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ABSTRACT 

 

 Nowadays, self-learning models and artificial intelligence are popular. These systems can 

be seen in daily life almost in every field. Artificial intelligence makes our life easier than we 

expected before. Now we can drive safer and easier with self-driving cars, we can predict our 

monthly expenses, in medical usage we can predict cancer cells with machine learning and also 

many other applications. 

 Neural network is an effective tool for image recognition by computer vision algorithms. 

They work similar to human brain neural systems to recognize objects, their locations and also 

they can classify within multiple objects. 

 With this project we will see how we can detect human actions on video camera with deep 

learning models. Mainly our goal is train a neural network model to recognize human activities on 

video and live camera. Our project has two stages; firstly only human body detection in all video, 

then using this video clip as the input of our deep learning model. Finally we classify the actions 

during all video. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



III 
 

Table of Contents 

 

 

1. INTRODUCTION ......................................................................................................................................... 1 

1.1 Objective ............................................................................................................................................. 1 

2. METHODS .................................................................................................................................................. 3 

2.1 Artificial Neural Networks ................................................................................................................... 3 

2.1.1 Training of Artificial Neural Networks ......................................................................................... 4 

2.1.1.1 Forward Propagation ............................................................................................................ 5 

2.1.1.2 Backward Propagation .......................................................................................................... 5 

2.1.1.3 Loss Function......................................................................................................................... 6 

2.1.1.3.1 Mean Square Error ......................................................................................................... 7 

2.1.1.3.2 Mean Absolute Error ...................................................................................................... 7 

2.1.1.3.3 Cross Entropy Loss ......................................................................................................... 7 

2.2 Convolutional Neural Networks .......................................................................................................... 8 

2.2.1 Structure of Convolutional Neural Networks .............................................................................. 9 

2.2.1.1 Convolutional Kernel ............................................................................................................. 9 

2.2.1.2 Activation Function ............................................................................................................. 10 

2.2.1.2.1 Sigmoid Activation Function ........................................................................................ 10 

2.2.1.2.2 Softmax Activation Function ........................................................................................ 11 

2.2.1.2.3 Tanh Activation Function ............................................................................................. 11 

2.2.1.2.4 ReLU Activation Function ............................................................................................. 12 

2.2.1.3 Padding ............................................................................................................................... 12 

2.2.1.4 Pooling ................................................................................................................................ 13 

2.2.1.5 Over-fitting .......................................................................................................................... 13 

2.2.1.6 Dropout ............................................................................................................................... 14 

2.2.1.7 Flattening ............................................................................................................................ 14 

2.3 Recurrent Neural Networks .............................................................................................................. 15 

2.4 Long Short- Term Memory ................................................................................................................ 16 

2.5 Software and Hardware .................................................................................................................... 17 

2.5.1 Software ..................................................................................................................................... 17 

2.5.2 Hardware ................................................................................................................................... 18 



IV 
 

3. STATE OF ART .......................................................................................................................................... 19 

4. DATASET .................................................................................................................................................. 21 

4.1 Description ........................................................................................................................................ 21 

4.2 Construction ...................................................................................................................................... 22 

4.2.1 Real-World Videos ..................................................................................................................... 23 

4.2.2 Artificial Videos .......................................................................................................................... 23 

4.2.3 Dataset Architecture .................................................................................................................. 24 

5. MODELS FOR ACTION RECOGNITION...................................................................................................... 27 

5.1 Approach ........................................................................................................................................... 27 

5.1.1 Data Preprocessing .................................................................................................................... 27 

5.2 Empty CNN Model ............................................................................................................................. 29 

5.3 Transfer Learning Models ................................................................................................................. 32 

5.3.1 Transfer Learning Approach ....................................................................................................... 32 

5.3.2 VGG16 Transfer Learning Model................................................................................................ 34 

5.3.3 Feature Extraction Model .......................................................................................................... 37 

5.4 Model Output ................................................................................................................................... 39 

6. EXPERIMENTS WITH OTHER DATASETS .................................................................................................. 41 

6.1 Test Dataset ...................................................................................................................................... 41 

