Advanced Vision Processing Systems:
Spike-Based Simulation and Processing

José-Antonio Pérez-Carrasco':?, Carmen Serrano-Gotarredona?,
Begoiia Acha-Pifiero?, Teresa Serrano-Gotarredonal,
and Bernabe Linares-Barranco®

! Instituto de Microelectrénica de Sevilla (IMSE-CNM-CSIC)
Avenida Reina Mercedes, s/n. 41012, Seville, Spain
{jcarrasco, terese,bernabe}@imse.cnm.es
2 Dpto. Teorfa de la Sefial, ETSIT, Universidad de Sevilla,
Avda de los descubrimientos, s/n. 41092, Seville, Spain
{cserrano,bacha}@us.es

Abstract. In this paper we briefly summarize the fundamental proper-
ties of spike events processing applied to artificial vision systems. This
sensing and processing technology is capable of very high speed through-
put, because it does not rely on sensing and processing sequences of
frames, and because it allows for complex hierarchically structured neuro-
cortical-like layers for sophisticated processing. The paper describes
briefly cortex-like spike event vision processing principles, and the AER
(Address Event Representation) technique used in hardware spiking sys-
tems. In this paper we present a simulation AER tool that we have devel-
oped entirely in Visual C4++ 6.0. We have validated it using real AER
stimulus and comparing the outputs with real outputs obtained from
AER-based devices. With this tool we can predict the eventual perfor-
mance of AER-based systems, before the technology becomes mature
enough to allow such large systems.

1 Introduction

Artificial man-made machine vision systems operate in a quite different way
from biological brains. Machine vision systems usually capture and process se-
quences of frames. This frame-based processing is slow, especially when many
convolutions need to be computed in sequence for each input image or frame,
such as in wavelet based processing. Biological brains do not operate on a frame
by frame basis. In the retina, each pixel sends spikes (also called events) to the
cortex when its activity level reaches a threshold. Very active pixels will send
more spikes than less active pixels. All these spikes are transmitted as they are
being produced, and do not wait for an artificial “frame time” before sending
them to the next processing layer. Besides this frame-less nature, brains are
structured hierarchically in cortical layers [I]. Neurons (pixels) in one layer con-
nect to a projection-field of neurons (pixels) in the next layer. This processing
based on projection-fields is equivalent to convolution-based processing [2]. This

]

fact has been exploited by many researchers to propose powerful convolution
based image processing algorithms [3][4]. However, convolutions are computa-
tionally expensive and it seems unlikely that software programs running on the
fastest of today’s computers could emulate the high number of convolutions
that the brain might perform when fast vision processing is considered. A solu-
tion to this could be Address-Event-Representation (AER). AER is a promising
emergent hardware technology that shows potential to provide the computing
requirements of large frame-less projection-field based multi-layer systems. It
is an event-based representation hardware technique for communicating events
between layers of neurons in different chips. AER was first proposed in 1991 in
one of the Caltech research labs [5][6], and a wide community of neuromorphic
hardware engineers has used it since then. AER has also been used for audi-
tory systems, competition and winner-takes-all networks, and even for systems
distributed over wireless networks [7][8][9]. However, the high potential of AER
has become even more apparent since the availability of AER convolution chips
[I0][IT][12]. These chips, which can perform large arbitrary kernel convolutions
(32x32 in [I1]) at speeds of about 3 x 10° connections/sec/chip, can be used as
building blocks for larger cortical-like multi-layer hierarchical structures, because
of the modular and scalable nature of AER based systems. At present, only a
small number of such chips have been used simultaneously [10], but it is expected
that hundreds or thousands of such modular AER chips could be integrated in a
compact volume. This would eventually allow the assembly of large cortical-like
projection-field and event-based frame-less vision processing systems operating
at very high speeds. The objective of this paper is to illustrate and to intro-
duce the processing power of AER-based systems, based on the performance
characteristics of already available AER hardware modules (chips), but through
behavioral simulations. In spite of existing a lot of work developed in the study
and simulation of the different layers in which the brain is structured [13][I4],
this work is not focused on simulating the biological aspects of the brain, but
on simulating existing or possible hardware AER-based devices that are biolog-
ically inspired. To do this, we have developed an open AER simulator entirely
in Visual C++ 6.0. With this tool we will be able to describe any AER module
(including timing and non-ideal characteristics), and assemble large netlists of
many different modules. This makes it possible to obtain a good estimation of
the delays and processing power of the simulated systems. Furthermore, the AER
behavioral simulator can be used to test new AER processing modules within
large systems, and thus orient hardware developers on what kind of AER hard-
ware modules may be useful and what performance characteristics they should
possess. To validate the tool, we have used real AER stimulus obtained with an
electronic motion-sensing retina [9][10] and we have simulated two real AER-
based hardware implementations [I0][II]. The outputs have been compared to
those obtained with the real systems. Finally, in the last section we test the
proposed tool with a single layer neural network based on AER for recognizing
handwritten digits. In particular, we use the MNIST database [15] consisting of
70000 handwritten digits and provide a 91% of correct classification.

