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Abstract—This paper presents a serializer/deserializer scheme
for asynchronous address event representation (AER) bit-serial
interchip communications. Each serial AER (sAER) link uses four
wires: a micro strip pair for low voltage differential signaling
(LVDS) and two handshaking lines. Each event is represented by
a 32-bit word. Two extra preamble bits are used for alignment.
Transmission clock is embedded in the data using Manchester
encoding. As opposed to conventional LVDS links, the presented
approach allows to stop physical communication between data
events, so that no “comma” characters need to be transmitted
during these pauses. As soon as a new event needs to be trans-
mitted, the link recovers immediately thanks to a built-in control
voltage memorization circuit. As a result, power consumption of
the serializer and deserializer circuits is proportional to data event
rate. The approach is also highly tolerant to clock jitter, due to
the asynchronous nature and the Manchester encoding. A chip
test prototype has been fabricated in standard 0.35 m CMOS
including a pair of Serializer and Deserializer circuits. Maximum
measured event transmission rate is 15 Meps (mega events per
second) for 32-bit events, with a maximum bit transmission speed
of 670 Mbps (mega bits per second).

Index Terms—Address event representation (AER), asyn-
chronous circuits, asynchronous communications, clock data
recovery (CDR), event-driven processing, low voltage differential
signaling (LVDS), Manchester encoding, neuromorphic circuits
and systems, serial AER, serial interchip communication.

I. INTRODUCTION

A DDRESS EVENT representation (AER) is a well-estab-
lished technology among neuromorphic engineers, pro-

posed initially 20 years ago [1], [2]. AER exploits asynchronous
principles [7], [8], and has been used fundamentally in vision
(retina) sensors, for purposes such as simple light intensity to
frequency transformations [12], [13], time-to-first-spike coding
[14], [15], foveated sensors [16], spatial contrast [17]–[20],
temporal contrast [12], [21]–[24], motion sensing and compu-
tation [5], and combined spatial and temporal contrast sensing
[25], [26]. AER has also been used for auditory systems [3],
[4], [27]–[29], competition and winner-takes-all networks
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[30], [31], and even for systems distributed over wireless
networks [32]. But AER has also been employed for post-
sensing event-driven processing, emulating biological cortical
structures. Fixed-kernel [33], [34] and programmable-kernel
[35]–[37] 2-D convolution chips have been reported, as well
as reconfigurable multimodule AER processing systems [30],
[38], [39]. The Appendix briefly explains the operation of a
typical AER sensor or processor.

AER systems are clearly growing in complexity, and neuro-
morphic researchers are reporting work towards hierarchically
structured multimodule AER systems [30], [38]–[42], using ei-
ther a globally shared AER bus [30], [39], a global bus config-
ured as a grid of physical links [43], many independent point-to-
point plugged-in AER links between modules [38], or proposing
multimodule multilink AER systems with local smart routing
schemes [40], [41], [44]. This latter approach shows great po-
tential for high degree of topological reconfigurability. The ten-
dency seems to be towards individual AER modules, each with a
relatively high number of AER links and with some local intelli-
gence to reroute on-transit events, process incoming events, and
send out newly produced events. Fig. 1 illustrates this philos-
ophy. Fig. 1(a) shows a target PCB hosting 120 AER processing
modules. Fig. 1(b) depicts an individual module communicating
bidirectionally with other four neighboring modules, resulting
in eight point-to-point links. This multichip assembly philos-
ophy requires to minimize power and pin-count per module and
link. For example, the solution proposed in the present paper
uses 4 lines per link (a 2-line high-frequency differential micro
strip and two lower frequency handshaking lines), and power
consumption scales down with event rate.

Also, as overall system complexity grows, the amount of in-
formation to transmit per event also grows. In general, an event
may carry information about local coordinates within a module,
ID of sending and/or receiving module, as well as extra param-
eters or commands [40], [41], [44]. Thus, AER links should be
capable to transmit large number of bits, and in practice it would
be very desirable to have this number of bits per event config-
urable for each link. Present-day AER sensors transmit at the
most 20 bit per event [3]–[6], [9]–[29]. For the example PCB
in Fig. 1(a) we would need 7 extra bits to code an ID for each
module, plus some extra bits for optional parameters. Conse-
quently, a target event bit number of 32 seems quite realistic
for a multimodule AER system. Most of reported AER sensor
and processing chips use parallel AER interchip communication
ports with a fixed number of bits. However, using parallel AER
communication for a module as in Fig. 1 results in an exces-
sive number of pins and a huge power consumption. An alter-
native solution is to transmit “event subwords” serially through



Fig. 1. (a) Example of multimodule multilink AER system PCB Concept. (b)
Example AER module.

smaller parallel ports [35], [45]–[47], so that when consecutive
events share some of the “event subwords” they are not trans-
mitted again, saving time and power. One very efficient solution
in terms of both speed and power is to use low voltage differen-
tial signaling (LVDS) [64], [65] technology and transmit event
information in fully bit-serial format. LVDS allows for higher
speed at a reasonable power budget. Although some researchers
are combining chips that have traditional parallel AER ports
with commercial serializer/deserializer custom chips [48]–[50],
the ultimate solution needs to embed the parallel to-and-from
serial conversion on-chip. This way, a VLSI AER module, as
the one shown in Fig. 1, can provide reasonable pin count and
affordable power consumption, making it possible to assemble
many of them (like several hundreds) on a single PCB.

