
Conversion of Synchronous Artificial Neural Network to Asynchronous Spiking
Neural Network using sigma-delta quantization

Amirreza Yousefzadeh*1, Sahar Hosseini*2, Priscila Holanda*1, Sam Leroux1, Thilo Werner1,

Teresa Serrano-Gotarredona2, Bernabe Linares Barranco2, Bart Dhoedt1, and Pieter Simoens1

1Ghent University-imec, IDLab, Belgium
2Instituto de Microelectronica de Sevilla (CSIC and Univ. de Sevilla), Sevilla, Spain

Abstract— Artificial Neural Networks (ANNs) show great perfor-
mance in several data analysis tasks including visual and auditory
applications. However, direct implementation of these algorithms with-
out considering the sparsity of data requires high processing power,
consume vast amounts of energy and suffer from scalability issues.
Inspired by biology, one of the methods which can reduce power
consumption and allow scalability in the implementation of neural
networks is asynchronous processing and communication by means
of action potentials, so-called spikes. In this work, we use the well-
known sigma-delta quantization method and introduce an easy and
straightforward solution to convert an Artificial Neural Network to a
Spiking Neural Network which can be implemented asynchronously
in a neuromorphic platform. Briefly, we used asynchronous spikes to
communicate the quantized output activations of the neurons. Despite
the fact that our proposed mechanism is simple and applicable to
a wide range of different ANNs, it outperforms the state-of-the-art
implementations from the accuracy and energy consumption point of
view. All source code for this project is available upon request for the
academic purpose1.

I. INTRODUCTION

The current state of the art hardware implementations of ANNs is

not close to the performance of the biological brain concerning the

trade-off of power consumption, accuracy, and speed. The human

brain contains approximately 86 billions of neurons and 150 trillions

of synaptic connections while only consuming around 20W [1].

Visual processing amounts to around 30% and the audio processing

consumes around 3% of our brain [2].

Only small fractions of neurons in the brain are active simulta-

neously and due to asynchronous processing, they mostly consume

energy when there is an event to be processed. In the current fully

synchronous implementation of ANN algorithms, power consump-

tion is a serious issue and communications between processing units

are expensive and not scalable. On the other hand, routing a high-

frequency clock signal between distant places in a distributed sys-

tem is difficult and may be only possible by consuming considerable

amount of energy. Therefore, asynchronous communication and

processing is the key feature of scalable neuromorphic platforms

[3] [4] [5] [6] [7]. The asynchronous activity allows separate

processing units to work independently without sharing a clock

signal. An asynchronous neuromorphic platform can be scaled up

easily without losing performance.

Our focus in this work is on the introduction of a hardware

efficient and straightforward method to implement an ANN in

an asynchronous way. We aim to keep the method as generic as

possible to be compatible with several kinds of ANNs.

In a Spiking Neural Network (SNN) with Integrate&Fire neurons,

each neuron has a membrane potential which changes upon the

integration of the inputs from other neurons over time. This is

*Amirreza Yousefzadeh, Sahar Hosseini and Priscila Holanda con-
tributed equally in this work

1Bernabe@imse-cnm.csic.es

somewhat similar to an activation function used in ANNs except

the fact that the membrane potential of a spiking neuron evolves

over time (dynamic). If a neuron’s membrane potential reaches

a pre-defined threshold, an output spike is fired and propagated

downstream to all its connected neurons. Otherwise, the spiking

neuron remains silent and does not provide any output. On the other

hand, the output of an ANN neuron is continuous as each ANN unit

provides a value in a given range according to its specific activation

function. To convert an ANN to SNN, the key question is how to

map continuous outputs of ANN units to the activity of spiking

neurons.

The straightforward and most used method to code information

in spikes is called rate coding [8]. In this method, the output of an

ANN unit is mapped to the average firing rate of a spiking neuron

[9]. Even-though using frequency of firing as an output of neuron

makes the conversion mathematically exact, a few problems with

this method makes it less interesting for practical applications.

First of all, because the equations are based on the average

firing rate of neurons, several spikes per neuron are needed for

the spiking network to become stable. This will increase the needs

for processing and communication in a neuromorphic hardware and

results in higher energy consumption. The time needed to stabilize

rate coding also increases the minimum latency to process an input.