2 AER-Based Convolution

To illustrate how AER convolution is performed event by event (without frames)
consider the example in Fig. [[l Fig. [{l(a) corresponds to a conventional frame
based convolution, where a 5x5 input image f is convolved with a 3x3 kernel h,
producing a 5x5 output image g. Mathematically, this corresponds to Eq.[Il

g(uj):ZZh(m,n)f(z—m,J—n) (1)

CLASSICAL
FRAME-
BASED

CONVOLUTION

a)

AER-BASED
| CONVOLUTION

Fig. 1. (a)classical frame based and (b) AER-Based convolution processing

In an AER system, shown in Fig. [l an intensity retina sensing the same
visual stimulus would produce events for 3 pixels only (those sensing a non-zero
light intensity). The pixel at coordinate (3,3) senses twice as much intensity as
pixels (2,3) and (3,2). The event frequency of address (3,3) will therefore be
twice that of pixels (2,3) and (3,2). In this particular case, the retina can send
a new event every 10ns. Thus, for this particular stimulus, after four events we
already have a valid representation of the stimulus and only 40ns are required
to transmit it. In a practical situation the two events of pixel (3,3) would be
separated by more than 20ns. Every time the convolution chip receives an event
from the retina chip, the kernel is added to the array of pixels (which operate as
adders and accumulators) around the pixel having the same event coordinate.
Note that this is actually a projection-field operation. In this way, after the four
retina events have been received and processed, the result accumulated in the
array of pixels in Fig.[I(b) is equal to that in Fig.[Il(a). Additionally, in an AER
convolution chip, a fixed threshold level is defined for all pixels. Whenever a pixel
exceeds that level, it will generate an output event, and the pixel will be reset.
Consequently, events are generated, transmitted, and processed immediately,
without waiting for any frame timing constraints. In a more realistic situation,
the retina pixel values are higher and more events are sent per pixel. However,
note that more intense pixels have higher frequencies, and consequently their

events will start to come out earlier, and will be processed first. In general,
more intense pixels are more information-relevant pixels (especially in contrast
or motion retinae). In AER systems, since events are processed by a multi-
layer cortical-like structure as they are produced by the sensor, it is possible to
achieve successful recognition after a relatively small fraction of the total number
of events are processed [16].