In AER processing systems activity tends to be sparse. In gen-
eral, event rate tends to be maximum at the sensor output, but
as processing is performed, the event rate at the output of each
module tends to decrease as more processing stages are crossed
[38], [42]. Reported AER vision sensors can provide peak rates
reaching 10–20 Meps (mega events per second) [12], [19]–[24].

However, when observing life scenes, average event rates are in
the order of 100 keps at the sensor output. In a multimodule AER
(vision) processing system, maximum event rate is observed at
the sensor or first processing stages, and decreases rapidly for
subsequent stages [30], [36], [38], [39], [42]. Consequently, it
is very sensible to develop serial AER links that can be turned
off during event traffic pauses, and turn them on when an event
needs to be transmitted. This way communication power con-
sumption can be reduced proportionally to average event rate.

Commercial LVDS custom chips/FPGAs need uninterrupted
data transmission as well as very low jitter clocks for proper
clock data recovery (CDR) at the receiver. Here we propose a
serializing/deserializing scheme for event-driven asynchronous
AER links that can be turned off during interevent pauses
[67], turn back on quickly, and does not require a low-jitter
clock. This way, it results in a compact but robust circuit,
very appropriate for embedding many of them in full custom
VLSI low-cost AER processing modules, similar to the one
shown in Fig. 1. A chip with a pair of full sender/receiver test
prototypes has been fabricated and tested in a low-cost 0.35

m CMOS process achieving peak rates of up to 600 Mbps.
Section II reviews reported serial LVDS approaches compatible
with event-driven data transmission and why we seek a new
approach. Section III summarizes the developed serial link,
while Section IV describes in detail the operation of the serial
transmitter and Section V describes in detail the operation
of the serial receiver. Section VI shows experimental results
from the fabricated prototypes, and finally Section VII draws
conclusions and points to future work.

II. OVERVIEW OF CLOCK-DATA-RECOVERY (CDR) SCHEMES

In general, commercial high-speed serial links require a con-
tinuous data flow between transmitter and receiver in order to
keep the link synchronized. When there are no user data to be
transmitted, an idle comma character is sent and the receiver
uses it to identify a pause and discard the received data. In this
case, architectures use a PLL or a DLL [51] to lock in frequency
and phase with the transmission clock. If no data edges are re-
ceived, the PLL cannot lock with the transmission clock, and
data synchronization is lost. As a PLL or DLL is bandwidth lim-
ited for stability or jitter issues, a lost of synchronization leads
to hundreds of clock cycles of recovery [52]. This extra latency
introduced by the PLL relocking is not tolerable in event-driven
asynchronous AER systems, or systems that require to transmit
data in bursts and stop the transmission during data pauses.

There are several known solutions for burst-mode (or event-
driven) CDR implementations [53]. They have a data-indepen-
dent loop that tunes the transmission frequency, which keeps
it tuned also in absence of data. The phase information is ex-
tracted from the data stream, but since there is no feedback with
the frequency, proper phase alignment is achieved after a few
clock cycles. There are three main types of burst-mode CDRs.

a) Oversampling CDRs [54]–[57]: a PLL generates several
phases of the transmission clock and the input stream is
sampled at these instants through a bank of multiphase
samplers. A high-speed digital circuit chooses the re-
ceived bit value analyzing all the samples. The major
drawbacks of this architecture are that it requires many
parallel blocks, each being very high frequency (faster
than the transmission frequency), and the jitter budget



of the link is very stringent for keeping all the phases
properly tuned.

b) Gated-oscillator CDRs [58], [59]: the synchronous clock
is derived from a gated oscillator triggered from pulses
generated from the data stream edges. These pulses cause
the VCO to start its oscillation with the initial phase given
by the data, not requiring any loop to tune the delay.

c) High-Q Bandpass Filter CDRs [60], [61]: the gated oscil-
lator can be substituted by a high-quality factor bandpass
filter that recovers the clock from the edges detected in the
data stream.

In both solutions b) and c), there is no phase tracking be-
tween the receiving and transmitting clocks, requiring the use
of low-jitter circuits to generate both frequencies with a very
low offset between them. This phase shift also limits the max-
imum number of consecutive ones or zeros that can be trans-
mitted without any data edge. Moreover, in b) a replica of the
VCO for the frequency tuning is needed. This results in high
sensitivity to process, temperature, voltage variations and mis-
match. The edge pulse generation and the gated-oscillator are
also very demanding because they must be much faster than
the transmission frequency. In c) a monolithic integration is not
possible due to the limitations of CMOS technologies imple-
menting high-quality factor resonators.

Here we seek a low cost and simple solution for burst mode
serial interfaces. The solution should overcome the limitations
mentioned for existing burst-mode CDR architectures without
increasing the system complexity or power consumption. The
design goals for our target serial interface are:

• Low complexity. External components or huge on-chip
devices such as inductors are not desirable, as we want to
integrate several of them per chip.

• Low latency. After a data pause, the link must recover the
transmission clock on the fly when a new event is received.

• Jitter robustness. The link will be part of noisy environ-
ments where a low-jitter clock and CDR implementations
could be very demanding. If the solution is very robust
to timing variations caused by jitter, the clock generation
complexity, the CDR, and the system level design can be
made more simple and with lower power budget.

• Low power. Reducing the power consumption, specially
in pauses, of the serializer/deserializer circuits is essential
to integrate many of them in the same AER system.