These overheads are contradictory to the potential efficiency of SNN

because low latency processing and low power consumption are the

features that make SNN inference more interesting than their ANN

counterparts [10]. The second problem with rate coding comes from

the fact that not all architectural elements of modern ANNs can be

converted efficiently with rate coding (like biases and max-pooling,

etc) [9] [11].

Another famous type of coding information in spikes is temporal

coding [8] or Time To First Spike (TTFS) coding [12]. In this

coding, information is coded in the exact firing time of spikes.

Using this type of coding is not trivial for converting an already

trained ANN to SNN. Therefore in previous works, researchers

tried to modify the deep learning methods and train the network

directly with spiking neurons [13] [14]. For example H. Mostafa

[14] and B. Rueckauer et al. [12] presented a learning method where

information in spiking neurons are coded in the time of first firing,

so each neuron can fire at maximum one time.

This method shows great efficiency from the latency point of

view. Additionally, the total number of spikes in this method is

very small. However, there are some disadvantages. First, this

method is not mature yet and does not perform well in deeper

networks. Furthermore, there are some overheads in implementing

these networks. For example, in the mentioned works [12] [14],

additional to neuron state, synapses are also state-full. This means

that the arrival of each spike equals a leaky current injection to the

neuron which adds complexity during hardware implementation.



Additionally, the learning mechanism is not straightforward and

conversion is not exact, i.e. it is not possible to convert an already

trained ANN to SNN using this method. Moreover, same as before,

several elements of ANN architecture cannot be converted to the

spiking model.

II. PROPOSED ALGORITHM

To map a pre-trained ANN to an SNN, we chose a method which

is energy efficient, comprehensive and easy to implement. In our

scheme, the information is coded in the exact number of spikes.

This type of coding is known as spike count coding [8].

In this scheme, there is a one-to-one mapping of ANN neurons

to SNN neurons (both architectures have the same number of

neurons and synapses). We focus on the fact that an ANN with

quantized activation function can be equivalent to an SNN under

some assumptions. Fig. 1 shows the ReLU activation function

(yellow) which is commonly used in deep learning algorithms to

calculate the output of neurons.

The blue and orange lines show the hysteresis quantized version

of ReLU activation with a quantization level of one. The quantiza-

tion level is the step size of the quantizer function. The difference

between an input value and its quantized value is referred to as the

quantization error and is always smaller than the quantization level.

The reason that we used hysteresis quantization (not direct

quantization) is because we found out that direct quantization

results in an excessive firing activity of spiking neurons. In direct

quantization, when the input (X) is somewhere near the transition

point of two quantization levels, small variations/oscillations in X
may result in several big changes in the quantized Y which is not

desirable. The output of the “Hysteresis Quantizer” depends not

only on the current input value but also on the previous value of its

output. For example in Fig.1 it is shown that if the current input is

‘1.1’ depending on the previous output of quantizer, current output

can be either ‘2’ or ‘1’. Eq. 1 formulates the hysteresis quantization

method where the quantization level is ‘1’.

outnew ←

⎧⎪⎨
⎪⎩

outold + 1, (input− outold) > +1

outold − 1, (input− outold) < −1

outold, otherwise

(1)

In this work, we propose to use spikes to communicate the quan-

tized ReLU output value very similar to sigma-delta modulation

[15]. Choosing the quantization level is a trade-off as a coarser

quantization results in higher quantization error but will generate

less spikes2. In this work, we used the same threshold for all the

neurons.

As mentioned above, unlike a neuronal unit in an ANN, the

membrane potential of a spiking neuron dynamically changes over

time by receiving asynchronous pre-synaptic spikes. In our current

scheme, a pre-synaptic spike charges the neuron immediately. No

leakage is implemented, and the membrane potential of all neurons

is reset for each new input frame. Additionally, no refractory period

is needed which makes the hardware implementation easier.

In this scheme, besides the membrane potential Vmem, each

neuron has another state which counts how many times the neuron

has fired. This value is called quantized membrane potential for a

reason that will be explained later. The initial value of Vmem after

reset is equal to the bias of the corresponding ANN unit and the

2An extreme case is using an ANN with binary activation [16] [17].

-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

X

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

R
eL

u(
X

)

Quantization Level
(Threshold)

Fig. 1: Hysteresis quantization of ReLu activation function with

quantization level (Threshold) of ’1’. The yellow line shows ReLu

activation function. Going a level up is done with blue lines and

going down is done with orange lines.

initial value of Vmem q (quantized Vmem) is zero:

Vmem(t = 0) = bias

Vmem q(t = 0) = 0
(2)

Each neuron has a fixed and pre-determined threshold which is

equivalent to the quantization level of the ANN activation function.