3 AER Simulator Tool

In the simulator proposed a generic AER system is described by a netlist that
uses only two types of elements: instances and channels. An instance is a block
that generates and/or produces AER streams. We have implemented a basic
library of instances, and any user can easily modify them or add new ones. For
example, a retina chip would be a source that provides an input AER stream
to the AER system [9]. A convolution chip [10], [II], [I2] would be an AER
processing instance with an input AER stream and an output AER stream. For
every input event at coordinate (x, y) a convolution map of a size specified by
the user is added in the pixel array stored in the convolution module around
the input event coordinate (Fig.[D). In a realistic situation, each pixel should be
implemented as an integrate-and-fire neuron with a threshold and physical delays
should be modeled. A splitter [I0] would be an instance which replicates the
events from one input AER stream onto several output AER streams. Similarly,
a merger [10] is another instance which would receive as input several AER
streams and merge them into a single output AER stream. Other developed
instances are a winner-take-all module and a multiplier. Both instances will be
described in the next sections. AER streams constitute the nodes of the netlist
in an AER system, and are called channels. Channels represent point-to-point
connections. Fig. 2] shows an example system. The system contains 7 instances
and 8 channels. The netlist description is provided to the simulator through a
text file. The ASCII file netlist corresponding to the example system is shown at
the bottom in Fig.[2l Channel 1 is a source channel. Each source channel needs a
line in the netlist file, starting with the key word sources, followed by the channel

1% SOURCES ™ "SOURCES DATA 1
) sowrces {1} {datal} |
']
: “%MODULES IN OUT PARAMS STATES :
) splivter i1} 12,4} {paramsl)} {statesl) |
1 convl {2} {3} {pamms2} {states2)
¥ rotate90 14} {5} {params3) {states3) |
) convl {5}y {6} {params4) 1] :
1 rofare-90 {6} {7} {params5 |]
U merger {3, 7} {8) {params6) |
y ack_onh {8} {8} {params7} :

Fig. 2. Example AER-based system emulated by our simulation tool and its netlist
ASCII file

number and the file containing its events. The following lines describe each of the
instances, one line per instance in the network. The first field in the line is the
instance name, followed by its input channels, output channels, name of a text file
containing its parameters, and name of a text file containing its initial state. Each
instance is described by a C++ function whose name is the name of the instance.
The simulator imposes no restriction on the format of the parameters and state
structures. This is left open to the user writing the code of the function of each
instance. The simulator only needs to know the name of the files where these
structures are stored. Channels are described by a list of events. Each element
in the list has two components. The first one corresponds to information of one
event and the second one is a pointer to the following event to be processed in the
list. Each event has six components: ‘x” and ‘y’, that represent the coordinates
or addresses of the event, ‘sign’ represents its sign, ‘tprereq’ represents the time
at which the emitter instance creates the event, ‘treqef ’ represents the time at
which the receiver instance processes the event, and ‘tack’ represents the time
at which the receiver instance finally acknowledges the event. We distinguish
between a pre-Request time and an effective Request time. The first one is
only dependent on the emitter instance, while the second one requires that the
receiver instance is ready to process an event request. This way, we can provide
as source a full list of events which are described only by their addresses, sign,
and times. Once an event is processed by the simulator, its final effective request
and acknowledge times are established. Before starting the simulator, the events
of the source channels have to be provided in an input text file (we have also
implemented some tools to create these text files from real aer streams or from
images). During the simulation, events in the channels are established. After the
simulation, the user can visualize the computed flow of events in the different
channels. The execution of the simulator is as follows. Initially the netlist file
is read as well as all parameters and states files of all instances. Each instance
is initialized according to the initial state of each instance. Then, the program
enters a continuous loop that performs the following steps:

1. All channels are examined. The simulator selects the channel with the ear-
liest unprocessed event (earliest pre-Request time). An event is unprocessed
when only its pre-Request time has been established, but not its final Re-
quest time nor its acknowledge time.

2. Once a channel is selected for processing, its earliest unprocessed event is
provided as input to the instance the channel is connected to. The instance
updates its internal state. In case this event triggers new output events
from this instance on its output channels, a list of new unprocessed events
is provided as output. These output events are included by the simulator
in the correct position of the respective channels, which at a later time
should be processed by their respective destination instances. Finally, the
simulator stores the new state for the instance under execution and goes
back to 1.