• Arbitrarily long pauses capability. AER data rates can
vary several orders of magnitude. The link should be able
to keep the system synchronized in all cases, allowing ar-
bitrarily long pauses in the data stream.

Section III describes the proposed approach, which satisfies
all these requirements. But first, let us compare with some re-
ported VLSI CDR implementations, as well as with some non-
VLSI serial AER realizations.

Table I compares the performance figures of several reported
VLSI CDR circuits that have low acquisition times, making
them potential candidates for event-driven AER systems. All of
them are burst-mode CDRs, except the one with a broadband
PLL [62], which we have included for comparison. Usually PLL
based CDRs are slow and require long bit streams for locking.
This particular design uses a broadband PLL making it faster,
although it still requires 100 bits of acquisition time. The fastest
ones present one bit equivalent delay of acquisition time, which

means the first bit might be lost. On the contrary, the architec-
ture presented in this paper does not loose the first bit, thus pre-
senting an effective acquisition time of 0 bits. Transmission data
rate is expressed in absolute values as well as normalized to the
process cutoff frequency1 , for comparison. Similarly, circuit
area is also given in absolute number and relative to (half of
minimum feature size). Acquisition times and consecutive iden-
tical digits (CID) are expressed in equivalent bit times. As can
be seen, for none of the reported circuits power scales down
with data packet rate, and all of them have strong jitter require-
ments. As we will see later in experimental results, the proposed
serializer/deserializer pair consumes about 73 mW at 10 Meps,
which would scale down to 0.73 mW at an average event rate of
100 keps. Consequently, for the system in Fig. 1(a) with 120 4
Ser/Des pairs, power consumption would be about 350 mW @
100 keps average link rate. However, for any of the solutions in
Table I, power consumption of just 120 4 CDRs would range
from 2.4 W to 261 W.

The jitter performance of the compared CDR implementa-
tions is shown in Table I. The jitter analysis has been divided in
two parts. The first one (jitter tolerance) is related to the CDR
immunity against the data pattern jitter. The second part (jitter
reported) is related to the recovered clock jitter obtained for
a safe data recovery. Our solution is immune to the recovered
clock jitter because the clock is generated through edges present
in the Manchester-encoded bit stream. Hence, data will be al-
ways sampled at proper instants. The CDR design allows for
a 0.4 UI in terms of input clock tolerance. Only oversampling
CDRs present larger input clock immunity at the cost of having
a lot of low-jitter sampling phases for the high-speed data.

Other researchers have reported serial LVDS links developed
specially for AER systems, but using either commercial seri-
alizer/deserializer circuits or FPGA built-in ones. Table II com-
pares some of them against the VLSI ser/des pair reported in this
paper. Serial bit rate ranges from 0.7 to 3.125 Gbps, with event
sizes of 16, 24, or 32 bits. Table II also includes the “latency
overhead” from the input of the serializer until the output of the
deserializer, expressed in serial bit speed. Note that the total la-
tency includes two components. The “data latency” to transmit
the events bits serially at the available bit rate, plus the extra
“overhead latency” (which includes, for example, error correc-
tion codes, framing and deframing, physical circuits delay, etc.).
In general, commercial chips and FPGA built-in ser/des pairs
add important overheads, resulting in significant extra latencies.
Also, all of them require continuous uninterrupted serial trans-
mission. This means they cannot be turned off and on quickly.
Only one of them [48] allows for flow control, although it is
implemented through an extra LVDS return path. All of them
use embedded clock, except one [63] which requires an addi-
tional LVDS link for transmitting the clock (which is shared
by 16 LVDS data links). This allows for burst mode operation
and double data rate (DDR) achieving 1 Gbps bit rate with a
500 MHz clock. They also report an AER link between Virtex5
FPGAs using Rocket I/O, which is similar to the one by Berge
[49] in Table II.

In summary, none of the reported LVDS links (either VLSI
or non-VLSI) fulfills all of the requirements we need for a mul-

1None of the references in Table I gives the � of the technology used. This
number has been estimated from other similar technologies.



TABLE I
LOW ACQUISITION TIME VLSI CDR CIRCUITS

TABLE II
SERIAL NON-VLSI AER REALIZATIONS

tichip AER system with large number of chips. In the rest of the
paper we describe a VLSI ser/des pair which does satisfy the
requirements we seek.

III. HIGH-SPEED SERIAL AER LINK

Fig. 2 shows the block diagram of the proposed serial AER
sender and receiver link. Parallel 32-bit input events
are managed by the Parallel to Serial AER Sender system. This
circuit receives the input request , generates the signals to
latch the event data, and begins the serialization process. When
the event data is captured, an acknowledge signal is sent
back to the parallel AER sender.

AER information is coded with the transmission clock using
Manchester encoding [68]. This introduces extra edges at
middle bit times. Manchester encoding reduces bit rate to half
compared to nonreturn to zero encoding. However, it allows
for very low cost, low power, jitter tolerant, and efficient CDR,
thus being very suitable for asynchronous AER transmissions.

Fig. 2. Serial AER interface system level design.

For the “Physical Driver” and the “Physical Receiver” pads
in Fig. 2 we use conventional LVDS [64] designs available for



our technology [66]. This signal format reduces the power con-
sumption and filters the common mode noise coupled into the
channel [65]. The standard specifies a 1.2 V common mode
level and 350 mV of differential amplitude for the LVDS sig-
nals [64]–[66].

