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Abstract: This paper formulates a new problem for the optimal placement of Unmanned Aerial
Vehicles (UAVs) geared towards wireless coverage provision for Voice over WiFi (VoWiFi) service to
a set of ground users confined in an open area. Our objective function is constrained by coverage
and by VoIP speech quality and minimizes the ratio between the number of UAVs deployed and
energy efficiency in UAVs, hence providing the layout that requires fewer UAVs per hour of service.
Solutions provide the number and position of UAVs to be deployed, and are found using well-known
heuristic search methods such as genetic algorithms (used for the initial deployment of UAVs),
or particle swarm optimization (used for the periodical update of the positions). We examine
two communication services: (a) one bidirectional VoWiFi channel per user; (b) single broadcast
VoWiFi channel for announcements. For these services, we study the results obtained for an increasing
number of users confined in a small area of 100 m2 as well as in a large area of 10,000 m2. Results show
that the drone turnover rate is related to both users’ sparsity and the number of users served by each
UAV. For the unicast service, the ratio of UAVs per hour of service tends to increase with user sparsity
and the power of radio communication represents 14–16% of the total UAV energy consumption
depending on ground user density. In large areas, solutions tend to locate UAVs at higher altitudes
seeking increased coverage, which increases energy consumption due to hovering. However, in the
VoWiFi broadcast communication service, the traffic is scarce, and solutions are mostly constrained
only by coverage. This results in fewer UAVs deployed, less total power consumption (between 20%
and 75%), and less sensitivity to the number of served users.

Keywords: UAV; voice over IP; wireless LAN; IEEE 802.11; voice over IP over WiFi; VoWiFi;
quality of service; energy

1. Introduction

Unmanned Aerial Vehicles (UAVs) for wireless communications have experienced rapid growth
in a broad range of application domains [1]. On-board communication devices enable UAVs to
enhance coverage, capacity, reliability or energy efficiency of wireless networks. However, note that
the drone communication technology has a decisive impact on the data rate and range usable in
the mission [2]. The predominant technology in UAV-related literature is cellular (i.e., UAVs are
used as aerial base stations) [3], but it is not uncommon to find studies with other communication
technologies for UAV-to-ground communication such as WiFi [4–6] or Bluetooth [7]. This work takes
WiFi as enabling technology for UAV-to-ground communication. WiFi provides a data range of
11 Mbps–1 Gbps and a range of up to 250 m (depending on the revision).

Deploying UAVs for wireless networks brings in new opportunities, such as creating a provisional
communication infrastructure in Search and Rescue (SAR) missions [1,8]. However, it also brings
multiple challenges such as optimal 3D placement, performance analysis, path planning, backhaul
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connectivity, or energy limitation, just to name a few [3,9]. In this work, we deal with the challenge of
optimal multi-UAV 3D placement in the context of creating a provisional WLAN (i.e., UAVs are used as
aerial Access Points—AP) to provide ground users with VoIP over WiFi (VoWiFi) service. A distinctive
characteristic of this service is that 3D placement has to consider not only coverage (e.g., [10,11])
but also VoIP speech quality [12] since the mac-sublayer of the communication protocol limits the
number of simultaneous VoIP flows that APs can handle with quality of experience (for example,
an AP performing IEEE 802.11 b can handle a maximum of 15 simultaneous calls [13], even though the
number of stations associated to such AP could be multiple times greater). This limit is known as VoIP
capacity [14–16].

UAV’s optimal 3D placement is a challenging task that has received significant attention
from the research community [3,9,17,18]. The problem has to take into account multiple factors
such as the terrain, location of users, UAV-to-ground channel characteristics or radio interference
between UAVs, and in our case, the Quality of Service (QoS). According to Sharkoor et at. [19],
another factor to be carefully taken care of “when deploying UAVs is their flight time and energy
constraints”. Indeed, the authors provide an excellent literature review with emphasis on the energy
efficiency perspective, dissecting the factors affecting energy consumption in UAVs such as UAV
placement, UAV-user association, flight-time, mobility, trajectory, and UAV communication and
mechanical energy. Although optimal 3D placement has been extensively addressed, the comparison
between works is difficult as they have different objective functions and constraints. In general,
we can classify them roughly as (a) those that minimize the number of UAVs deployed [20–23]
(i.e., minimize deployment cost); (b) those maximize energy efficiency or battery lifetime [24–26]
(i.e., UAV endurance [27]). Energy-aware UAV optimal deployment problems typically considering
the power consumption due to either radio communication [25,26] or mechanical energy [24] using
energy consumption models [28,29]. The reader is encouraged to read the surveys [2,19,30] for a more
detailed list of works and references that address the problem of 3D placement with emphasis in
energy consumption.

1.1. Motivation

Long-duration activities may require hot replacement of drones due to battery exhaustion. In this
work, we would like to deploy aerial APs to provide VoWiFi service to ground users in an outdoor
long-duration activity (e.g., concert or similar longer 20–25 min) that will likely require hot replacement
of drones due to battery exhaustion. In this context, the following considerations should be taken
into account:

• Besides coverage, the multi-UAV 3D optimal placement has to consider VoWiFi speech quality for
which the mac-sublayer of the communication protocol is crucial. To the best of our knowledge,
the only work that has considered this factor [12] sets the focus only in minimizing the number
of UAVs deployed (among solutions with a similar number of drones, the one that extended the
battery life of served users was chosen) disregarding energy efficiency in UAVs.

• The number of UAVs required for the mission depends not only on the UAVs initially
deployed but also on the number of UAVs launched to replace those in battery exhaustion.
Thus, besides minimizing the number of UAV initially deployed, we should also seek the
placement that maximizes the UAVs operation lifespan, considering UAV communication and
mechanical energy.

• Long-duration events should consider users’ mobility. So besides the initial 3D placement, there
should be a method in place so that UAVs dynamically relocate themselves for service continuity.
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1.2. Contribution of This Paper

This paper defines and solves a new optimization problem that finds the number and position of
UAVs to be deployed over an area to provide VoWiFi service to a set of ground users. Our optimal 3D
placement minimizes the number of UAVs deployed over time (i.e., rate of drones per hour of service)
while satisfying coverage and QoS constraints.

The contributions of this paper can be summarized as follows:

• We mathematically formulate a new UAV optimal deployment problem that accounts for UAVs
turnover rate, coverage, and quality of service.

• We provide an analytical model that predicts the speech quality in a IEEE 802.11 WLAN for a set
of VoIP traffic sources.

• We provide an analytical model that predicts UAV energy expenditure due to wireless
communications. This information is used along with flight energy consumption to predict
UAVs endurance.

• We solve the UAV optimal deployment problem using well-known heuristic methods such as
genetic algorithm and particle swarm optimization.

2. Related Works

Multiple survey papers address the optimal placement of UAVs for wireless communications.
In this section, we scrutinize four recent surveys and complement them with other related
works applicable. Our goal is to clarify how our work compares with state of the art.

The authors in [2] review the literature for multiple drone applications such as drone base-stations,
search and rescue, or surveillance and monitoring, which is challenging due to the disparity of goals
and constraints. Regarding energy efficiency and 3D placement, in [26], the authors suggest an
algorithm that minimizes the transmit power for the 3D placement of one drone and assess their
approach by simulation. The 3D placement of one aerial base station was also proposed in [25]. In this
case, the authors proposed a placement algorithm to maximize the number of covered users using
the minimum transmit power. In both cases, only the power related to radio communication was
taken into account. In [31] the authors propose a placement algorithm for a set of UAV-mounted
5G aerial base stations that maximizes the capacity boost provided by the UAVs in each considered
time frame and extends the battery life of the served mobile users. Unfortunately, the authors did
not model the energy consumption, stating that “intuitively, less power is needed if the Gateway is
closer to the users”. In a context similar to ours, in [12], we proposed a 3D placement algorithm that
minimized the number of aerial APs deployed to provide VoWiFi to ground users. To the best of our
knowledge, this is the only related work in which speech quality has been considered a constraint.
However, the minimization subject was the number of UAVs launched, and only among solutions
with a similar number of drones, the algorithm selected the layout that extended the battery life of
served users, overlooking the power expenditure in UAVs.

The survey paper [3] addresses the use of UAVs for wireless networks. The paper provides state
of the art in the optimal deployment of UAVs as flying base stations. In their previous work [32],
the authors addressed the optimal deployment and mobility of multiple UAVs for energy-efficient
data collection, minimizing the total transmit power of IoT devices (i.e., ground users) during
UAVs trajectories. Other works such as [18,22,23,33–38] address the 3D optimal placement problem
considering coverage of ground users through different approaches, but disregard energy efficiency.
Some of these works consider interference between UAVs [33].