4 Results for AER-Based Implementations

To validate the tool described above, we have implemented two simulations of
two AER systems that had been previously built in hardware [I0][1I]. All the
parameters describing the modules such us thresholds, forgetting ratio, kernels
values, delays, array sizes, etc. have been chosen according to the specifications
of AER devices [I0][I1] and adjusted to produce an output frequency in the same
order as the input frequency of activity, as done in the physical implementations.
Finally, we propose and simulate also an AER-based single layer neural network
to detect hand-written digits from the MNIST database [15].

4.1 Detection and Tracking of Moving Circles with Different Radius

The first developed implementation was built to simulate the demostration sys-
tem described in [I0]. This system could simultaneously track two objects of
different size. A block diagram of the complete system is shown in Fig. Bl The
complete chain consisted of 17 pieces (chips and PCBs), and was intended to
detect two solid circles of different radiuses on a rotating disc. The detection was
implemented with two convolution chips programmed to detect circumferences
of radius 4 pixels and 9 pixels, respectively. The AER scheme that we have used
to emulate the detection system is that described in Fig.dl The system receives
as input the events captured by the electronic retina, the movement of a rotating
disc with two solid circles of different radiuses. The captured data, available in
data files, were previously converted to a valid format for our simulation tool.
These events reach a convolution module programmed a kernel tuned to detect
a circumference of a certain radius (convolution chip in Fig. [)). The output
events describing the center of the circumference we want to detect are sent
to a winner-take-all module. The output activity of this module responds only
to the incoming addresses having the highest activity. We can implement the
winner-take-all module using a convolution chip with a kernel that is positive
in the center and negative in the rest of values and using the output activity
from this chip as feedback to the input of the chip. The input frequency in each
pixel belonging to each circumference was 266Hz, that is, 104312 events were
produced in 4.5s when the kernel is tuned to detect the small circumference. We
have obtained 1911 events at the output in total, all of them due to the pixel
detecting the center of the circumference, which implies that this pixel produces
events with a frequency of 266 Hz approximately. Note that AER streams are
not represented by sequences of frames (as in conventional video). However, to
show the results graphically, we have collected input and output events dur-
ing time intervals of 33ms and show 2-D images. In Fig.] the four images in
the left represent the images reconstructed with the hardware implementation
(images were obtained with a java tool [I0][I1]). The gray values correspond
to non-activity. Black values correspond to changes in intensity due to the mo-
tion sensing retina at the input and white levels at the bottom figures corre-
spond to the pixels detecting the center of the moving ball at the output). The
four images on the right correspond to the images obtained using our C++4

Fig. 3. Block diagram of the hardware implementation AER-based system to detect
objects of different shape and size

CONVOLUTION T
CHIP

WINNER-TAKE-ALI

Fig.4. Block diagram of the AER system developed to simulate the hardware
implementation

Fig. 5. On the left, input and output obtained with the hardware implementation. On
the right, input and output obtained with the simulated implementation.

simulation tool. Black levels correspond to non-activity and white levels corre-
spond to pixels producing activity.

4.2 Recognition of a Rotating Propeller Rotating at High Speed

The second experiment demonstrates the high-speed processing capabilities of
AER based systems. It is the recognition and tracking of a highspeed S-shaped
rotating propeller at 5000 rev/sec [II] and moving across the screen. At this
speed, a human observer would not be able to discriminate the propeller shape
and he would only see a moving ball across the screen. The propeller has a diam-
eter of 16 pixels. The AER simulated system is again that shown in Fig. @l This
time, the convolution chip was programmed with a kernel to detect the center of
the S-shaped propeller when it is in the horizontal position. In Fig.[6l(a), the ker-
nel is shown. In Fig. [B(b) and (c) we show the 2-D input (propeller) and output
reconstructed images when we consider a 50us interval of time collecting events

(1/4 of a rotating movement). In Fig. B(d) and (e) we show the 2-D input and
output images when we consider a 200ms interval of time collecting events (cor-
responding to one complete back-and-forth screen crossing). As it can be seen,
only those pixels that detect the center of the propeller produce activity. The
propeller is properly detected and tracked at every moment in real time. Note
that using conventional frame-based image processing methods to discriminate
the propeller is a complicated task, which requires a high computational load.
First, images must be acquired with an exposure time of at least 100us and all
this must be performed in real time (the propeller is rotating at 5000 rev/sec).
As done previously, all the parameters describing the modules were adjusted to
produce an output frequency in the same order as the input frequency of activity
(137 KHz), as done in the physical implementations [11].