The Serial to Parallel AER Receiver system in Fig. 2 manages
the serial stream of Manchester encoded data and converts it into
the parallel output with its corresponding handshaking
signals and . Together with the serial trans-
mission, a pair of request and acknowledge
signals are used for flow control purposes. When a new event
is ready to be transmitted serially, a request pulse is
sent to the receiver. If it is not busy processing a past event, it
accepts the event by activating . In case of not being
able to receive a new event, the acknowledge activation is de-
layed and transmission is temporarily stopped. Signal
is also used by the receiver to initialize all the blocks for re-
ceiving a new serial event.

The transmission clock is recovered by a CDR block designed
to extract it from the Manchester encoded data. This circuit is
in charge of generating a half data rate clock, which is used
to decode the serial stream. For proper clock extraction in a
Manchester encoding scheme, the receiver tunes a delay [68].
This parameter is very sensitive to temperature, supply voltage
and process variations. For this reason, a DLL analyzes the ex-
tracted clock generating an analog voltage that controls the tun-
able delay elements. At steady state, this loop keeps the receiver
synchronized with the transmission clock.

In Sections IV and V we describe in detail the operation of
the transmitter and receiver circuits. Handshaking signals are
active-low, while the rest of digital signals are active-high.

IV. TRANSMITTER DESIGN

A. Serializer

Parallel data are latched and serialized by the reconfigurable
capture/store/shift register shown in Fig. 3. When a new parallel
input event is received, data is latched in this register through
the Capture path, by setting signal high. After
this, the serialization is activated during 34 clock cycles using
a high-speed clock (ClockGen). Two preamble bits are added
for alignment purposes, letting 32 bits for the AER address. In
a shift register based solution, the maximum speed of operation
is given by the delay of the critical path. In this case, this path
corresponds to the delay of a flip-flop, plus the shift register
branch propagation time, plus the set-up time of the next flip-
flop. Therefore, this solution requires 34 high-speed flip-flops,
but it can work at higher frequencies than multiplexer based
solutions. It also has a fixed delay per bit when increasing the
number of bits.

Fig. 4(a) shows the details of the “Input AER handshake”
block. It uses a very simple finite state machine (genQ FSM),
whose functional description is shown in Fig. 4(b). The FSM
starts in the “IDLE” state, where output signal
is low. When becomes active (low), the FSM switches
to state “genQ,” where is set high. One clock
cycle afterwards, the FSM switches to state “WAIT,” setting

back low and waiting for the request to be de-
activated. This way, an input request activates signal

during one clock cycle.

Fig. 3. “Ser” block. (a) Reconfigurable capture/store/shift register used to store
and serialize parallel input data. (b) Details of one bit cell. If �������
is high, incoming parallel data bits are latched through the Capture path. If
������� is low, either data is stored for ��	��
���� high through
the Storage path, or data is shifted for��	��
���� low through the Shift
path.

Fig. 4. (a) Details of ’Input AER handshake’ block. (b) Functional description
of the genQ FSM.

Fig. 6 shows the details of the “SerialTX handshake” block,
which handles the serial handshaking as well as the store/shift
operation of the parallel input event data. The serialization
process begins with the pulse generated by the
FSM. C-element sends a pulse to the receiver
indicating that there is a new event to be transmitted. This
signal is kept at low level until the acknowledge
coming from the receiver is received. At the same time, two
cascaded C-elements and are used to generate an asyn-
chronous signal , which is activated when the
pulse is detected and the receiver chip has activated ,
indicating that the event can be transmitted. Signal is syn-
chronized with the transmission clock using a flip-flop for the

signal generation. This signal is low during
the serialization process. C-element [in Fig. 4(a)] is used
to handshake the communication with the transmitting parallel
block. C-elements (or Muller C-gates) [69] are commonly
used in asynchronous logic circuits. Their output switches to
“1” or “0” only when all inputs have switched to “1” or “0,”
respectively. Fig. 5(a) shows a possible circuit implementation
of a 2-input C-element, and Fig. 5(b) its truth table description.

The 33-bit auxiliary shift register in Fig. 6 is used to calcu-
late the signal duration at low level. This
register shifts a zero from the register input to the last position.
Signal is at high level while the register is shifting.



Fig. 5. C-element description. (a) Example implementation using latch based
on weak inverter. (b) Truth table, where � denotes “no change” condition.

Fig. 6. Details of block “SerialTX handshake.”

Fig. 7. Implementation of the high-speed Manchester encoder.

After 33 clock cycles, the zero reaches the output and the seri-
alization process is finished, setting high. This imple-
mentation was preferred over a counter-based option (where the
output signal is generated using the counter values) because the
counter limits the serialization speed as the number of bits in-
creases. In a shift register, there is no speed per bit penalty when
increasing the number of bits and the number of bits per event
is not limited by the physical implementation.

Note that the shift registers in Figs. 3 and 6 can be made of
programmable length, so that the user could freely configure the
number of bits per event. However, in the prototype presented
in this paper both registers are of fixed length of 34 and 33 bits,
respectively.

B. High-Speed Manchester Encoder

Fig. 7 presents the circuit that encodes the serializer output
stream into a Manchester format. As the link operates at very
high speed, an asynchronous solution is desirable in order to
avoid the double rate clock generation. Such an implementation
implies an XOR operation between the serial data flow and the

Fig. 8. (a) Details of deserialization block Des in Fig. 2. (b) Details of block
Serial-RX handshake in Fig. 2.

transmission clock. A high-speed implementation of this com-
binational circuit requires a careful delay compensation.

