way with

STDP. We pass each image of the training set through the

network to make features to use for the SVM. Since SVM is

inherently two class, for our multi class problem we found

that the one vs all method worked better than the one vs
one classification. For each image we generate 600 features

as described in the methods section. For the cross correlation

features, we find the cross correlation of the positive and

negative contrasts separately and sum them, from which the

peak value is stored as the feature. For cross correlation, the

input images are scaled to match the size of the prototype

images.
Our preprocessing steps include

1) Each maximum final potential feature is divided by the

sum of its weights so that this feature indicates the final

potential reached as a fraction of the maximum possible

value for that feature.

2) Feature dropout. For each digit label, 15 features are

dropped from the total 600 features. This is split as 5

features from the maximum final potential features and

5 each from the cross correlation features.

3) The 585 features for an image are standardized to have a

zero mean and unit variance separately for the maximum

final potential features and the cross correlation features.

4) The data is then standardized across features to lie in a

distribution with zero mean and unit variance.

For each digit the features are activated differently and from

the range of feature values of all examples of a digit, the

features with the lowest maximum activation values for each

digit are dropped. This is to ensure that the features that are not

activated to a high level do not contribute to the classification

for that digit. The data scaling first across instance and then

across dimension means that data values roughly lie in the

same range and no feature will dominate the classification

because features with large dynamic range will dominate the

separating hyperplane.

Fig. 5. Examples of features dropped for classifying digit 1.

We used the fitcsvm function in MATLAB with optimized

hyper-parameters kernel =‘rbf’ KernelScale = 8 and BoxCon-
straint = 26. The SVM training takes approximately 190

seconds on an Intel i7 processor with 6 cores. For the test

dataset, the second part of scaling that is scaling across

features is done with the mean and standard deviation of that

feature in the training dataset [13]. This is to ensure that the

range of data values is with respect to the training data.

IV. ANALYSIS

Our testing accuracy of 99.15% for the full MNIST dataset

is the best reported accuracy for a spiking neural network with
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unsupervised learning of weights with STDP. The better clas-

sification accuracy with the cross correlation features indicate

that the translation invariance in the network is improved and

the building of prototype images with the final weights shows

good generalization of images in the dataset. Cross correlation

which is correlation at different locations of the image can be

easily implemented in hardware.

We found that the number of features used in the second

convolution layer has a greater impact on performance than the

number of features in the first layer. This indicates that there is

greater variance in the higher level features than the lower level

features which are edges. The performance improvement using

dropout is noticed when dropping only a minimal number of

features. This shows that only a few features learnt are non

selective.

TABLE I
EFFECT OF DROPOUT ON ACCURACY

Dropout Level Accuracy
No Dropout 99.09%
15 features 99.15%
30 features 99.08%

Since our network is limited to maximum one spike per

neuron, it is very energy efficient. Our network generates on

average 600 spikes per input pass.

While the spike times in the network are used for STDP,

after training the time of threshold crossing in the final layer

remains unused. It is possible to use a latency coding scheme

and built a network to apply back propagation and stochastic

gradient descent [7]. We attempted to apply that network using

the time when the threshold is crossed in the last convolution

layer encoded as the spike times of the input layer neurons.

Since there is not a big separation in the times of spikes and

the spike times are non binary, we could not improve the

performance using this training scheme.

TABLE II
COMPARISION OF ACCURACY ON MNIST WITH SNNS USING

UNSUPERVISED LEARNING OF WEIGHTS

Network Classification Accuracy
Diehl et al 2015 2layer FC Heuristic 95%

Kheradpisheh et al., 2016 DCNN SVM 98.40%
Panda et al., 2016 DCNN FC 99.08%

This work DCNN SVM 99.15%
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