Fig. 6. a) Kernel used to detect the propeller,) and ¢) input and output when we
collect events during 50us, d) and e) input and output when we collect events during
200ms

AER-BASED
FRAME-BASED

S1°82 weights + b0 .
044ty

THY m]mh

| 2818 Ir _ 10outputs
0 T 0
weights g

1mn h|a~5n

¢ eAtanis)

S

o NFMLuvight + 49

Eme—-—me

@ = yemanhisty) | O

S

Fig. 7. Frame-based (on the left) and AER-based (on the right) implementation of a
single layer neural network to detect digits of 28x28

4.3 Single Layer Neural Network

The last system that we have simulated is a single layer neural network trained
with back-propagation [I7]. When designing a pattern recognition system, one of
the main problems is that the recognition accuracy is largely determined by the
ability of the designer to come up with an appropriate set of features. This turns
out to be a daunting task which, unfortunately, must be redone for each new
problem. A possible solution to these problems is the use of neural networks [17].
Aimed to this, we have developed an AER-based system that emulates directly

a frame-based a fully connected single layer neural network trained with back-
propagation [I7] and which is called Net-1. Net-1 is shown on the left of Fig. [l
with 10 sigmoid output units (7850 weights including the biases). The database
MNIST [15] consisting of 70000 28x28 images of hand-written digits has been
employed. 60000 are used for training and 10000 are used for testing purposes.
Each pixel from one image constitutes an input to the network. Each output
unit in the network computes a dot product between its input vector and its
weight vector. This weighted sum, denoted xj for unit j, is then passed through
a sigmoid squashing function (a scaled hyperbolic tangent) to produce the state
of unit j, denoted by yj (Eq.[2):

yj = Atanh(S * xj). (2)

Where A is the amplitude of the function and S determines its slope at the
origin. In the training phase, each weight is updated using backpropagation:

oF

Wij = Wi — € . 3

b=, 3)

Where w;; is the weight that connects pixel i to output neuron j and E is the
error at the output computed as:

E=Y -4 (1)

Where dj is the desired output for each input in unit j when using the training
set. The same rule is used for the biases. After training the net, only the output
neuron sensitive to the stimulus will produce positive activity at the output. A
classification rate of 91% was obtained when we tested the net with the test
images. On the left of Fig. [we show the frame-based implementation of the
single layer neural network. In the figure, a digit corresponding to one training
digit belonging to the MNIST database is supplied to the network and the output
neuron sensitive to that input digit will reach a state of value ‘1’. The rest will
have a value of ‘-1’. On the right part of Fig. [[lwe show our AER-based scheme.
This time, we do not have real AER input stimulus. However, our simulator
proposed allows us to convert 2-D images into events. In this way, we have coded
all the images in the MNIST database into events separated each other 10ns.
Each flow of events corresponding to one digit is used as input to the system.
When an event belonging to the input stimulus reaches a splitter module, it is
replicated in each one of the ten output ports. Events travelling through one of
this output ports come to a multiplier module. A multiplier module consists of an
array with 784 weights and one bias value. When an event arrives to this module,
its address is decoded and the weight specified with that address in the pixel
array, which is stored in the module, is added to the state of the single neuron
inside the module. If the state of the neuron reaches a certain positive or negative
threshold, it produces a new output event positive or negative respectively. This
event will be sent automatically to the output port. Then, the neuron resets