6.2 Empty CNN Model Experiments ....................................................................................................... 42 

6.3 Transfer Learning Model Experiments .............................................................................................. 44 

6.4 Feature Extractor Model Experiments .............................................................................................. 46 

6.5 Experiment with TensorFlow Object Detection API ......................................................................... 48 

7. CONCLUSIONS AND FUTURE WORKS ...................................................................................................... 50 

 

 

 

 

 

 

 

 

 



1 
 

1. INTRODUCTION 
 

Human action is a process, which is done by humans in a time period. Main actions are 

running, speaking, eating and many other similar activities. It should be in a time period and could 

be repeatable. 

Action recognition is a method to recognize and classify the action, which is done by 

human in purpose. There are several methods to classify human actions: by sensors, pose detection, 

location and directly by raw video analysis. These methods can achieve high accuracy when using 

artificial intelligence and deep learning.  

One of the most famous action recognition method is Human Pose Estimation [1], which 

is developed by TensorFlow. It is a method, which is based on deep learning. Pose estimation 

detects the human skeleton joints such as nose, eyes, elbows, shoulders, knees and other parts. 

After that, it draws a line in between these key joints. The position of these joints gives information 

about human actions. With this algorithm it is possible to detect actions in the certain time. 

However, at this project, video classification approach with deep learning will be explained 

with codes, datasets and alternative solutions. There is a time needed to finish one single action, it 

means only checking one frame is not enough to understand the actions. Instead of detecting certain 

body parts, an image sequence will be analyzed with time series models to classify the actions. 

Human actions are understandable and doable by other humans easily. But for artificial 

intelligence it is not as easy as for human brains. The most difficult part of this work is that the 

same action could be done differently by different people. Although the walking action looks 

simple, there are various types of walking styles. This makes the project more complicated. For 

this reason the dataset should be collected carefully, and it should include all possible styles of the 

same action.  

 

1.1 Objective 

Action recognition by deep learning works with number of frames of the video. The 

algorithm was trained with thousands of video samples. For training, several different deep 

learning structures were used and tested to get better performance results. These results gave a 

chance to see what the effect of deep learning’s structures are on human action recognition. Each 

10 frames of videos were collected, prepared and stored to the dataset. While data preparation, 

dataset was cleaned with different Python libraries. The first model is based on Convolutional 

Neural Network (CNN) and Long Short- Term Memory (LSTM). For second model, transfer 

learning approach were used. As third model, feature extractor method with transfer learning was 

applied to the dataset. 
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There are two main parts in this project. The first section is detecting only human in the 

video. At this part, data is cleaned and prepared for action recognition model. For image 

processing, one of the biggest issue is reducing background noise. Background noises always make 

a negative effect on the model accuracy. With this method, the background noises are cleaned and 

it helped to train the model. 

Second part is action recognition part. The model takes the frames from the first model and 

predicts the actions. It is a classification model with CNN and LSTM layers. 

 The neural network model is trained with custom dataset, which has almost 78000 images. 

Dataset is mostly recorded by the owner of the project. Also they are collected from video games, 

some movies and series. While collecting data; different people, different places, angles and 

different clothes were considered in order to have a variation in the dataset. It will help to avoid of 

over fitting during training section. 

 

 In the following chapters, firstly we will look at Methods chapter, which contains 

information, methods that we used for our project. Then State of Art follows as third chapter. In 

state of art we will explain the relevant projects that we read before, and how they inspired us for 

actions recognition. As forth chapter, we will see the dataset that we used during training section. 

Models chapter follows as fifth chapter of the project. We will give information about our models, 

how we built the models and model performance results. Experiments chapter follows the Model 

chapter. We will use testing data to show the independent performance of these three models. 

Finally Conclusions and Future Works follows the flow as the last chapter. 
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2. METHODS 

 

 At this section the methods, which were used during the project are explained with general 

details. Main purpose of this article is showing how to build a machine learning (deep learning) 

algorithm to understand human action recognition by computer. So before explaining methods, 

machine learning and deep learning terms should be explained. 