A spiking neuron fires when the difference between its Vmem and

its Vmem q becomes greater than the threshold. Unlike conventional

spiking neurons, our proposed neuron model does not reset after

firing3. Therefore, after receiving all the presynaptic spikes, the

membrane potential of the neurons should converge to the activation

level of their ANN counterparts.

Note that the membrane potential does not always increase but

because of negative weights may as well decrease. To efficiently

handle this fact, we introduced negative spikes. Eq.3 describes how

the membrane potential of a neuron updates after receiving a spike

from input i.

Vmem ← Vmem + (Wi × Sign) (3)

where Wi is the weight of input i. Having spikes with a sign bit

is inspired by the Dynamic Vision Sensor (DVS) [18] and can

be efficiently implemented in neuromorphic platforms [19] without

considerable overhead.

Algorithm 1 describes the process of updating Vmem, Vmem q

and firing spikes when the ANN activation function is ReLU4.

From Algorithm 1, it is intuitive that Vmem q always follow the

quantized value of Vmem.

An advanced Artificial Neural Network may use several different

methods to increase accuracy and learning performance and new

methods are emerging as a result of intensive research. To convert

the ANN to asynchronous SNN using the proposed method, only

the communication side should be quantized and other processing

parts may remain the same.

III. RESULTS

We have applied the proposed method using the MNIST [20]

dataset to be able to compare with other state-of-the-art results.

Initially, we have trained an ANN for the MNIST dataset using

standard stochastic gradient descent. For conversion of the ANN

3It only resets if a new input (frame) is presented to the network
4In this paper, we focus on ReLu activation function (ReLu(Vmem) =

max(Vmem, 0)) but the proposed method can apply to other types of
quantized activation function as well.



Algorithm 1 Update spiking neuron with Hysteresis Quantization

(threshold is normalized to one)

for each incoming spike do
Vmem ← Vmem + (Wi × Sign)
Diff = ReLu(Vmem)− Vmem q

if Diff ≥ 1 then
Fire a positive spike
Vmem q ← Vmem q + 1

end if
if Diff ≤ −1 then

Fire a negative spike
Vmem q ← Vmem q − 1

end if
end for

network to SNN, the weights and biases are used in the equivalent

SNN. To do the conversion we need to define the threshold

(equivalent to quantization level) and also a method to convert input

frames to spikes.

We decided to convert the input frames to spikes using maximum

one spike per pixel. This means each input pixel can fire at most

once. We decided to send the pixels with higher intensity earlier and

use “linear intensity to delay” coding [21]. Additionally, pixels with

intensity equal or less than ‘0.2’ will not fire at all (therefore, the

quantization threshold for input frame is ‘0.2’). Using this method,

each MNIST frame is converted to a spike train with duration

of ‘0.8’ TU5. We have trained a 4-layer convolutional network

(16C5 − 2MP2 − 8C5 − 2MP2 − 256FC[50%Dropout] −
10FC)6. Table I shows the results of the proposed method for the

MNIST dataset.

In Table I, the Quantized ANN (Q-ANN) networks have the same

weights and biases as ANN but the activations are quantized (direct

quantization without hysteresis) with the same quantization level of

SNN. However, the quantization method in SNN is hysteresis which

is not exactly similar to quantized ANN. Additionally, the input of

quantized ANNs is also quantized with 1 bit.

To measure the accuracy of the SNNs, we counted the number

of output spikes (considering the sign of spikes) and the maximum

number was assumed as the proposed classification of the network.

Also, we reported the total number of firing spikes as a performance

metric in Table I. “Avg Num Spikes” reports the average number

of spikes per input frame per neuron in the network.

In Table I, we also added the results from other state-of-the-art

works on supervised training of Spiking Neural Networks. Most of

the previous works only reported the accuracy but not the number of

spikes. Therefore, we used the recently introduced and very useful

SNN toolbox7 by B. Rueckauer et al. [9] to reproduce some of the

previous works8. Our conversion method does not have time-step

and simulation finishes after one time presentation of all the input

spikes. However, in the case of rate coding where the intensity of

the input pixels will be converted to the firing rate, there is not a

5Time Unit (TU) is a unit of time and depends on the real-time hardware
processing capability. For simulation purposes, a TU can be a second,
millisecond, microsecond or so without any practical effect.