OUTPUTS

Event sign

e | |-

Event aign
N

Tiene (1000

Y

Time ()

Fig. 8. Input and output events for neurons ‘0’ and ‘6’

itself and it is initialized with the bias value specified inside each multiplier.
All the weights and biases used in the implementation were computed with
backpropagation using a frame-based scheme (this is not difficult because only
one layer is involved). As an example, in Fig. 8 we show the input events when
we used a version of digit ‘0’. For this input, in the same figure we show also the
output events obtained for the neurons sensitive to input ‘0’ and input ‘6’ (the
activity for the rest of neurons is quite similar). As it can be seen, output events
are obtained automatically, without the need of waiting for the entire frame-time.
In less that 3us (note that duration of the input stimulus is almost 200us) since
the first input event reached the system, we have output events indicating the
correct detection of digit ‘0’ (positive events). The rest of output neurons produce
negative events, indicating that they are not sensitive to that stimulus. When
we used the entire set of 10000 test images and converted them to events, we got
a recognition rate of 91%. This rate is the same as the rate obtained in the net-1
frame-based implementation. It is obvious that AER allows for fast processing
providing the good results that we had using classical frame-based methods but
now in real time. In a real hardware implementation using AER modules we
would be able to process input events at speeds going from 33 Mevents/sec
to 3 Mevents/sec [II] when we use the maximum size for kernels allowed in
convolution or multiplier chips. This implies that the real time recognition here
simulated could be easily achieved by a real system and with aproximately the
times here described. In the future, neural networks with more layers will be
implemented in AER in order to achieve higher classification rates as those
obtained (almost 100%) in recent frame-based schemes (LeNet-5 [I8]).

5 Conclusions

In this paper, we have described a simulation C++ tool for AER-based sys-
tems. The tool is able to process around 20Kevents/sec. Hardware AER mod-
ules are able to process input events at speeds going from 33 Mevents/sec to

3 Mevents/sec [I1]. However, in spite of the tool being slower than a physical
hardware implementation, it will allow us to simulate complex and hierachically-
structured systems before the available hardware technology allows it and with-
out hardware cost. The AER-based simulation tool can be used to test new AER
processing modules within large systems, and thus orient hardware developers
on what kind of AER hardware modules may be useful and what performance
characteristics they should possess. We have presented three implementations to
validate our tool and the results show clearly the high speed and possibility of
implementing complex processing systems that AER provides. With the three
AER-based implementations we try to demonstrate the feasibility of AER tech-
nology when it is applied to real-time image processing. AER is able to process
input stimulus in real time and to transmit the resulting activity in each layer to
the following layers even without having finished collecting all the input events.
It is also feasible to assemble multiple chips working in parallel so that complex
processing and multiple convolutions can be done. The first two applications
were intented to detect and track objects with different shape and size in real
time. It can be observed that in the two implementations the processing has
been always in real time and that the outputs were equal to those obtained with
the hardware devices. The third application is an example of a single layer neu-
ral network to recognize hand-written digits in the MNIST database. Available
AER devices allow us to implement simple but real-time architectures like the
single layer neural network and with the times computed. In future implementa-
tions we want to develop more sophisticated and cortical-like multi-layer systems
where the link between hardware AER implementations, bio-inspired processing
and frame-based applications will become more apparent.

Acknowledgement

This work was supported in part by grant TEC-2006-11730-C03-01 (Samanta2)
from the Spanish Ministry of Education and Science and grant P06-TIC-01417
(Brain System) from the Andalusian regional government. JAPC was supported
by a doctoral scholarship as part of research project Brain System.