Another excellent paper is [30], where the authors survey recent research addressing 1–3D
placement optimization for aerial base stations. The authors highlight the diversity of objectives in
the optimization problem, such as maximizing the system capacity, minimizing the required number
of UAVs [34], or minimizing the total transmit power of the entire aerial system [39]. The algorithms
used for the optimal placement included force brute search [37], Genetic Algorithms [40], K-means
clustering [41] or transport theory [39]. This survey also provides a review of power-efficient operation
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of aerial base stations emphasizing that researchers typically work on either reducing communication
energy (i.e., minimizing transmission power) of either the drone or ground users [17], or reducing
mechanical energy of UAVs. The latter requires to count with an energy consumption model [21],
which largely depends on hovering. As the authors put it, “one solution to control the energy
consumption of UAVs is to regulate their height. However, changing the height might reduce the
performance of UAVs”. This trade-off is also applies to this work and it will be addressed in the
next section. Finally, the survey provides a list of testbeds and real experiments in the literature.
Interestingly, although most UAV communication research focuses on deploying UAVs as aerial base
stations (i.e., cellular technology such as 3G/4G/5G), most testbeds use WiFi (IEEE 802.11 b/g/a) as
communication protocol such as in this work.

Only in [19] one can find a literature review with particular emphasis on the
energy-efficiency perspective. Besides pointing to +20 other UAV communication-related existing
surveys, the authors discuss the main factors affecting UAVs’ energy consumption. One of these
factors is UAV placement. As such, the authors review energy-efficiency algorithms for optimal
UAV placement in the literature. [42] suggests using Machine Learning for the optimal placement
of UAV-mounted base stations given a predicted traffic demand. In their approach, they first find
the optimal partitions of service areas. Then, the optimal location of each UAV that minimizes the
total power consumption is derived. While the authors model the transmit power of UAVs deployed,
they fail to use a mechanical energy model and simply minimize the UAVs travel distance, assuming
that the mechanical power is proportional to it. [43] proposes a solution to minimize UAV’s mechanical
and communication energies while integrating cognitive radio technology. The optimization problem
is solved using a deterministic algorithm based on the Weber formulation and its performance is
compared to that of a meta-heuristic algorithm, namely particle swarm optimization algorithm (PSO).
In this case, the authors model the total energy consumption of a drone with two components, the hover
and transmission energies.

Finally, Table 1 compares the main related works with our proposal. This work’s uniqueness lies
in a new objective function for the problem of multi-UAV optimal 3D placement. The consideration
of WiFi and its mac-sublayer on the speech quality (as a constraint) can only be found in [12].
However, [12] does not model the energy consumption in the UAVs and has a different objective
function, as so does other works that model the mechanical and communication power in UAV-installed
base stations such as [42,43].
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Table 1. Comparison of main works related to 3D optimal placement of UAVs for communication.

Paper Objective Multi-UAV UAV-to-Ground UAV UAV User Speech Quality
Technology Mechanical Power Radio Power Radio Power Constraint

[26] minimize transmit power no cellular no yes no no
[25] maximize coverage with minimum transmit power no cellular no yes no no
[31] maximize capacity and extend battery life of mobile users yes cellular no yes yes no
[32] minimize transmit power of mobile users (deployment and mobility) yes cellular no no yes no
[22] minimize number of UAVs yes cellular no no no no
[39] minimize the total transmit power of the entire aerial system yes cellular no yes no no
[42] minimize total power consumption given predicted traffic yes cellular yes yes no no
[43] minimize total power consumption yes cognitive radio yes yes no no
[12] minimize number of UAVs yes WiFi no no yes yes

this paper minimize the ratio between the number of UAVs and UAVs’ endurance yes WiFi yes yes no yes
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3. QoS and UAVs Endurance in VoWiFi Networks

The optimization problem addressed in this work provides the number and position of a set of
UAVs to the deployed over a known area to provide WoWiFi service to a set of ground users at known
locations. Our objective function minimizes the ratio of drones per hour required to provide this
service constrained to user’s coverage and user’s speech quality (i.e., QoS). In this section, we study
the relationship between drone position, QoS, and UAV endurance.

Figure 1 illustrates two UAV-mounted APs providing VoWiFi to ground users (note that only
the UAV-to-user communication is considered and the communication between UAVs or with the
data network backhaul is taken for granted). On the leftmost part, a lower-altitude drone provides
coverage to four users. Their traffic (red lines show VoIP traffic flows) is aggregated at the aerial AP.
This traffic load may influence the QoS perceived by these users and the UAV’s power consumption
due to the transmission/reception of packets. The rightmost UAV is covering eight ground users
so its AP aggregates more traffic which may have an impact on the QoS perceived by ground users.
Hovering at a higher altitude and servicing more users will likely result in more energy expenditure
due to both hovering and more transmission/reception. Thus, the rightmost drone is expected to
be replaced earlier than the leftmost drone due to earlier battery exhaustion. This simple example
illustrates how the decision variables of the optimization problem (i.e., number and position of drones)
have an impact on both, the level of speech quality perceived by VoIP users and UAVs’ energy
expenditure. Next, we provide the analytical expressions used to model VoWiFi’s QoS and UAV’s
energy expenditure as both aspects are central in the problem’s objective function.
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Figure 1. UAV-based VoWiFi network.

3.1. Modeling QoS in VoWiFi

Each aerial AP and its associated stations can be studied as an independent IEEE 802.11 system,
as illustrated in Figure 2. Although all stations have a common Medium Access Control protocol
(i.e., MAC sub-layer), the Modulation and Coding Scheme (MCS) set on each station is automatically
self-configured seeking, the greatest possible data bit-rate achievable with the present signal strength.
Table 2 shows different MCSs defined for OFDM modulations (e.g., 802.11 a/g) and the minimum
signal strength required for each one.



Sensors 2020, 20, 4455 7 of 32

Table 2. 802.11 sensitivity relations for OFDM modulations with 20 MHz channels.

Modulation Coding Rate Data Rate Sensitivity
(Mb/s) (dBm)

BPSK 1/2 6 −82
BPSK 3/4 9 −81
QPSK 1/2 12 −79
QPSK 3/4 18 −77

16-QAM 1/2 24 −74
16-QAM 3/4 36 −70
64-QAM 2/3 48 −66
64-QAM 3/4 54 −65
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Figure 2. Communication system for each drone.

VoIP is a mature technology that counts with several methods for the assessment of voice
quality [44]. At the planning stage, the method predominantly used in the literature for QoS assessment
is the E-Model [45] since it allows one to estimate the speech quality coming down to the effect that the
VoIP traffic load has on network performance in terms of packet loss and delay. The E-model provides
a quality score termed R factor from 0 (poor) to 100 (excellent) which can be readily obtained using the
following expression [12,46,47]:

R = R0 − Ie + (95− Ie)
Ppl

Ppl
BurstR + Bpl︸ ︷︷ ︸

Ie,eff

− (0.024d + 0.11 · (d− 177.3) · H(d− 177.3))︸ ︷︷ ︸
Id

(1)

where:

• Ie,eff represents a combination between impairment equipment parameter at zero packet loss
(Ie), and a function that depends on Ie, the packet loss rate, and packet loss behaviour. Ie is
a codec-dependent constant associated with codec compression degradation (a list of values
from ITU-T codecs were presented in ITU-T Rec. G.113 Appendix I) , Bpl represents the codec
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packet loss robustness, which also has a specific value for each codec (listed in ITU-T Rec. G117
Appendix I), Ppl represents the packet loss rate (in %) in the WiFi channel and finally BurstR
characterizes the burst ratio (i.e., equals 1 if packet loss if random and greater otherwise). In this
paper, we use the G.711 codec (Ie = 0 and Bpl = 25.1) and assume random losses (i.e., BurstR = 1).

• Id accounts for impairments associated with the delay in the communication chain. A widely
accepted approximation for Id can be obtained from one-way delay in the communication path
d, where H is the Heaviside function (H(x) = 0 for x < 0 and H(x) = 1 for x > 0. In our case
x = d− 177.3). The one-way delay d (in milliseconds) includes the delay in the WiFi network plus
20 ms for the packetization interval of the codec.

All terms in Equation (1) are known but the network delay d and packet loss rate Ppl . The values for
these two factors will be obtained from our WiFi mac-sublayer analytical model for each UAV deployed
(we assume that backhaul networks do not introduce any negative impacts into QoS (i.e., infinite
bandwidth), or it can be considered as a constant in R) (and its associated users). R is one of our
objective function constraints, and its computation will be addressed in Section 5.2.2.