6xCy is a convolutional layer with x filters and kernel size of y×y and
xFC is a fully connected layer with x neurons. xMPy is a Max-Pooling
layer with kernel size of x× x and stride of y. For convolutions, we keep
the input and output size equal.

7http://sensors.ini.uzh.ch/news page/snn-conversion-2017.html
8All the codes (including the reproduction of other works) are available

upon request

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Time Unit

-80

-60

-40

-20

0

20

40

60

80

M
em

br
an

e 
vo

lta
ge

s 
of

 o
ut

pu
t n

eu
ro

ns

(a)

20

150
0

5

10

Time unit

0.2

10

0.4 0.6

15

0.8

20

(b)

5 10 15 20 25

5

10

15

20

25

(c)

Fig. 2: (a) Membrane voltage of output neurons over time when

presenting the first test image of MNIST. (b) spiking representation

of first test image of MNIST over time (c) First test image of

MNIST in a frame

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Time Unit

65

70

75

80

85

90

95

100

A
cc

ur
ac

y

(a)

0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26
Average Number of Spikes

65

70

75

80

85

90

95

100

A
cc

ur
ac

y

(b)

Fig. 3: (a) Accuracy of Spiking Neural Network versus time for

MNIST dataset. (b) Accuracy of Spiking Neural Network versus

average number of firing spikes for all the neurons



TABLE I: Accuracy of quantized ANN and equivalent SNN for MNIST dataset.

Model Acc ANN Acc Q-ANN Acc SNN Num Neurons Num Synapses Avg Num Spikes

(per frame)

This work(thr=1.0) 2xConv-2xFC 99.21% 98.81% 99.19% 15k 100k 0.25
This work(thr=2.0) 2xConv-2xFC 99.21% 96.44% 97.26% 15k 100k 0.08

[9](Reproduced, 25 time steps) 2xConv-2xFC 99.21% — 99.18% 15k 100k 0.48

[9](Reproduced, 15 time steps) 2xConv-2xFC 99.21% — 98.80% 15k 100k 0.26

[12](Temporal coding) 3xConv-2xFC 98.96% — 98.57% 7.7k 1.2M 0.13

[12](Temporal coding) 2xFC 98.50% — 98.35% 1.4k 476k 0.07

[22](Temporal coding) 2xFC 98.50% — 96.98% 1.4k 476k 0.10

[23](Rate coding) 2xConv-1xFC 99.14% — 99.1% 5.1k 50k 19.25

[9](Rate coding) — 99.44% — 99.44% 8k 1.2M —

[24](Rate coding) 1xConv-1xFC 98.3% — 98.32% 9.5k 88k —

[25](Rate coding) 2xConv-2xFC — — 99.42% 20.7k 0.6M —

[14](Temporal coding) 2xFC — — 97.55% 1.5k 635k —

200 250 300 350 400 450 500 550 600
Number of operations (Kop)

65

70

75

80

85

90

95

100

A
cc

ur
ac

y

Fig. 4: Accuracy versus the average number of operations for

MNIST dataset.

definite time for the end of the input presentation. In this case, by

the longer presentation of the input, the accuracy increases until

the network becomes completely stable. On the other hand, longer

input presentation results in more number of spikes in average,

resulting in a trade-off. To demonstrate this trade-off, we reported

the reproduced results with different time-steps.

Fig. 2 (a) illustrates the membrane voltage of the output neurons

over time for one of the MNIST frames. From Fig. 2(a) it can

be seen that the classification results are correct much before the

presentation of all the input spikes. Therefore, we measured the

accuracy of the SNN over time and over the number of fired spikes

which is plotted in Fig.3.

In an ANN, the number of operations per each frame is fixed9

while in an SNN it depends on the content of the frame and the

desired accuracy. For the current network, in ANN each MNIST

frame needs 455K MAC (Multiply-Accumulation) operations10. If

we consider a MAC operation equal to two accumulations11, ANN

needs 911K operations per each frame. In the case of SNN, Fig.4

shows the average number of accumulation operations (synaptic

update) which is needed to achieve a specific accuracy12. We can see

that the SNN needs less than 600K operations to achieve the same

accuracy as the corresponding ANN. It should be noted that for a

9Though there are some hardware accelerators of ANN which are
optimized for sparse activity [26], their implementation needs extra logics
for sparsity controller.