Two flip-flops are used to synchronize data and
signal . This latter one is used to frame the
AER event in the output bursts, because it is active during all
the serialization process. A replica of the flip-flop direct path is
included to compensate the delay between the output and the
clock. A dummy XOR gate is used to equalize the delay be-
tween the and the paths. Finally,
a NAND gate stops the encoding when the transmitter is not
enabled.

V. RECEIVER DESIGN

The deserializing scheme is shown in Fig. 8, where two shift
registers are used: one triggered by the recovered clock
rising edges and the other by the falling edges. This way, a
half rate clock can be used to decode the input data, reducing
power consumption and system complexity. The incoming bits
mSERIAL2 are shifted through the whole register until the two
header bits reach a NAND gate. Then, signal goes
low, starting a new handshaking cycle at the parallel AER output
port. This signal is also used to latch the data in a capture reg-
ister, waiting for this port to read the data. When is
received, the registers are reset to zero and the parallel output
request is deactivated. During this process, the re-
ceiver does not send any pulse to the transmitter, sus-
pending any new data transmission that could overwrite the cur-
rent event.

A. Clock Extraction Circuit

Manchester data include additional edges that are used by the
receiver to extract the synchronization information. The CDR
must generate a recovered clock through these extra edges, ig-
noring bit data dependent edges. The circuit in Fig. 9 is able
to extract this information and to generate a half rate clock for
data recovery [68]. The circuit consists of a double edge trig-
gered flip-flop (DETFF) configured as a frequency divider. The
DETFF’s clock input is directly connected to the serial input
signal mSERIAL2 provided by the “physical LVDS receiver”
(see Fig. 2). As information edges of the Manchester signal



Fig. 9. Details of block CDR in Figs. 2 and 8.

Fig. 10. CDR circuit chronogram in which (a) delays are properly tuned or
(b) are out of lock.

mSERIAL2 want to be filtered, a five inverter delay line is in-
cluded between the DETFF input and output.

The delay value is critical for the CDR proper operation. Con-
trolling the delay of an inverter in a CMOS technology is diffi-
cult due to process, temperature and supply voltage variations.
For this reason, these delay elements have analog control volt-
ages that tune their delay value. This delay can be controlled
by adjusting the gate voltages of a CMOS switch at the inverter
input. This implementation allows a very wide tuning range so
that the CDR can extract the transmission clock in a large range
of frequencies.

If this delay is grater than and lower than ( is the bit
time), data bit dependent edges will be filtered and the DETFF
will not switch at them. However, if the delay is not properly
tuned, the DETFF would switch at any mSERIAL2 edge. Fig. 10
shows the CDR circuit chronogram for two different conditions
of the analog control voltage. In Fig. 10(a) all delays are prop-
erly tuned and the CDR is extracting the recovered clock prop-
erly. In case (b) there is no lock in the delay tuned loop and
extra edges of Manchester code are causing recovered clock
triggering. If there are no incoming serial data, there are no clock
edges, saving dynamic power during pauses. The value given
for the jitter tolerance 0.4 UI in Table I allows the input clock
to change its frequency in the CDR locking range during each
bit. If the frequency changes slowly, the DLL will track it in the
loop and larger frequency changes can de adapted. This is be-
cause the Manchester code provides extra data edges for phase
comparison at every bit time. Therefore, 0.4 UI is a very pes-
imistic estimation for the tolerated input data jitter.

A DETFF [70], [71] clocked by the data stream generates the
recovered clock edges. Hence, there will be a clock edge after
a data edge if delays are properly tuned. As recovered clock
edges are generated directly through data edges, the receiver is
very robust against jitter. Even when the transmitter has a very
poor jitter performance, that will not impact on the bit error rate
because of this feature. That opens the door for very low cost
clock generation solutions that do not require very power hungry
clock generation circuits.

Fig. 11. Double edge triggered flip flop for clock extraction.

Fig. 12. Details of the delay locked loop (DLL) block in Figs. 2 and 8.

The clock is recovered thanks to a DETFF that needs to op-
erate at very high speeds. The circuit in Fig. 11 is a high-speed
implementation of a DETFF used in the burst-mode CDR. The
flip-flop is composed by two latches, corresponding to the par-
allel branches in Fig. 11. Each path is high and low level sensi-
tive, respectively. The output is combined in a shared node. Both
branches have a reset signal that puts the flip-flops in a known
state before starting the deserialization.

B. Delay Tuning Circuit

Fig. 12 shows the DLL circuit used to tune the delay in the
CDR. This circuit compares the recovered clock signal
with a one clock cycle delayed version, independently of the
clock frequency, as long as it is within the delay elements tuning
range. This delayed version is generated by 16 cascaded delay
elements, identical to the five used in the CDR. A phase and
frequency detector (PFD) compares the extracted clock and the
delayed clock phases and generates two correction signals for a
charge pump (CP). Signals and make the analog
control voltage evolve to correct the phase lag between the
delayed and recovered clocks. The link can tune the CDR for
any frequency that belongs to the delay element tuning range.