3.2. Modeling UAV Endurance

Endurance can be described as the total time taken during the flight (TFlight) until the depletion
of the UAV’s battery. High-power performance commercial UAVs are typically powered by LiPo
batteries, whose energy density varies between 150 and 300 Wh/Kg. In this work, the UAV energy
expenditure will consider two factors: flight and radio communication, being the former dominant in
the energy budget.

According to [28], the energy (in Wh) associated with flying can be broken down into three
different flight stages:

EFlight = EClimb + ETranslational + PHover · THover︸ ︷︷ ︸
EHover

(2)

where EClimb stands for the energy associated with vertical climbing, ETranslational is the energy spent
in lateral transitions, and EHover accounts for the energy spent while hovering (i.e., static). As proved
in [48], the hovering factor is dominant and overshadows the other two, and thus, the expression in
Equation (2) can be simplified to its last term.

Besides Equation (2), the other contributing factor to energy consumption is the power spent on
the radio used by the VoWiFi service.

ERadio = EWiFi + EBackhaul (3)

where EWiFi represents the energy consumed by the wireless IEEE 802.11 card of the aerial AP,
and EBackhaul accounts for the energy consumed by the radio link used for the backhaul network.

Assuming that network cards are not running power saving mechanisms, the first term of
Equation (3) (EWiFi) can be further decomposed as:

EWiFi = PWiFi · TFlight = ρtx · Ttx + ρrx · Trx + ρidle · Tidle (4)

where Ttx, Trx and Tidle stand for the time spent by the network interface card on transmission, reception
and idle states respectively (their sum must be TFlight); and ρtx, ρrx and ρidle stand for the respective
power consumption coefficients (which depend on the network interface card). The time taken on
each state depends on the traffic processed at the AP during the flight, which in turn depends on the
VoIP traffic pattern, the MCS used at each station, and retransmissions that may occur due to noise or
collisions. In Appendix A we derive closed-form expressions for the temporal factors in Equation (4)
for the IEEE 802.11 mac sub-layer.

Regarding the second factor in Equation (3), (the backhaul radio link is out of the scope of our this
work and the radio power will depend on the particular technology used. However, the assumption
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indicated in Equation (5) is acceptable for the sake of completeness) we can assume that in general,
it will be proportional to the WiFi consumption, as expressed in Equation (5):

EBackhaul = K · PWiFi︸ ︷︷ ︸
PBackhaul

·TFlight (5)

where K is a constant that represents the relation between both radio consumptions. For the remainder
of this paper we use K = 1 so PBackhaul = PWiFi.

Therefore, the total energy E spent by the UAV can be expressed as in Equation (6):

E = EFlight + EWiFi + EBackhaul︸ ︷︷ ︸
ERadio

(6)

Finally, assuming hovering as the dominant factor in Equation (2), the UAV’s expected flight
duration (in hours) can be expressed as:

TFlight =
EBattery

PHover + (1 + K) · PWiFi
(7)

where EBattery represents the battery energy in Watts per hour. TFlight is one of the factors of our
objective function and its computation will be addressed in greater detail in Section 5.2.3.

4. Problem Statement

4.1. Terminology and Assumptions

As in most related works, we discretize the flying space, as illustrated in Figure 3. The collection
of edges of the grid form a set of R3 coordinates denoted as P . These edges define potential locations
for UAVs. Each UAV mounts one AP. As such, the words UAV and AP may be used interchangeably
for the remainder of this work.

(x1, y1, z1)

(x2, y2, z2)

Figure 3. UAVs placement scenario.
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Throughout this paper, we use the following definitions and terminology:

• Drones are denoted by the set D = {1, 2, ..., D}. Their location is given by the set
X = {x1, x2, ..., xD|xi ∈ P , i ∈ D, xi 6= xj|∀j 6=i}, where xi ∈ P represents the three-dimensional
coordinates of drone i.

• Ground users are denoted by the set U = {1, 2, ..., U}. Their location is given by {wk|k ∈ U},
where wk ∈ R3 represents the coordinates of user k.

• The subset of users (i.e., WiFi clients) associated to the AP installed at drone i ∈ D is denoted by
C(i) ⊂ U . Thus, the number of ground users covered is given by C = ∑D

i=1 |C(i)|.
• R(i) represents the expected speech quality level (from 0 to 100) for users associated to the AP

installed at drone i ∈ D.
• TFlight(i) is the expected flight duration for drone i (see Equation (7), UAV’s endurance).

The average flight duration of the set of UAVs deployed, T̄Flight, is:

T̄Flight =
1
D
·

D

∑
i=1

TFlight(i) (8)

For the sake of simplicity and tractability, the following assumptions are considered:

• The terrain has known dimensions, and it is an open area.
• The number of drones available for the initial deployment has an upper bound Dmax.
• Ground users have a smartphone with a compatible VoIP application installed (i.e., using a

known codec).
• User positions are known. This assumption is commonly found in literature and could be

implemented through user’s smartphone’s GPS or image processing.
• APs’ channelization is arranged in such a manner that interferences between adjacent radio

channels are negligible.

4.2. Problem Definition

Our deployment problem provides the optimum number and position of UAVs that are required
to provide VoWiFi service to ground users. We aim to minimize the number of UAVs deployed
over time (i.e., rate of drones per hour of service) while satisfying coverage and QoS constraints.
For example, for a service duration of one hour, a solution with 3 drones that last 30 min (6 drones/h)
will be preferred to that with 2 drones that last 15 min (8 drones/h). Therefore, our objective
function minimizes the ratio between the number of UAVs deployed (D) and their average endurance
expectation (T̄Flight). This can be formulated as follows:

min
X

D2

∑D
i=1 TFlight(i)

subject to
D

∑
i=1
|C(i)|/U ≥ Cmin

R(i) ≥ Rmin , ∀i ∈ D
xi ∈ P , ∀i ∈ D
D ≤ Dmax

(9)

where D represents the number of UAVs deployed, TFlight(i) accounts for drone i expected flight
duration, Cmin stands for the minimum ratio of users that must be covered, and Rmin is a constant that
defines the minimum acceptable speech quality (e.g., 65 as proposed in ITU-T G.107 [45]).
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5. Solving a Pseudo-Static Scenario

For small flying spaces, solutions could be found through exhaustive search by assessing the
objective function (i.e., see (9)) for every grid edge for an increasing number of UAVs, starting with one
(D = 1). If no valid solutions were found, the number of drones should be increased until a solution is
found, or a maximum number of UAVs is reached (D = Dmax). Once a solution is found, the search
method has to consider launching an extra drone to ensure that the objective function value cannot be
further reduced (i.e., increasing the number of UAVs could reduce the UAV turnover rate). However,
although exhaustive search is feasible in very small areas, it is not generally feasible in most real-life
scenarios, for assessing a solution with D drones would require to evaluate ∑D+1

d=1 (|P|/d) possibilities.
Thus, we suggest using heuristic search algorithms as a general method to find solutions to our
optimization problem. Although several other metaheuristic methods are applicable, we opt for using
Genetic Algorithms to find a sub-optimal solution due to its simplicity and proven effectiveness in
similar problems [12,40,49], since the contribution of this work is not focused on the performance of
the metaheuristics method.

5.1. Search Algorithm: GA

A genetic algorithm is a heuristic search method inspired by the process of natural selection.
A population of individuals (i.e., candidate solutions to the problem at hand) is evolved through
evolutionary operators (e.g., crossover, mutation) toward better solutions. For every new generation,
the population is evaluated and scored according to a fitness function and the best individuals
are passed to the next generation. This process typically starts with a first generation of
random individuals.