Machine learning is a study of computer science. It builds mathematical models based on 

sample data to make a prediction with new data [2]. It learns the pattern of the system and makes 

decision with minimum human needs. The model is trained with historic data under the 

mathematical formulas. When there is a new data or one of the historic data, it makes prediction 

to make a decision. 

Deep learning is a sub branch of machine learning with inspiration from brain working 

system. It has several layers, which work with raw input data. One of the most famous application 

of data type could be image, text or sound. It learns the best path within all the layers. Most 

common deep learning method is neural network. 

 

2.1 Artificial Neural Networks 

 Artificial neural network is a mathematical computing model. It works like a structure of 

neurons of human brains. There is a wide range of neural network types, usually they have layers 

and these layers are connected each other. The model is trained with large dataset and it learns the 

main pattern- path under the mathematical calculations. 

 

Figure 1. An example of a feed-forward neural network structure 
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General structure of a neural network could be seen above figure. There is an input data, 

which goes inside of the input layer. Then hidden layers follow input layer. Finally the outputs are 

defined after the output layer. 

Each node has a connection with all nodes of the next layer. As it is shown at figure 1 that, 

there are several combinations inside of the network. With these combinations the model tries to 

find the best path in order to find the correct output, which is already defined (labeled classes) 

before. 

 

 

Figure 2. Neural network calculation 

 

The mathematical explanation graph could be seen at figure 2. The x values are the features 

of the dataset (columns). Mainly there is a cost function and the network tries to minimize this cost 

as much as possible. 

One of the most advantage of using neural network is, it does not require feature 

engineering as much as traditional machine learning technics. The neural networks are already 

enough complex to solve tough problems. On the other hand, the disadvantage is it requires a much 

bigger dataset than other machine learning models. 

A basic (shallow) neural network has 2-3 hidden layers, while a deep neural network could 

have around 150 layers. The number of hidden layers depends on the complication of the dataset 

and the problem. 

 

2.1.1 Training of Artificial Neural Networks 

 During the training of deep learning models, there is a guide, which shows how the 

algorithm works correct or not correct. This is the loss of each iteration. For each iteration the 

model calculates how the prediction value closes to the real value. If the differences between real 

and prediction value is high, then the model is not accurate and needs to be optimized. Basically, 

deep learning algorithms work with this principle. 
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 There are three main sections in ANN model architecture. These are Forward Propagation, 

Loss Function and Backward Propagation. 

 

2.1.1.1 Forward Propagation 

Basically, x values are multiplied with weights and summation with bias value. ƒ function 

means the activation function, which is applied to this sum. After each iteration it gives the z value. 

z goes into the activation function in order to define the output of the input data. Finally the 

prediction is done and the result is found for one iteration. 

 

𝑦𝑝𝑟𝑒𝑑 = 𝑓(𝑏 + ∑ 𝑥𝑖𝑤𝑖

𝑛

𝑖=1

) 

     

              z 

 

The formula of forward propagation could be seen above. w means the weight of the each 

unit and b means bias value. Total amount of input unit is n and i is the current unit while 

calculation. Each unit can be seen at figure 2 as x1, x2 ... xn. This formula gives the result of one 

iteration in the model. Next is the section of backward propagation. 

 

2.1.1.2 Backward Propagation 

 Backward propagation is one of the most important part of deep learning models. Basic 

idea is decreasing the loss of the model and increasing the performance. For this purpose, weights 

and bias values are optimized with gradient descent method. 

 

Figure 3. Idea behind Gradient Descent 
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J(w) on the graph represents loss for each iteration according to weights w. Initial weight 

tries to go the bottom of the graph, it means the minimum loss value. For each step new weights 

are optimized and are used for the next step.  

All the layers are connected each other with weight values. During calculation of the output 

layer, all these input and hidden layers are used. During backward propagation, chain rule [3] is 

used to derivate of each weights. Formula of the chain rule can be seen below [4].  