Fig. 13 shows the schematics of the PFD used to compare
the phase of the recovered and delayed clocks. Flip-flops FF1
and FF2 are used to detect the phase lag between both sig-
nals by triggering their outputs with every new edge. Rising
edges cause that and signals get activated and the
combinational logic resets the flip-flops when both are at high
level. The duration difference between both signals codes the
existing phase shift. While the counter is counting, output signal

is low. After counting 16 clock cycles is set
high, activating the memorization circuit (“Mem” in Fig. 12)
for control voltage . When a new event is received (
goes low) the counter starts counting again, goes low
again, the memorization circuit is deactivated, and the charge
pump controls again voltage .

If the DLL compares a 360 delayed signal with the reference
clock, there is an initial clock edge that should not be compared.
For this reason, the counter shown in Fig. 13 resets the PFD until



Fig. 13. Details of the PFD circuit used in Fig. 12.

Fig. 14. High-speed charge pump design.

the first recovered clock is produced. Then, the PFD is enabled
to compare the phase for a number of cycles given by the number
of bits used to implement the counter. In this design, a 4-bit
counter was chosen and 8 phase comparisons are performed for
every AER event.

Fig. 14 shows the schematics of the charge pump that pulls up
and down the analog control voltage , depending on the infor-
mation provided by the PFD. The CP integrates a bias current

on the on-chip capacitor (of value 1.5 pF) during a time
slot given by the difference in the duration of and
pulses. A current steering topology was chosen [72] to reduce
spurious current injected in the output capacitor when switches
controlled by and are turned on and off. These
currents can cause a phase offset in the DLL loop that can lead
to a significant error in the delay tuning precision. This is par-
ticularly important in high-speed charge pumps, where very low
phase shifts want to be tracked.

Bias current is always flowing through current sources
and , keeping these transistors saturated. This re-

duces the current peaks generated when current is switched from
one branch to another. Capacitors were included at the cur-
rent sources output nodes to help these bias currents keep their
terminal voltages constant. An analog buffer was included to
clamp both CP branches and maintain the same conditions in
the two current paths. This way, both current paths are com-
pletely symmetric and current peaks are reduced to a minimum.

Fig. 15. Corner simulations of CDR “Delay-Element” delay as function of con-
trol voltage � .

The matching between NMOS and PMOS currents can also
cause phase offset in the DLL loop. In this design, the current
sources transistor lengths were carefully designed to achieve a
good trade-off between speed and matching.

C. Control Voltage Memorization Circuit

Arbitrarily long event pauses can make the CP capacitor
discharge through leakage currents in the switches and elements
connected to it. A memorization circuit is required to retain this
voltage during event pauses. A digital storage element is manda-
tory in order to guarantee an arbitrarily long memorization time.
The synchronization is controlled by analog voltage which
must be properly interfaced for digital conversion and storage
using adequate precision.

The circuit in Fig. 16 is used to store the delay tuning voltage
. Intensive simulations showed that a 5-bit analog to digital

converter (ADC) architecture provides enough precision to keep
the link synchronized between consecutive events. This can be
understood with the help of Fig. 15, which shows the corner
simulated delay in pico seconds of one “Delay Element” (see
Fig. 9) as function of control voltage . The tuning loop has to
adjust the delay to 1/8 of bit time [68] (i.e., 250 ps for 500
Mbps). The maximum range is V V . Quantizing to
4-bit results in half an LSB of 84.4 mV, or 42.2 mV for 5-bit,
resulting in phase errors of 55 ps and 20 ps, respectively, for the
worst case scenario, e.g., around the 250 ps delay. On the other
hand, the CDR delay has to satisfy [68] and

. Consequently, for the nominal case ns
this is ps ps. In the ideal situation the loop
would lock to ps, so that a quantiza-
tion error of up to 50 ps could ideally be tolerated (i.e., 5 bits).
Nonetheless, we performed extensive corner and mismatch sim-
ulations of the complete circuit including all circuit nonideali-
ties to make sure no extra bit was necessary to guarantee safer
margins.

A flash architecture is used because of its simplicity and an
asynchronous design is implemented to reduce its inherently
high power consumption. The “Bank of 31 comparators” is used
to determine the resistor ladder level that better approxi-
mates the analog control voltage . The asynchronous digital
controller takes this decision and controls the bank of switches,



Fig. 16. Analog control voltage digital storage system.

Fig. 17. Circuit schematics of comparator for asynchronous flash architecture.

connecting the chosen level with the output node. The asyn-
chronous digital controller is composed of 31 selection elements
that generate the enable signals for the bank of switches.
They perform a logical operation between the outputs of con-
secutive comparators to find out the DAC output that makes a
comparator to switch from a positive to a negative comparison.
Each comparator provides an additional output signal
to notify that the comparison has settled. The operation of the
asynchronous controller is enabled through signals of the
comparators.

Fig. 17 shows the schematics of the comparator used in the
ADC [73]. It was designed as a two-stage comparator with a
preamplifier, represented by a PMOS differential pair and a latch
built with a two inverter loop, that stores the comparison re-
sult. Signal is used to reset the circuit before any com-
parison, precharging all the comparator nodes to known initial
values. Moreover, the bias current is switched off to save power
when no comparison is being carried out. When the comparison
process finishes, an XOR gate sets signal high to notify
the digital controller that the comparison value is ready to be
read.