In our problem, each individual represents the location of D drones X = {x1, x2, ..., xD|xi ∈ P , i ∈
D, xi 6= xj|∀j 6=i}, where xi ∈ P stands for the location of drone i. For example, consider a scenario with
D = 3 drones; then, individuals would be represented by the following sequence of genes:

X |D=3 = {x1, y1, z1︸ ︷︷ ︸
x1

, x2, y2, z2︸ ︷︷ ︸
x2

, x3, y3, z3︸ ︷︷ ︸
x3

} (10)

Algorithm 1 shows the pseudocode of our GA-based search method. The input of the algorithm is
the set of ground users (U ) and their location (wk), the set of edges (P), the minimum coverage
constraint (Cmin), the minimum speech quality constraint (Rmin), and the maximum number of
available drones (Dmax). The algorithm starts by seeking solutions with one drone (D = 1 ) and
then increases the number of UAVs until a sub-optimal solution is found (or until Dmax). On each
iteration, the genetic algorithm (lines from 3 to 18 in Algorithm 1) aims to find the best solution that
meets the problem constraints. Every time that the genetic algorithm is initiated, an initial population
of candidate solutions (i.e., individuals) is created as I by the GA_InitialPopulation function. Then, every
individual in I is evaluated using the Check function. This function returns the objective function
value (see Equation (9)) including the ratio of coverage and QoS-level. If one individual meets the
problem constraints and improves the last best value of the objective function ( f ∗obj), the individual
is recorded as a candidate solution. After the assessment of one generation, the next one is created.
In the next generation, some individuals are a copy of the best individuals from parents (function
GA_Elite), some others are created applying operations of Crossover-and-Mutation (function GA_CM)
and Self-Reproduction and Mutation (function GA_SRM) to the parents [50,51]. This process is repeated
until a maximum number of generations is reached without any improvement (exit criteria).
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Algorithm 1: GA-based search pseudocode.
Input: P , U , {wk}, Dmax, Cmin, Rmin

Output: L∗ (location), f ∗obj (obj. value)
Initialization : D = 1, finish = False,

L∗ = ∅, f ∗obj = Inf

while
(
!finish and D ≤ Dmax

)
do

finish = True;
/* Build initial population */

I = GA_InitialPopulation (U , {wk});
while !(exit criteria met) do

/* Evaluate each individual */

for individual i = 1 to |I| do
X = I(i);[

fobj(i), C, R
]

= Check (D, X , U , {wk});
if
(

fobj(i) < f ∗obj and C ≥ Cmin and R ≥ Rmin
)

then
L∗ = X ;
f ∗obj = fobj(i);

finish = False;
end

end
/* Build next generation */

Ielite = GA_Elite (I); /* Get best individuals */

ICM = GA_CM (I); /* Apply Crossover-and-Mutation */

ISRM = GA_SRM (I); /* Apply Self-Reproduction & Mutation */

I = Ielite ∪ ICM ∪ ISRM; /* Update population */

end
D++;

end

The remainder of this section, elaborates on the assessment of individuals (i.e., Check function).
GA implementation and related functions (GA_InitialPopulation, GA_Elite, GA_CM, and GA_SRM)
are discussed in Appendix B.

5.2. Checking the Fitness of Individuals: Check Function

This function is aimed at computing all the factors of the objective function of the problem
for a candidate solution, i.e., the constraints of coverage and speech quality, and the value of the
objective function. As shown in Algorithm 2, the input of the Check function is the 3D coordinates
of D drones (X ) and users’ location {wk | k ∈ U}. Each drone in the candidate solution is assessed
in three steps by three different functions. First, the collection of ground users associated to the AP
is determined through the Associate function. Then, the QoS level of associated users is evaluated
with the QoS_eval function. Finally, UAV endurance is determined (i.e., Endurance_eval function).
Next, we elaborate on these functions.
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Algorithm 2: Check function pseudocode.
Input: D, X , U , {wk}
Output: fobj, C, R
for j = 1 to D do
C(j) = Associate (U , {wk}, X );
R(j) = QoS_eval (C(j), xj, {wk});
TFlight(j) = Endurance_eval (C(j), xj, {wk});

end
C = ∑D

i=1 |C(i)|;
R = min

k=1..D
{R(k)};

fobj = D2/ ∑D
i=1 TFlight(i);

5.2.1. Signal Coverage Evaluation (Associate Function)

This function associates each ground user to an aerial AP. A successful association requires that
the Received Signal Strength Indicator (RSSI) and the Signal-to-Interference-plus-Noise-Ratio (SINR)
are above a lower threshold. If multiple access points were available, each user will associate with the
AP which provides the strongest RSSI. The output of the Associate function is the set of users that are
associated to drone j, C(j):

C(j) = {i ∈ U | γik = 1, RSSIij > RSSIik, ∀k 6= j} (11)

where γij as a boolean that represents if user i ∈ U satisfies minimum thresholds
(i.e., both, SINRij ≥ SINRmin and RSSIij ≥ RSSImin) when associated to UAV j ∈ D.

Observe that the user-to-AP association determines the Modulation and Coding Scheme
(i.e., MCS(i)) at the physical layer of each WiFi station, which depends on the received
RSSI(i) = max

j=1..D
{RSSIij} and the required minimum sensitivity for each MCS. Next, we develop how

RSSI and SINR are computed for each ground user.

UAV-to-Ground Channel Model

Most works [22,33,52] consider that ground users receive three different groups of signals that
could be classified as: (a) Line-of-Sight (LoS), (b) Non-Line-of-Sight (NLoS), and (c) other reflected
components which cause multipath fading. Each group has its own probability of occurrence
depending on the environment, density, height, and elevation angle; so their impact on the overall
path loss can be averaged. According to [53], the probability of fading is significantly lower than the
probability of receiving the LoS (PLoS) and NLoS (PNLoS) components. Therefore, the UAV-to-Ground
path loss can be represented by:

L(d, θ) = PLoS(θ) LLoS(d) + PNLoS(θ) LNLoS(d) (12)

which depends on the distance d between the UAV and the ground terminal, and θ that represents
the elevation angle (in radians). LLoS and LNLoS represent the average path loss for LoS and NLoS
components, respectively; and can be expressed as [52]:

LLoS(d) = 20 log10

(
4π fc d

c

)
+ ξLoS (13)

LNLoS(d) = 20 log10

(
4π fc d

c

)
+ ξNLoS (14)



Sensors 2020, 20, 4455 14 of 32

where the first term accounts for the free space propagation loss, ξLoS and ξNLoS represent any additional
losses due to the environment (a list of values can be found in [22]), and fc is the channel frequency.

Finally, the probability of receiving each component is given by [54]:

PLoS(θ) =
1

1 + αe−βθ·180/π+βα
(15)

PNLoS(θ) = 1− PLoS(θ) (16)

where α and β are environment-dependent constants (e.g., rural, urban, etc.) as defined in [22]
(e.g., α = β = 0 for no buildings).

Obtaining RSSI and SINR

The Received Signal Strength Indicator (RSSI) represents the power received at the
ground terminal. Let us consider a generic user i and the AP installed at drone j. Then, RSSIij
can be calculated by subtracting the UAV-to-Ground path loss to the total transmitted power:

RSSIij = Ptx + Gij − L
(
‖wi − xj‖, θij

)
(17)

Gij = 10 log10

(
10Gmax/20 · cos2 θij

)
(18)

where Ptx (dBm) represents the power delivered by the transmitter antenna; Gij (dB) stands for the gain
of the antenna between user i and drone j as indicated in Equation (18) (which is bounded by Gmax);
L(d, θ) represents the path loss function introduced in Equation (12); and ‖wi − xj‖ is the Euclidean
distance between user i and drone j.

The Signal-to-Interference-plus-Noise-Ratio (SINRij) can be calculated by subtracting every noise
and co-channel interferences to the received signal strength. To do so, let us declare Zj as the collection
of drones that may cause interferences (channel planning is out of the scope of this paper) to the
network deployed by UAV j. Then, the SINR (in dB) can be expressed as:

SINRij = RSSIij − F− N − ∑
k∈Zj

(RSSIik) (19)

N = −174 + 10 log10(CBW) (20)

where N is the thermal noise, F accounts for the receiver’s noise figure, and CBW represents the signal
bandwidth, which depends on the IEEE 802.11 standard revision under consideration.

5.2.2. Quality of Service Evaluation (QoS_eval Function)

After establishing the association between users and APs (i.e., drones), which enables the
verification of the coverage constraint, the second step consists of assessing the speech quality level
(and hence, allow for the verification of the second constraint in Equation (9)) by computing the R
factor (as introduced in Section 3). To do so, we evaluate the network performance on each set of users
plus its corresponding UAV (i.e., C(j) + AP at drone j). This evaluation is based on a model of the
IEEE 802.11 MAC sub-layer and provides delay and packet loss in the WiFi network, which allows one
to calculate the R factor for each drone.

The IEEE 802.11 MAC sub-layer features a distributed access mechanism called DCF
(i.e., Distributed Coordination Function), whose performance has been largely studied
in literature [55–58]. In a nutshell, each contending station senses the medium during a period (DIFS)
before transmitting in order to avoid collisions. If the channel is busy, the station waits for a random
backoff interval before trying again (up to M attempts). The backoff procedure is also triggered
between two consecutive transmissions. During the backoff process, a random number of discretized
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time slots (Tslot) between 0 and 2iWo is selected, where Wo accounts for the minimum contention
window value, and i increases by one with each failed attempt up to reaching an upper bound m.