10(28× 28× 16× 5× 5) + (14× 14× 8× 5× 5) + (256× 7× 7×
8) + (10× 256)

11Normally a multiplication is more expensive than several additions in
hardware.

12The proposed Spiking Neural Network does not need multiplication.

more exact calculation, the other operations like memory read/write

and spike communications should be considered.

IV. CONCLUSION

In this work, we presented a new method to convert a syn-

chronous ANN to an asynchronous SNN with minimum overhead.

Even though our goal was not to mimic biological neural networks

completely, we used the sparsity and asynchronous communication

features of bio-inspired implementations. We aimed to offer a

better implementation of synchronous ANN since a direct ANN

implementation is not easily scalable and won’t easily exploit the

sparsity of the network for efficient power consumption.

Even though the works that use TTFS coding [12] [14] [22] show

great efficiency from latency and power consumption point of view,

our proposed method has the advantage to be more accurate and

scalable for larger networks. Additionally, our proposed method

offers a straight-forward conversion of any ANN modules thanks

to its simplicity. In comparison with rate-coding conversions, the

proposed method results in less number of spike activity (therefore

less power consumption and latency) while keeping the same

accuracy.

ACKNOWLEDGMENT

This work was supported in part by IMEC-IDLab, and by EU

H2020 grant 687299 NEURAM3, and by Spanish grant from the

Ministry of Economy and Competitivity TEC2015-63884-C2-1-P

(COGNET) (with support from the European Regional Develop-

ment Fund). The authors would like to thank iMind institute for

providing the tools and infrastructure for deep learning.

REFERENCES

[1] J. W. Mink, R. J. Blumenschine, D. B. Adams, Ratio of central nervous
system to body metabolism in vertebrates: its constancy and functional
basis, American Journal of Physiology-Regulatory, Integrative and
Comparative Physiology 241 (3) (1981) R203–R212.

[2] D. Grady, The vision thing: Mainly in the brain, Discover.
[3] G. Indiveri, B. Linares-Barranco, T. Hamilton, A. van Schaik,

R. Etienne-Cummings, T. Delbruck, S.-C. Liu, P. Dudek, P. Hfliger,
S. Renaud, J. Schemmel, G. Cauwenberghs, J. Arthur, K. Hynna,
F. Folowosele, S. SAGHI, T. Serrano-Gotarredona, J. Wijekoon,
Y. Wang, K. Boahen, Neuromorphic silicon neuron circuits, Frontiers
in Neuroscience 5 (2011) 73. doi:10.3389/fnins.2011.00073.

[4] M. Davies, N. Srinivasa, T. Lin, G. Chinya, Y. Cao, S. H. Choday,
G. Dimou, P. Joshi, N. Imam, S. Jain, Y. Liao, C. Lin, A. Lines,
R. Liu, D. Mathaikutty, S. McCoy, A. Paul, J. Tse, G. Venkatara-
manan, Y. Weng, A. Wild, Y. Yang, H. Wang, Loihi: A neuromorphic
manycore processor with on-chip learning, IEEE Micro 38 (1) (2018)
82–99. doi:10.1109/MM.2018.112130359.

[5] S. B. Furber, F. Galluppi, S. Temple, L. A. Plana, The spinnaker
project, Proceedings of the IEEE 102 (5) (2014) 652–665.



[6] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada,
F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo,
I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner,
W. P. Risk, R. Manohar, D. S. Modha, A million spiking-neuron in-
tegrated circuit with a scalable communication network and interface,
Science 345 (6197) (2014) 668–673. doi:10.1126/science.1254642.

[7] A. Yousefzadeh, G. Orchard, E. Stromatias, T. Serrano-Gotarredona,
B. Linares-Barranco, Hybrid neural network, an efficient low-power
digital hardware implementation of event-based artificial neural net-
work, in: 2018 IEEE International Symposium on Circuits and Systems
(ISCAS), 2018, pp. 1–5. doi:10.1109/ISCAS.2018.8351562.

[8] R. V. Rullen, S. J. Thorpe, Rate coding versus temporal order coding:
What the retinal ganglion cells tell the visual cortex, Neural Compu-
tation 13 (6) (2001) 1255–1283.

[9] B. Rueckauer, I.-A. Lungu, Y. Hu, M. Pfeiffer, S.-C. Liu, Conversion
of continuous-valued deep networks to efficient event-driven networks
for image classification, Frontiers in Neuroscience 11 (2017) 682.