One of the main drawbacks of flash ADC architectures is their
high power consumption, since all the comparators operate in
parallel when the device is converting. In our asynchronous im-
plementation, the output bits are calculated sequentially and the
comparators are switched off and on at every stage [74]. Fig. 18
shows the treelike connectivity of the comparators to implement
this asynchronous conversion process. The tree has
levels, where is the number of comparators. In our case
there are 5 levels. Depending on the result at one level and the
corresponding signals, only one comparator is activated
at each level. Although this is a slow process, the conversion rate

Fig. 18. Asynchronous low power flash architecture in bank of 31 comparators
in Fig. 16.

is not a major concern in this application because the CP voltage
variation in pauses is caused by leakage currents with a time
constant in the order of milliseconds. Hence, besides the asyn-
chronous implementation, currents of 10 A are used to bias the
comparators in order to further reduce the power consumption.

VI. EXPERIMENTAL RESULTS

A proof of concept test prototype using the presented serial
AER link has been implemented in a 0.35 m CMOS tech-
nology. Nominal data rate was chosen to be 500 Mbps using
Manchester encoding and supply voltage was 3.3 V. The trans-
mitter requires an area of 350 375 m and the receiver occu-
pies 900 380 m , not including LVDS pads. Fig. 19 shows
a microphotograph of the fabricated chip, highlighting the main
components.

The test channel used in the experiments consists of a pair
of PCB traces forming a 100 differential micro strip line of
3 cm length. The clock was generated through a simple VCO
based on a ring oscillator that can be externally tuned by an
analog voltage. No PLL or DLL based solution to generate a
jitter clean master clock reference was integrated. This is the
worst situation [77] for clock jitter performance. However, it
is useful for showing the circuit robustness to high jitter and
demonstrate that a very simple clock solution is enough for this
architecture.

Fig. 20 shows the test set-up. Two 16-bit USB-AER boards
[76] receive events from a PC connected to them through USB
ports. These events are sent through a parallel connector to the
test board using the AER protocol. Each USB-AER board pro-
vides a 16-bit AER bus, but a 32-bit version is needed for the
serial transmitter. For this reason, streams coming from two dif-
ferent boards must be synchronized to form up a 32-bit AER
bus. A CPLD implements a C-element for and to
generate . This way, both 16-bit parallel input streams
are merged into a single 32-bit one which is serially transmitted.
At the receiver side, the output flow must be split into two AER
streams, each of which can be captured by a single 16-bit par-
allel USB-AER board. The CPLD performs this task in the same



Fig. 19. Microphotograph of fabricated test prototype.

Fig. 20. Test setup to generate a 32-bit AER pattern.

way than in the transmitter side, managing and . Each
output USB-AER board is able to transmit captured events to the
PC through its USB connection.

Fig. 21 shows the measured AER protocol signals a) at the
transmitter parallel input, b) at the serial interchip link, and c)
at the receiver parallel output, as well as the serial data stream.
The CPLD generates when a new 32-bit event is ready
to be transmitted. When this event data is latched by the re-
ceiver, is activated during all the serial transmission
process. The delay between the and activations
in Fig. 21(a) is 10 ns for a 550 MHz transmission clock. The

pulse duration is 62 ns, corresponding to 34 clock cy-
cles. The transmitter cannot send a new event until this acknowl-
edge signal is deactivated.

The transmitter uses the serial AER signals to perform a
flow control mechanism. The receiver can send a new event if
the transmitter activates after . The delay
between the request activation and the acknowledge

activation is 2 ns. In this case, the protocol is com-
pletely asynchronous and only depends on the logic and pads
delays. Handshaking is also implemented at the receiver output.
This way, the serial AER transceiver can communicate with any
parallel AER chip without any protocol conversion. The 21 ns
delay between and is due to the USB-AER
boards.

Fig. 21. AER protocol management at (a) ����� (dotted line) and �����
(continuous line) signals; (b) ���	
� (dotted line) and ���	
� (continuous
line) signals; (c) ����� (dotted line) and ����� (continuous line) signals;
(d) differential mode of the LVDS signal. Time scale is �s.

Fig. 22. Measured LVDS signals at receiver input.

Fig. 22 shows the high-speed serial AER signal measured at
the receiver input. This figure illustrates the asynchronous event
driven nature of the AER data sent through the link. Transmis-
sion frequency in this case is 500 Mbps and event rate is 4.8
Meps. Maximum event rate through the interface is limited by
the transmission frequency and delays associated with the AER
protocol signals. To measure this link event rate, and

were shorted. Maximum event rate for the nominal
500 Mbps bit rate was measured to be 12.5 Meps, corresponding
to an input-to-output request latency of 80 ns. If a 670 MHz
transmission frequency is set, a 15 Meps and 66 ns latency can
be achieved.

Fig. 23 shows the eye diagram measured for a 500 Mbps bit
rate using an Agilent DSO81304B Infinium 12 GHz bandwidth
oscilloscope. A 40 ps of rms jitter was measured and event error
rate (EER) resulted to be below 3.3 (3.1 events
where analyzed without any error found). This demonstrates the



Fig. 23. Measured eye diagram at receiver input.

Fig. 24. Delay control voltage � convergence at power-up.

robustness of the approach, capable of keeping very low EER
without very stringent jitter requirements.

Fig. 24 shows the control voltage evolution when the link
is powered up the first time. Voltage is available to be mea-
sured through an on-chip buffer to not affect the CP integration
capacitor. After reset, the control voltage is set to ground by a
switch and evolves to its steady state value when events are re-
ceived. The analog control voltage convergence process lasts 6

s and requires 6 events in this particular case. In general, this
delay depends on the input event rate, the input patterns, and
the bias settings. When the DLL stabilizes at the steady state,
this control voltage remains constant. The ADC block keeps it
memorized, tolerating arbitrarily long event pauses. This was
measured in the laboratory by stopping the interface and mea-
suring the control voltage with an oscilloscope. It was noticed
that it does not change during hours of pause.