In this paper we have adapted some existing models of the DCF behaviour [59–62] to fit our
context of heterogeneous traffic sources, non-saturated stations and a non-ideal channel. The central
variable in DCF models is τ, which stands for the probability that an observed station attempts to
transmit during a randomly chosen time slot. We use the expression proposed in [59]:

τ =
1
η

1
1− q

(
r2Wo

(1− p)(1− (1− r)Wo
− qr(1− p)

)
(21)

η = (1− r) +
r2Wo(Wo + 1)

2(1− (1− r)Wo )
+

Wo + 1
2(1− q)

(
r2qWo

1− (1− r)Wo
+ rp(1− q)− rq(1− p)2

)
+

p
2(1− q)(1− p)

(
r2Wo

1− (1− r)Wo
+ qr(1− p)2

)(
2Wo

1− p− p(2p)m−1

1− 2p
+ 1
)

(22)

where η is defined in Equation (22) and p is the probability that a packet suffers transmission errors
due to collisions and/or noise. The VoIP traffic is modelled (we assume Poisson packet arrivals and
the small queue assumption as discussed in [58]). through two variables, r and q, which account for
the probability that at least one packet arrives during an idle state, and the probability that the MAC
queue is not empty, respectively.

r = 1− e−λE[T] (23)

q = 1− e−λE[T]E[B] (24)

where E[B] is the expected number of back-off slots that a packet waits before transmission. This can
be expressed as proposed in [62]:

E[B] =
Wo

2(1− p)

(
1− p− (2p)m

(1− 2p)
− 2m pM+1

)
, (25)

and E[T] is the average slot duration, which represents the expected length of any state of the
Markov chain. E[T] can be calculated by averaging the duration of each type of event with its
probability (i.e., success, collision, corruption or idle) as proposed in [12,61].

Recall that each station in the system composed of drone i + C(i) (from now on termed set S) has
it own τ since we consider heterogeneous sources. So let us tag each station as i ∈ {1, . . . , S} and let
the superscript (i) relate each variable to the i-th station. Then, p(i) is the probability that a packet from
station i suffers any transmission error:

p(i) =
(

1− P(i)
i

)
∪ FER(i) = 1− P(i)

i + P(i)
i · FER(i) (26)

P(i)
i =

|S|

∏
j=1, i 6=j

(
1− τ(j)

)
(27)

where P(i)
i represents the probability that only station i is attempting to transmit, and FER(i) stands for

the Frame Error Rate (in the access point case, MCS and FER are dynamically changed according to
its communication partner. Our approach is to average its data bit-rate and FER) (i.e., channel noise),
which can be obtained as:

FER(i) = 1− (1− P(i)
e )L (28)

where L is the packet size (considering preamble, headers and payload), and P(i)
e represents the bit

error rate of station i, which can calculated by considering the user’s MCS(i) as proposed in [63,64].
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Finally, one can solve the non-linear equation system formed by Equations (21) and (26). Since the
downlink performance is the dominant factor in QoS as demonstrated in [13], the packet loss and delay
(the small queue assumption allows us to neglect the queuing delay and DEL can be approximated
by the channel access delay) at the access point (tagged as i = AP) will represent the worst case.
As such, it will be used to calculate the QoS for the set S . Then, the packet loss ratio and delay can be
expressed as:

PL = 1−

(
1− FER(AP)

)
τ(AP) ∏

|S|
j=1,j 6=AP

(
1− τ(j)

)
λ(AP) E[T]

(29)

DEL = E[B(AP)] · E[T] (30)

Substituting PL and (DEL + 20) (recall that the delay includes the a codec packetization delay
of 20 ms) in the terms Ppl and d from Equation (1) provides the output of the QoS_Eval function: the
R factor.

5.2.3. Endurance Evaluation (Endurance_eval function)

This function estimates the expected UAV’s endurance. As introduced in Section 3, the flight
duration has two main components: the power (in Watts) required to hover the drone (PHover), and the
power consumption at both radio links (i.e., recall from Section 3.2 that it was proportional to PWiFi).

PHover in rotor-based aircrafts can be easily derived from the Momentum Theory [29] as:

PHover =
g

3
2

ηpsrp
√

2NRρaπ
m

3
2 (31)

where g accounts for gravity acceleration, m represents the mass of the aircraft, ηps is the rotorcraft
propulsion system efficiency, NR is the number of rotors, rp represents the radius of each rotor and
finally ρa represents the density of air. NR, rp and ηps are UAV-specific. While the first two are fixed
and can be readily obtained from manufacturer manuals, the latest is variable (although a constant
value is generally adopted) and requires experimental estimation [48].

Regarding PWiFi at the access point, the power can be expressed as:

PWiFi =
1

E[T]
·
(

Jσ Pi︸︷︷︸
idle interval

+ Jtx,s Ptx,s + Jtx,e Ptx,e + Jtx,c Ptx,c︸ ︷︷ ︸
transmission interval

+ Jrx,s Prx,s + Jrx,e Prx,e + Jrx,c Prx,c︸ ︷︷ ︸
reception interval

)
(32)

where Jσ represents the energy spent during an idle interval; Jtx,s, Jtx,e, and Jtx,c represent the average
energy consumption (in Joules) during a successful, erroneous or collided transmission at the access
point respectively; and Jrx,s, Jrx,e and Jrx,c represent the expected energy consumption during a
successful, erroneous or collided reception respectively. The terms Pi, Ptx,s, Ptx,e, Ptx,c, Prx,s, Prx,e

and Prx,c indicate the probability of such events. A detailed expression of the factors in (32) based on
the traffic and our model of the mac-sublayer is deduced in Appendix A.

Finally, the expected flight duration TFlight of a particular drone can be calculated by substituting
the expressions of PFlight and PWiFi in Equation (7).
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5.3. Example Solution

This section offers a first example solution and validates the models used in the previous section
with the network-simulator ns-3. We define a scenario where 40 ground users are randomly placed
in a square area of (100 m × 100 m). The parameters used in the scenario are listed in Table 3.
Unless otherwise specified, such settings are common to all experiments in this paper.

The solution to the optimization problem has been found by implementing Algorithm 1
in Matlab R©. A graphical representation of the solution is provided in Figure 4. Notice that different
colors represent different WiFi associations between users and UAVs.

The scenario (including the UAVs) has been simulated with the ns-3 network simulator. In the
simulation, no interferences between APs have been considered and transmission buffer sizes have
been set to one packet to match the small queue assumption made in Section 5.2.2.

The results obtained are summarized in Table 4, which shows the most relevant performance
measurements (location, flight time, quality level and radio power). We have performed 30 runs of
simulations and the results presented represent average values.

The results in Table 4 indicate that the solution meets both coverage and speech quality constraints,
and the QoS and energy models used in Algorithm 1 are aligned with simulation results, which
validates the models proposed in Section 5.2.2.

Table 3. Example solution input parameters.

IEEE Standard Scenario Traffic Constraints Energy

Revision 802.11 n Users 40 Calls/hour/user 5 RSSImin −82 dBm EBattery 60 Wh
GI 800 ns Size 100 m × 100 m Call length 180 s SNRmin 20 dB PHover 120 W

Preamble Greenfield X-Y-Z step 1 m VoIP codec G.711 Rmin 65 ρtx 16 W
Bandwidth 20 MHz Altitude layers {10, . . . , 40} m On/Off times CBR Cmin 0.9 ρrx 9.7 W

Retries 7 Prop. Exponent 3.3 Packet interval 20 ms ρidle 9.7 W

1

0

10

20

100

30

z
 (

m
)

40

90
80

2

10070 9060 80

y (m)

50 70

3

60

x (m)

40 5030 40
3020

2010 100 0

Drone

Associated users

Non covered users

Figure 4. Example solution.

Table 4. Algorithmic and simulation results.

Drone xi |C(i)| TFlight
Algorithm 1 / Simulation

(min) R PRadio
(W)

1 (69, 77, 14) 12 25.61 89 / 88 20.56 / 20.27

2 (83, 22, 30) 11 25.64 90 / 89 20.42 / 20.16

3 (24, 36, 26) 14 25.56 87 / 85 20.86 / 20.53
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6. Solving a Dynamic Scenario

So far, we have applied the GA-based search algorithm in Section 5 for solving the problem of the
initial deployment of drones to provide service to a set of users who are assumed to be static at known
positions. However, in some activities (e.g., outdoor concerts), users are free to move within a bounded
area. Consequently, the problem constraints may not hold after a while due to users’s movement unless
deployed UAVs are continuously relocated. One approach to do this is to perform periodic updates of
the user’s positions every T = Tsample seconds, (re)solve the optimization problem, and update UAVs
locations, as illustrated in Figure 5. A central assumption in this approach (and our work hypothesis)
is that the set of UAVs initially deployed and their position will suffer small changes (assuming that
the trajectories always minimize UAVs displacement) if the sampling period is short enough.