References

1. Shepherd, G.M.: The Synaptic Organization of the Brain, 3rd edn. Oxford Univer-
sity Press, Oxford (1990)

2. Rolls, E.T., Deco, G.: Computational Neuroscience of Vision. Oxford University
Press, Oxford (2002)

3. LeCun, Y., Bengio, Y.: Convolutional Networks for Images, Speech, and Time
Series. In: Arbib, M. (ed.) The Handbook of Brain Science and Neural Networks,
pp. 255-258. MIT Press, Cambridge (1995)

4. Fasel, B.: Robust Face Analysis using Convolution Neural Networks. In: Proc. of
the Int. Conf. on Pattern Recognition (ICPR 2002), Quebec, Canada (2002)

5. Sivilotti, M.: Wiring Considerations in Analog VLSI Systems with Application to
Field-Programmable Networks, Ph.D. Thesis, California Institute of Technology,
Pasadena CA (1991)

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Mahowald, M.: VLSI Analogs of Neural Visual Processing: A Synthesis of Form and

Function, Ph.D. Thesis, California Institute of Technology, Pasadena CA (1992)

. Cauwenberghs, G., Kumar, N., Himmelbauer, W., Andreou, A.G.: An analog VLSI

Chip with Asynchronous Interface for Auditory Feature Extraction. IEEE Trans.
Circ. Syst. Part-II 45, 600-606 (1998)

. Oster, M., Liu, S.-C.: Spiking Inputs to a Spiking Winner-Take-All Circuit. In:

Weiss, Y., Scholkopf, B., Platt, J. (eds.) Advances in Neural Information Processing
Systems (NIPS 2006), vol. 18, pp. 1051-1058. MIT Press, Cambridge (2006)

. Lichtsteiner, P., Delbriick, T.: 64x64 AER Logarithmic Temporal D rivative Silicon

Retina. Research in Microelectronics and Electronics 2, 202-205 (2005)
Serrano-Gotarredona, R.; et al.: AER Building Blocks for Multi-Layers Multi-Chips
Neu-romorphic Vision Systems. In: Weiss, Y., Scholkopf, B., Platt, J. (eds.) Ad-
vances in Neural Information Processing Systems (NIPS 2006), vol. 18, pp. 1217—
1224. MIT Press, Cambridge (2006)

Serrano-Gotarredona, R., Serrano-Gotarredona, T., Acosta-Jiménez, A., Linares-
Barranco, B.: A Neuromorphic Cortical Layer Microchip for Spike Based Event
Processing Vi-sion Systems. IEEE Trans. on Circuits and Systems, Part-1 53(12),
25482566 (2006)

Serrano-Gotarredona, R., et al.: On Real-Time AER 2D Convolutions Hardware
for Neu-romorphic Spike Based Cortical Processing. IEEE Trans. on Neural Net-
works 19(7), 1196-1219 (2008)

Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M., Poggio, T.: Object recognition
with cortex-like mechanisms. IEEE Transactions on Pattern Analysis and Machine
Intelligence 29(3), 411-426 (2007)

Masquelier, T., Thorpe, S.J.: Unsupervised Learning of Visual Features through
Spike Timing Dependent Plasticity. PLoS Comput. Biol. 3(2), €31 (2007)

The MNIST database, http://yann.lecun.com/exdb/mnist/index.html
Linares-Barranco, A., Jimenez-Moreno, G., Linares-Barranco, B., Civit-Ballcels,
A.: On Algorithmic Rate-Coded AER Generation. IEEE Trans. on Neural Net-
works 17(3), 771-788 (2006)

Le Cun, Y., et al.: Backpropagation applied to handwritten zip code recognition.
Neural Computation 1, 541-551 (1989)

Le Cun, Y., et al.: Gradient-based learning applied to document recognition. Pro-
ceedings of the IEEE 86(11), 2278-2324 (1998)

http://yann.lecun.com/exdb/mnist/index.html

	Advanced Vision Processing Systems: Spike-Based Simulation and Processing
	Introduction
	AER-Based Convolution
	AER Simulator Tool
	Results for AER-Based Implementations
	Detection and Tracking of Moving Circles with Different Radius
	Recognition of a Rotating Propeller Rotating at High Speed
	Single Layer Neural Network

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