[10] C. Farabet, R. Paz, J. Perez-Carrasco, C. Zamarreo, A. Linares-
Barranco, Y. LeCun, E. Culurciello, T. Serrano-Gotarredona,
B. Linares-Barranco, Comparison between frame-constrained fix-
pixel-value and frame-free spiking-dynamic-pixel convnets for visual
processing, Frontiers in Neuroscience 6 (2012) 32.

[11] A. Sengupta, Y. Ye, R. Wang, C. Liu, K. Roy, Going deeper in
spiking neural networks: VGG and residual architectures, CoRR
abs/1802.02627. arXiv:1802.02627.

[12] B. Rueckauer, S. C. Liu, Conversion of analog to spiking neural
networks using sparse temporal coding, in: 2018 IEEE International
Symposium on Circuits and Systems (ISCAS), 2018, pp. 1–5.

[13] J. Lee, T. Delbrück, M. Pfeiffer, Training deep spiking neural networks
using backpropagation, CoRR abs/1608.08782.

[14] H. Mostafa, Supervised learning based on temporal coding in spiking
neural networks, IEEE Transactions on Neural Networks and Learning
Systems (2018) 1–9.

[15] B. E. Boser, B. A. Wooley, The design of sigma-delta modulation
analog-to-digital converters, IEEE Journal of Solid-State Circuits
23 (6) (1988) 1298–1308. doi:10.1109/4.90025.

[16] M. Rastegari, V. Ordonez, J. Redmon, A. Farhadi, Xnor-net: Imagenet
classification using binary convolutional neural networks, in: B. Leibe,
J. Matas, N. Sebe, M. Welling (Eds.), Computer Vision – ECCV 2016,
Springer International Publishing, Cham, 2016, pp. 525–542.

[17] S. Leroux, S. Bohez, T. Verbelen, B. Vankeirsbilck, P. Simoens,
B. Dhoedt, Transfer learning with binary neural networks, CoRR
abs/1711.10761. arXiv:1711.10761.

[18] T. Serrano-Gotarredona, B. Linares-Barranco, A 128 × 128 1.5%
contrast sensitivity 0.9% fpn 3us latency 4mw asynchronous frame-
free dynamic vision sensor using transimpedance preamplifiers, IEEE
Journal of Solid-State Circuits 48 (3) (2013) 827–838.

[19] A. Yousefzadeh, M. Soto, T. Serrano-Gotarredona, F. Galluppi,
L. Plana, S. Furber, B. Linares-Barranco, Performance comparison of
time-step-driven versus event-driven neural state update approaches in
spinnaker, in: 2018 IEEE International Symposium on Circuits and
Systems (ISCAS), 2018, pp. 1–4. doi:10.1109/ISCAS.2018.8350990.

[20] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning
applied to document recognition, Proceedings of the IEEE 86 (11)
(1998) 2278–2324.

[21] S. R. Kheradpisheh, M. Ganjtabesh, S. J. Thorpe, T. Masquelier,
STDP-based spiking deep neural networks for object recognition,
CoRR abs/1611.01421.

[22] H. Mostafa, B. U. Pedroni, S. Sheik, G. Cauwenberghs, Fast clas-
sification using sparsely active spiking networks, in: 2017 IEEE
International Symposium on Circuits and Systems (ISCAS), 2017, pp.
1–4. doi:10.1109/ISCAS.2017.8050527.

[23] P. U. Diehl, D. Neil, J. Binas, M. Cook, S. C. Liu, M. Pfeiffer, Fast-
classifying, high-accuracy spiking deep networks through weight and
threshold balancing, in: 2015 International Joint Conference on Neural
Networks (IJCNN), 2015, pp. 1–8.

[24] E. Stromatias, M. Soto, T. Serrano-Gotarredona, B. Linares-Barranco,
An event-driven classifier for spiking neural networks fed with syn-
thetic or dynamic vision sensor data, Frontiers in Neuroscience 11
(2017) 350. doi:10.3389/fnins.2017.00350.

[25] Y. Wu, L. Deng, G. Li, J. Zhu, L. Shi, Spatio-temporal backpropagation
for training high-performance spiking neural networks, Frontiers in
Neuroscience 12 (2018) 331.

[26] B. Moons, M. Verhelst, An energy-efficient precision-scalable convnet

processor in 40-nm cmos, IEEE Journal of Solid-State Circuits 52
(2017) 903–914.