0

t

T = Tsample 2T 3T 4T

1

1 2 3

2 3

Tsolve

Trelocate

Figure 5. Dynamic scenario.

Between two consecutive relocation periods T, one has to consider the relocation delay, (i.e., drones
updated their location), that includes:

• The time required to solve the problem, Tsolve, which in turn depends on the performance of the
algorithm used to find the solution to the problem.

• The time required to relocate UAVs, Trelocate, which depends on the distance traveled by UAVs
and their speed. Small UAVs typically travel at speeds below 15 m/s [30].

Under the assumption that AUVs will complete self relocation quickly due to high speed and
short distance, the main limiting factor for a fast sampling of user positions is the time required to
solve the problem. For this reason, we want to reduce the execution time of the search algorithm for
periodic relocation.

According to [65], search algorithms based on Particle Swarm Optimization (PSO) tend
to be computationally more efficient than GA-based algorithms due to faster converge.
However, although both metaheuristics provide similar effectiveness (i.e., solution quality), it is
also known that PSO is more prone than GA to get stuck on local solutions. For this reason, we propose
to use the GA-search algorithm from Section 5 only for the initial deployment, but then use a PSO-based
algorithm to solve the UAVs placement for the remainder of the mission. PSO algorithms have been
successfully used to solve optimal 3D placement of UAVs before [43].

6.1. Periodical Search Algorithm: PSO

Particle Swarm Optimization (PSO) is a heuristic search method inspired by bird flocking or fish
schooling’s social behaviour. In PSO, each candidate solution is represented as a particle that moves
around in the search-space towards better solutions. Initially, a collection of particles with random
positions in the search-space is created. Each particle is represented by its position (i.e., collection of
characteristics, similar to individuals in GA), and a velocity. On each iteration, each particle updates
its position based on its velocity, its best known position, and the global best location.
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Algorithm 3: PSO-based search pseudocode.
Input: D, Lold (old location), P , U , {wk}, Dmax, Cmin, Rmin

Output: L∗ (new location), f ∗obj (obj. value)
Initialization :L∗ = Lold, f ∗obj = Inf

/* Create the initial swarm */

W = PSO_InitSwarm (Lold);
B =W ; // Initialize best-known locations

F (i) = Inf ∀i; // Initialize best-known obj. function values

while !(exit criteria met) do
for particle i = 1 to |W| do

/* Update the i-th particle */

W(i) = PSO_UpdateParticle (W(i));
/* Evaluate the i-th particle */[

fobj, C, R
]

= Check (D,W(i), U , {wk});
/* Record results */

if
(

fobj < F (i) and C ≥ Cmin and R ≥ Rmin
)

then
B(i) =W(i); // Update best-known particle’s location

F (i) = fobj; // Update best-known particle’s obj. function value

if fobj < f ∗obj then
L∗ =W(i); // Store best-known global position

f ∗obj = fobj;

end
end

end
end

Algorithm 3 shows the pseudocode for our PSO-based search algorithm. The input of the
algorithm is the previous positioning (D and Lold), the set of ground users (U ) and their location
({wk}), the set of edges (P), coverage (Cmin) and quality (Rmin) constraints, and the maximum number
of drones (Dmax). The algorithm assumes that the number of deployed drones (D) does not change
between two consecutive executions, and relocates them. To do so, it initializes the swarm of particles
(W) with the function PSO_InitSwarm around the previous positioning (Lold). Then, each particle is
updated through the function PSO_UpdateParticle, which receives as input the best known position for
that particle. Then, the candidate position (X ) is evaluated through the function Check from Section 5.
Finally, if the particle improves its result, we store the new position asW(i) and, if the best solution is
improved, we record it at L∗, which is the output of the algorithm. This procedure is repeated until
the exit criteria is met. PSO implementation and its functions (PSO_InitSwarm and PSO_UpdateParticle)
is discussed in Appendix C.

6.2. Convergence Speed

In this section, we compare the convergence speed of our two heuristics (GA and PSO) to validate
PSO’s faster convergence speed and justify its use for periodical relocation of UAVs.

We have performed the following experiment. We have placed 100 users on different sized areas
(from 1000 to 10,000 m2). Ground users move according to a correlated random walk model (the rest of
the settings are shown in Table 3). Each user moves at a walking speed of 5.3 km/h with a probability
of 0.8, and in such case, the direction remains unchanged with probability 0.8. Users rotate 180 degrees
when they reach the area bounds. Algorithm 1 is used for the initial deployment, and the number
of drones deployed D remains unchanged for the remainder of the simulation (15 min). To achieve
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this, we limit subsequent solutions to the best solution found with D drones (even though problem
constraints were not satisfied). Every 30 s (T = 30), we update drones’ location by executing one of
the resolution methods: (a) GA, or (b) the PSO-based search we introduced in this section. Figure 6
illustrates the obtained results (x-axis represents the sparsity of users in m2/U). With every new
solution, drones are relocated (considering a speed of 60 Km/h) so that the sum of the distances
traveled by all drones is the minimum possible.
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Figure 6. Resolution time (Tsolve).

Results prove that using the PSO-based algorithm significantly improves the convergence speed,
reporting up to an 80% improvement in the resolution time. With the PSO-based search, the resolution
time (Tsolve) never takes longer than 25 s, which validates its use with our preferential sampling
time (T = 30 s). Results also show that scenarios with high user sparsity are easier to solve, and the
algorithm takes less time to converge to solutions.

7. Numerical Results

This section provides a numerical analysis of the results obtained with our optimal placement
method for two different VoWiFi communication services.

• Individual VoIP channels. Each ground user has an independent bidirectional VoIP channel.
• Broadcast channel. Every ground user receives a single shared unidirectional VoIP flow.

For each communication service, we solve our optimal 3D placement problem for an increasing
number of users confined in a small area of 100 m2 as well as in a large area of 10,000 m2. The results
provided are the average of 30 simulation runs and exhibit a 95% confidence interval. On each run,
users’ location was randomly generated.

7.1. Individual VoIP Channels

In this experiment, each user has an individual bidirectional VoIP channel. We vary the number of
ground users from 10 to 100 over two terrain sizes (100 m2 and 10,000 m2) using the parameters listed
in Table 3. We want to study the evolution of fobj (i.e., the average rate of drones per hour of service),
the power spent on communications PRadio and the total required power (i.e., radio communication
and hovering).

Figure 7b illustrates the drone turnover rate ( fobj) in UAVs/hour. As introduced in Section 4,
this value is the ratio between the number of drones D and the average flight duration T̄Flight.
Results suggest that scenarios with large user sparsity (m2/U) tend to demand more of drones.
For example, from 10 to 50 users, the 10,000 m2 scenario requires more drones to satisfy the coverage
constraint (C ≥ Cmin ·U) than that of 100 m2. The average drone flight duration was around 25 min.
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Figure 7. Results for the individual VoIP channels experiment.

Figure 7b shows the average power spent in communications (i.e., PRadio). In this graph, we can
identify two behaviours:

• For less than 50 users, drones spend more radio power in the smaller scenario than in the
larger one. This can be explained as follows: while in the bigger scenario up to (1− Cmin) ·U
users can be excluded from coverage by locating drones far away from them, the smaller one has
not enough terrain for the drones to exclude people (C = U), which in turn increases the average
number of users associated to each aerial AP.

• For more than 50 users, the previous behaviour gets inverted when the user density is high enough.
This is attributable to solutions where drones are placed at higher altitudes. In general, drones
increase their altitude to cover a larger area (i.e., antenna directivity), which in turn reduces the
received signal strength and the achievable data bit-rate (i.e., a slower MCS is selected), so the
time to complete data transmission is longer which translates into higher energy consumption.

Finally, Figure 7c represents the total power used by all UAVs broken down into mechanical power
(i.e., PFlight) and communications power (i.e., PRadio). In our experiment, PWiFi represents between the
14% and 16% of the total power expenditure, scaling with user density. This ratio is highly dependent
on drone characteristics and the power consumption of the radio network interfaces. A careful selection
of these aspects is a key factor for reducing the number of required UAVs per hour of service.

7.2. Broadcast Channel

Our second experiment considers a single broadcast VoWiFi channel. This is a one-way
communication service could be used for announcements to ground users. To compare both
VoWiFi communication services, we set up the same range of users and terrain sizes as in our
previous experiment (and continue using the settings listed in Table 3). As a particularity, broadcast
channels are transmitted using the lowest available bit-rate modulation (i.e., MCS 0 in IEEE 802.11n) to
maximize coverage.

Figure 8 shows the results obtained for fobj, PWiFi and the total power consumption. The average
drone turnover rate ( fobj) shown in Figure 8a depends on the size of the terrain, but the number
of served users does not affect negatively since the problem constraint related to QoS is no longer
an obstacle due to the scarce traffic load (i.e., there is only one traffic flow from the AP to all its
associated users).