The link can tune the delays to receive serial streams with a
wide range of transmitting frequencies. Maximum frequency is
limited by parasitic effects, not only by the delays tuning range.
As the oscillator frequency can be programmed by controlling
a test board potentiometer, the transmission data rate was swept
in the range of 175 to 670 Mbps, in which the link operates
correctly.

Transmitter and receiver power consumption depends on
event rate. Fig. 25 shows the current consumption of the
serializer and the deserializer for different event rates. As

Fig. 25. Serializer and deserializer current consumption as a function of event
rate.

can be seen, for high event rates, current consumption grows
proportionally to data event rate. For lower event rates, cur-
rent consumption stabilizes to constant values of 3.1 mA and
2.0 mA, respectively. Besides the serializer and deserializer
circuits, other components consume a constant event-rate inde-
pendent current. For example, the LVDS physical transmitter
pad pair (driver) consumes 8.2 mA, while the LVDS physical
receiver pad pair consumes between 8.4 mA (for low event
rate) and 9.8 mA (for high event rate). The VCO used for the
clock generator consumes 12.55 mA.

In this first proof-of-concept test prototype we were mainly
concerned with a scheme for quickly turning on and off the
ser/des pair. However, for a practical realization to be used in
a system like in Fig. 1(a), all power hungry components need
to be turned off and on quickly as well. For example, standby
power consumption of the serializer can be drastically reduced
by simply adding a clock-gating mechanism during pauses.
Fig. 25 shows the simulated power consumption of an improved
serializer with this simple addition. The fabricated deserializer
also has an important stand-by power consumption because of
the following three components: a) the small “inverter ampli-
fier” in Fig. 9 which requires a high current to be fast; b) the
“analog buffer” in Fig. 16 to buffer voltage and isolate it
from switching noise coming from the comparators; and c) the
charge pump. Cases b) and c) are corrected easily by switching
between ON and OFF bias currents. For case a) the inverter
current cannot be switched because voltage needs to be
kept stable during pauses. However, this circuit can be resized
for lower power while satisfying speed requirements. By in-
troducing these modifications, we resimulated the deserializer
and obtained the current consumption shown in Fig. 25, which
shows a remaining standby current consumption of 150 A.

Also, the flash ADC is an over engineered solution (although
it simplified the overall design), resulting in an excessive area
consumption (see Fig. 19). In a final implementation, since the
ADC does not require high speed and it only has one comparator
ON at a time, the flash ADC would be substituted by a succes-
sive approximation version with just one comparators.



Fig. 26. Generic conceptual floorplan of AER module.

VII. CONCLUSIONS AND FUTURE WORK

We have presented a serializer/deserializer design meant for
serial links in AER systems, which are asynchronous and event-
driven. The presented design does not require to keep the link
active during absence of data. The receiver includes a means for
memorizing the tuned state during data pauses. This way, when
a new event is transmitted, the communication is reestablished
without information lost. As a result, the power consumption
of the serializer/deserializer circuit is proportional to data event
rate. The proof of concept test prototype has been fabricated in
0.35 m CMOS technology and is capable of achieving a max-
imum event transmission rate of 15 Meps with 32-bit events.
The system is jitter tolerant and does not require a very low
jitter clock. The proposed architecture uses simple components
that do not require critical matching, jitter, nor supply voltages.
Also, the achieved bit rate is as close to the technology cutoff
frequency as the highest performance CDR circuits in Table I.
As a consequence of all this, this architecture should, in prin-
ciple, be scalable to the most recent technology nodes.

Future work is oriented towards developing LVDS pads that
can be turned off during data pauses and turned back quickly on
[78], so that power consumption of the pads can also be made
proportional to data event rate. Similarly, future work will also
focus on developing a high-speed clock that can be also turned
off during data pauses and quickly on.

APPENDIX

In this Appendix we briefly illustrate the operation of a typ-
ical AER sensor or processor chip. Fig. 26 shows a generic con-
ceptual floor plan of an AER module for artificial vision type
of applications. If the module is a sensor (artificial AER retina
[10], [12]–[26]) it only includes the blocks comprised by box
labeled “ ” generating output AER events only. If it is an AER
processor, it does both, receive input AER events and generate
output events. In case of vision sensors, pixels include a photo
sensor and in-pixel preprocessing circuits to compute, for ex-
ample, spatial contrast, temporal derivative, motion, etc. Each
pixel generates autonomously and asynchronously an output
pulse (spike or event) when the result of its local computation
exceeds a threshold. This pixel event is signaled to peripheral ar-
biters, which arbitrate among events produced by all pixels. The
AER-out block labels each event (usually using the pixel

coordinate and an optional sign bit, depending on the in-pixel
computation performed) and sends off-chip this multibit label
using an asynchronous handshaking protocol with lines
and .

In case of an AER (vision) processor [30], [31], [33]–[39],
the module also receives input events through a similar asyn-
chronous handshaking protocol. In this case, pixels do not sense
external stimuli (such as light), but simply hold a pixel state.
Input events are processed by an external processor, which then
updates the state of one pixel in the array, a group of pixels, or
all pixels. As a result of this pixel state update, pixels may gen-
erate new events, which are then arbitrated off-chip, as in the
case of an AER sensor.
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