Figure 8b shows that the power spent in radio communications is close to the power consumption
of the radio idle state (PRadio ≈ 2 · ρidle). This shows that the channel occupation is very low.
Indeed, the codec G.711 requires a throughput of 64 Kbps (around 80 Kbps at the physical layer),
and the available data bit-rate is 6.5 Mbps. As a result, PRadio represents a 14% of the total power
(see Figure 8c).
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Figure 8. Results for the broadcast VoIP channels experiment.

Finally, let us compare the total required power in both experiments (see Figures 7c and 8c). Since
the VoWiFi broadcast service require fewer drones than the individual, the total power consumption is
also improved. Energy savings are reduced up to 20% on the largest scenario and up to a 75% on the
small one. As expected, energy savings increase with user density and thus, QoS-constrained scenarios
take advantage of replacing individual VoIP channels with a unique broadcast channel.

7.3. Comparing with Other Approaches

As shown in Section 2, several research works have addressed UAVs’ optimal 3D deployment
for communications. Unfortunately, comparing our results with these works is very difficult due to:
(a) the objective function and constraints are different; (b) the radio access network (WLAN versus
cellular) is also different, which affects coverage and QoS. But for the sake of completeness, we compare
our results with the following approaches:

• A search method based on K-means clustering that seeks the minimum number of UAVs that
satisfies the optimization problem in this paper, Equation (9). K-means clustering has also been
used for 3D optimal placement in [41].

• Our previous work [12] for optimal 3D placement in search and rescue missions. This GA-based
search algorithm is the only related work that has comparable constraints (i.e., speech
quality in WiFi) although the objective function is not the same and does not model UAVs
endurance (see Table 1 for details).

For the comparison, we vary the number of ground users from 10 to 100 over a 10,000 m2 terrain,
using the rest of parameters we listed in Table 3 (some parameters, such as coverage ratio, are not
supported by our previous work [12]). Then, we analyze the evolution of the drone turnover rate ( fobj)
and the total power expenditure (i.e., adding the power of all UAVs in the solution).

Figure 9 illustrates how the UAV turnover rate (left axis) and the total power expenditure
(right axis) change while the number of ground users increases. As expected, both variables are
interrelated, and scale up with the number of ground users. Results suggest that our new proposal can
reduce both, UAVs turnover rate and energy consumption. Compared to the K-means search method,
our method saves 60% of the energy consumption for U = 10, and 80% for U = 100. Compared to [12],
our method also provides energy savings, although this is reduced up to 22%. In general, our method
also reduces the number of UAVs per hour required to complete the mission (e.g., reduced from 9 to 7
in U = 70).
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Figure 9. Comparison against other approaches.

8. Conclusions and Future Research

This paper formulates a new problem for the UAVs’ optimal 3D placement to offer VoWiFi services
with guaranteed speech quality to ground users confined in a known area. Our objective function
minimizes the ratio between the number of UAVs initially deployed and their average endurance
expectation, providing the layout that requires fewer drones per hour of service. Solutions are found
using two well-known search methods: (a) a genetic algorithm is proposed for the initial deployment,
and (b) a particle swarm optimization algorithm is proposed for updating UAVs’ location in scenarios
with users mobility.

A numerical analysis compares the results of our optimal placement algorithm for unicast and
broadcast VoWiFi services. Our results for the unicast service show that the drone turnover rate is
related to both, users’ sparsity and the number of associated users to each drone. In terms of energy
consumption, radio communications represent between a small part (between 14% and 16%) of the total
power consumption depending on the density of users served per drone. Large areas tend to locate
drones at higher altitudes, which increases UAVs’ mechanical energy consumption. The broadcast
VoWiFi service generates a very low traffic load, which translates into a significant reduction of UAVs
deployed and total power consumption (between 20% and 75%), and less sensitivity to the number of
served users.

The next step in our work is to consider two new aspects in this field: (a) interferences between
APs, so that overlapping channels could negatively impact on QoS; and (b) using 5G instead of WiFi
as the enabling technology for the UAV-to-Ground access network.
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Appendix A. Consumption Events on WiFi

The expected energy consumption per slot can be computed by averaging each consumption
event with its probability of occurrence as proposed in Equation (32). Each state on the WiFi NIC
(transmission, reception or idle) presents a different power consumption termed as ρtx, ρrx and ρidle;
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respectively. In addition, some frame exchanges may last longer that others depending on their result
(success, collision or corruption). Consequently, the following events can be identified:

The absence of transmission attempts results into an idle channel event, whose consumption
(in Joules) is represented by J(j)

σ for the j-th station (notice that consumptions may differ between
stations and access points) and its probability of occurrence Pi is common to every station in
the network:

Pi =
S

∏
j=1

(
1− τ(j)

)
(A1)

J(j)
σ = ρ

(j)
idle · σ (A2)

A successful packet transmission event happens when a single station attempts to transmit while
the rest remain silent. Let us define its consumption by J(j)

tx,s with a probability of P(j)
tx,s:

P(j)
tx,s =

(
1− FER(j)

)
· P(j)

s (A3)

J(j)
tx,s = ρ

(j)
tx · T

(j)
tx,data + ρ

(j)
rx · Tack + ρ

(j)
idle · (SIFS + 2δ + DIFS) (A4)

where P(j)
s represents the probability of success of station j:

P(j)
s = τ(j)

|S|

∏
i=1, i 6=j

(
1− τ(i)

)
(A5)

We consider a corrupted transmission event when a transmission does not collide but fails due to
noise influence:

P(j)
tx,e = FER(j) · P(j)

s (A6)

J(j)
tx,c = ρ

(j)
tx · Tdata|c + ρ

(j)
idle · (EIFS + δ) (A7)

Analogously, the probability that station j suffers a collision transmission event is given by P(j)
tx,c,

whose consumption is defined by J(j)
tx,c:

P(j)
tx,c = τ(j) ·

(
1−

S

∏
i=1, i 6=j

(
1− τ(i)

))
(A8)

J(j)
tx,c = ρ

(j)
tx · Tdata|c + ρ

(j)
idle · (EIFS + δ) (A9)

The reception probabilities can be derived from the aforementioned transmission probabilities.
Notice that stations and access points may behave different. For example, the successful packet
reception event is characterised by consumption J(j)

rx,s with probability P(j)
rx,s:P(j)

rx,s = ∑S
i=1, i 6=j

(
P(i)

tx,s

)
, if j = AP

P(j)
rx,s = P(AP)

tx,s · λ
(j)
rx /λ(AP), if j 6= AP

(A10)

J(j)
rx,s = ρ

(j)
rx · T

(j)
rx,data + ρ

(j)
tx · Tack

+ ρ
(j)
idle · (SIFS + 2δ + DIFS)

(A11)
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In addition, stations may hear frames whose destination are not themselves, we term this event
as overhear: P(j)

o,s = 0, if j = AP

P(j)
o,s =

(
∑S

i=1, i 6=j P(i)
tx,s

)
− P(j)

rx,s, if j 6= AP
(A12)

J(j)
o,s = ρ

(j)
rx · Tdata|s + ρ

(j)
rx · Tack

+ ρ
(j)
idle · (SIFS + 2δ + DIFS)

(A13)

Corrupted receptions (to any destination) can be calculated by summing external corruption
transmission events:

P(j)
rx,e =

S

∑
i=1, i 6=j

P(i)
tx,e (A14)

J(j)
rx,c = ρ

(j)
rx · Tdata|c + ρ

(j)
idle · (EIFS + δ) (A15)

Finally, the event on hearing collisions (to any destination) can be calculated as follows:

P(j)
rx,c = 1− Pi − P(j)

tx,c −
S

∑
i=1

P(i)
s (A16)

J(j)
rx,e = ρ

(j)
rx · Tdata|e + ρ

(j)
idle · (EIFS + δ) (A17)

The previous expressions rely on transmission and reception times, which depend on the data
bit-rate and the operation mode (individual VoIP channels or broadcast):

• One individual VoIP bi-directional channel per station:
T(j)

tx,data =

PLCP +
(

L(j)
header + L(j)

data

)
/R(j)

b , if j 6= AP

T(j)
tx,data = ∑S

i=1, i 6=j

(
λ(i) · T(i)

tx,data

)
/λ(j), if j = AP

(A18)

T(j)
rx,data = T(j)

tx,data (A19)

• One unique broadcast channel:

T(j)
tx,data = 0, if j 6= AP

T(j)
tx,data = PLCP +

(
L(j)

header + L(j)
data

)
/R(j), if j = AP

(A20)

{
T(j)

rx,data = T(AP)
tx,data, if j 6= AP

T(j)
rx,data = 0, if j = AP

(A21)

where Rb (physical data bit-rate) depends on the MCS and R corresponds to the lowest bit-rate
(i.e., at MCS 0). Finally, the ACK duration is constant and given by:

Tack = PLCP +
Lack

R
(A22)
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In the previous equations T(j)
data and T(j)

ack represent the duration of the reception/transmission of a
data packet or ACK at station j; Tdata|c and Tdata|e and Tdata|s account for the average duration of a
collided, erroneous or successful transmission, respectively.

Tdata|s =
1

∑S
j=1 P(j)

tx,s

·
S

∑
j=1

P(j)
tx,s T(j)

tx,data (A23)

Tdata|e =
1

∑S
j=1 P(j)

tx,e

·
S

∑
j=1

P(j)
tx,e T(j)

tx,data (A24)

The expression of Tdata|c is more complex as, if a collision between two stations ocurrs, it must
preserve the longest duration collision time (the slowest stations negatively affect to the fastest ones).
To capture this effect we take the terminology from [61], where d ∈ {1, . . . , Nc} represents different
traffic groups ordered from greater to lower occupation times, in the set of stations considered.

Tdata|c =
∑Nc

d=1

(
PN (d)

c + PH(d)
c

)
T(d)

tx,data

∑Nc
d=1

(
PN (d)

c + PH(d)
c

) (A25)

where PN (d)
c and PH(d)

c represent the probability that a station collides with any station from the same
or higher (faster) class, respectively, and can be calculated as indicated in [12].

Appendix B. Genetic Algorithm Implementation

We have implemented the Algorithm 1 using the Matlab R© R2017A Global Optimization Toolbox.
As any other Genetic Algorithm, it can be studied as a sequential collection of steps based on GA
operators. Next, we elaborate on those steps and other basic concepts.

Appendix B.1. Individuals

Every candidate positioning that represent a possible solution for the problem is called
an individual. Thus, each individual can be represented as a location of D drones as
X = {x1, x2, .., xD|xi ∈ P , i ∈ D, xi 6= xj|∀j 6=i}, where xi ∈ P accounts for the 3D location of UAV
i. For example, consider a scenario with D = 3 drones; then, any individual could be represented by
the following sequence of genes:

X |D=3 = {x1, y1, z1︸ ︷︷ ︸
x1

, x2, y2, z2︸ ︷︷ ︸
x2

, x3, y3, z3︸ ︷︷ ︸
x3

} (A26)

Appendix B.2. Algorithm Steps

The GA implementation considers an evolutionary process where a series of individuals are
evaluated and replaced (or combined) based on their score (according to the objective function).
This process is repeated until the algorithm converges to a sub-optimal solution as we illustrated in
Algorithm 1. Then, each step can be summarized as follows:

1. Initial population. An initial collection of p individuals is created (the population size p also
affects convergence and performance. Experimentally, we found that p = 200 provided results
that could not be improved in the scenarios tested).

2. Evaluation. Each individual from the current generation is evaluated (and scored) based on the
objective function of the problem Equation (9).

3. Selection. A collection of parents is selected from the current generation based on their score and
rank, so best individuals are more prone to be chosen as parents.
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4. Next generation. This step slightly differs from the canonical GA by distinguishing between three
different sources of individuals. However, convergence is improved according to [50,51].

• Elite individuals. Best 5% individuals from current generation are preserved to the
new generation.

• The remaining population (95%) is created as follows:

– Self-reproduction and Mutation (GA_SRM). 20% of the remaining population is created
by directly applying a random mutation with probability pSRM

m over selected parents.
– Crossover-and-Mutation (GA_CM). The rest (80%) is created by combining the genes

of two parents (crossover) and applying a mutation to these new individuals with
probability pCM

m .

5. Exit criteria: in our implementation, the algorithm ends when the score of the best individual
found could not be improved after Genmax consecutive generations (observe that Genmax has a
great impact on performance and convergence. Experimentally, we have found that Genmax = 50
is a good balance between performance and precision) by 10−3. Otherwise, the algorithm returns
to step 2.

Appendix B.3. Creating the Initial Population (GA_InitialPopulation)

The initial population could be generated randomly but if individuals are prone to be fit,
the performance of the GA is improved [66]. To do so, our starting individuals are created based on
the k-means clusterization method:

1. First, we apply a two-dimensional k-means algorithm, as illustrated in Figure A1, to define D
clusters so that the average distance from each user to its closest centroid is minimized.

2. Then, we convert the 2D centroids to 3D ones by initializing the height coordinate to the mean
altitude of the grid. These centroids will represent the first individual.

3. Finally, the rest of the initial population (p − 1 individuals) is created by randomly placing
each drone (of each individual) among the spatial regions we created around each centroid.
In particular, each region is a 3D cube that represents the D-th part of the grid volume.

y

x

User Centroid 2D Region

Figure A1. 2D regions for initial population creation (D = 3).

The spatial regions are only used when creating the initial population, so genes carried by
individuals from future generations could be at any edge in P with no restrictions.
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Appendix B.4. Operators

The following operators have been used:

• Evaluation and ranking: the quality of the individuals must be evaluated to distinguish between
good and bad candidates. First, each individual is scored by evaluating the objective function in
Equation (9), resulting in a raw fitness score. Then, solutions are ranked according to their raw
fitness score. Those individuals that do not meet the problem constraints are penalized so that
they are placed at the tail of the ranking according to the ratio of users that meet the constraints.
Finally, if an individual is in the n position in the ranking, it is assigned a new scored termed
expectation value of 1/

√
n.

• Parent selection: parents are selected through a stochastic uniform selection process among
individuals, according to their expectation value. For example, for p = 200 individuals,
342 parents (152× 2 for CM operations plus 38 for SRM) are selected. By applying the proposed
selection method, best individuals may be chosen multiple times as parents.

• Mutation: this operator consists of replacing genes of an individual for random coordinates
within P with probability pSRM

m = (3 D)−1 or pCM
m = pSRM

m /2 for SRM and CM, respectively.
• Crossover: this operator randomly combines the genes of two parents to create a new individual.

Appendix C. Particle Swarm Optimization Implementation

We have implemented the Algorithm 3 using the Matlab R© R2020A Global Optimization Toolbox,
which is described in [67] and uses some of the modifications suggested in [68,69].

Appendix C.1. Algorithm Steps

The particle swarm algorithm begins by creating an initial population of particles defined by their
position and velocity (i.e., function PSO_InitSwarm). Then, the algorithm iteratively evaluates and
modifies each particle in the swarm:

1. It chooses new velocities, based on the current velocity, particles’ best location and the global
best location.

2. It obtains a candidate new position for each particle (i.e., function PSO_UpdateParticle), considering
the its best known location and its velocity.

3. It evaluates each particle, and determines the best known function value and its position.
4. It updates particles’ and global best locations if improved.

This procedure is repeated until an exit criteria (e.g., the best known objective function does not
improve after a number of iterations) is satisfied.

Appendix C.2. Initializing the Swarm of Particles (PSO_InitSwarm)

Similar to the GA implementation we described in Appendix B, choosing an initial population
not fully random but including particles prone to be fit can accelerate convergence, with is one of the
desired goals when using PSO in our search algorithm.

Given the fact that consecutive solutions (i.e., UAVs positioning) are likely to be close in the
search-space, the previous solution is included as the first particle in the initial swarm. The rest of
particles is randomly generated (e.g., uniform distribution) over the n-dimensional search-space.

Appendix C.3. Updating Particles (PSO_UpdateParticle)

Let us define pi as the best known position for the i-th particle, and g as the best global known
location. In each iteration, the velocity of a particle with position xi is updated by considering the
previous velocity (vi), the difference between the current position and the best position the particle has
seen (pi − xi), and the difference between the current position and the best position that the algorithm
has seen (g− xi) as:

vi = W vi + y1 u1 (pi − xi) + y2 u2 (g− xi) (A27)
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where Wi is the inertia, u1 and u2 are uniformly chosen in the range (0, 1), and y1 and y2 represent
the self and social adjustment weight, respectively. Initial values are illustrated in Table A1. Inertia is
updated on each iteration within its bounds depending on the number of consecutive improvements
over the observed particle (i.e., see Matlab R© R2020 online documentation). Finally, the position of the
particle is updated by xi = xi + vi.

Table A1. PSO default parameters.

Parameter Default Value Range

u1 and u2 U (0, 1) –
SelfAdjustmentWeight (y1) 1.49 –

SocialAdjustmentWeight (y2) 1.49 –
Inertia (W) 1.1 [0.1, 1.1]
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