 

𝜕𝐽𝑡𝑜𝑡𝑎𝑙

𝜕𝑤𝑛
=

𝜕𝐽𝑡𝑜𝑡𝑎𝑙

𝜕𝑜𝑢𝑡
.
𝜕𝑜𝑢𝑡

𝜕𝑛𝑒𝑡
.
𝜕𝑛𝑒𝑡

𝜕𝑤𝑛
 

 

In the formula, Jtotal means total cost, wn is the current weight, out is the output value of the 

layer and net is the input of the current layer. 

 

The below formula explains how to update weights of each unit. n means number of 

iteration at that time and µ is the learning rate. Learning rate manages the optimization steps. If 

learning rate is chosen too low, optimization can take longer than expected. If it is too high, it can 

never be optimized. 

𝑤(𝑛+1) = 𝑤(𝑛) − µ
𝜕 𝐽𝑡𝑜𝑡𝑎𝑙

𝜕𝑤(𝑛)
𝐽(𝑤) 

 

This loop goes until the Global cost minimum point Jmin(w). Finally the model is optimized 

with minimum loss value. 

 

2.1.1.3 Loss Function 

 Loss function is one of the most important tool in deep learning. It is used during the 

optimization of weight and bias values. For each iteration there is a value, which is predicted by 

deep learning model. Prediction and the real values are checked with loss function in order to 

improve the model performance. If the loss value is high, it means the model parameters are not 

correct and they should be optimized. 

 There are various loss functions in deep learning and machine learning applications. The 

performance of these functions depends on the type of the problem; it could be a binary 

classification, multi class classification, regression or others. They are classified into two 

categories as classification and regression losses. 

Some popular loss functions are Mean Square Error, Mean Absolute Error, Hinge Loss and 

Cross Entropy. They are briefly introduced next. 
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2.1.1.3.1 Mean Square Error 

 Mean square error (MSE) is average of the square differences between predicted and real 

values. It is a regression loss function and mostly used with logistic regression models. 

 

𝑀𝑆𝐸 =
∑ (𝑦𝑖 − ŷ𝑖)2𝑛

𝑖=1

𝑛
 

At the formula i means the index of the current data, n is the total number of examples, y is the 

true value and ŷ is the predicted value. 

 

2.1.1.3.2 Mean Absolute Error 

 Mean absolute error (MAE) is average of the absolute differences between predicted and 

real values. MAE is more robust against outliers, because it does not square the values. 

 

𝑀𝐴𝐸 =
∑ |𝑦𝑖 − ŷ𝑖|𝑛

𝑖=1

𝑛
 

 

The terms of the formula are same as MSE. 

 

 

 

2.1.1.3.3 Cross Entropy Loss 

 Cross Entropy is a probabilistic measurement between 0 and 1. It is also known as logistic 

loss. It is so common in classification problems. 

 

𝐶𝑟𝑜𝑠𝑠 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝐿𝑜𝑠𝑠 = −(𝑦𝑖log (ŷ𝑖) + (1 − 𝑦𝑖)log (1 − ŷ𝑖)) 

 

The terms of the formula are same as MSE. 
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2.2 Convolutional Neural Networks 

Convolutional neural networks (CNN) were invented at 1980s. The main purpose of this 

model is image processing, given that it is inspired from the visual cortex of mammals. CNN is 

one of the most important tools in deep learning world. Image classification, image recognition, 

object detection and many similar works are using CNN algorithms to understand and get 

information from the images. 

CNN can be used not only for images, but also for other data types: audio, temporal series, 

etc. In what follows, CNN will be explained as when applied to images, since it is their natural 

application. 

CNN model checks all the images pixel by pixel. The work principle of CNN is similar to 

ANN, it takes the input image, then calculates the weights and bias values under the feature 

importance. After sums all the weights with features, it calculates loss values with each iteration 

and uses an activation function to give a logic result. The important values could be edges, sharp 

color changes and different object in the image. 

While training, CNN model uses feature extraction in between each layer. The aim of 

feature extraction is reducing complexity of the image and taking distinctive information [5] such 

as corners, sharp shapes, objects, lines etc. Each layer extracts features from the previous one 

during the training path. Feature extraction is used in almost all computer vision algorithms.  

 

 

Figure 4. A CNN model to classify handwritten digits 

 

As it is seen at figure 4, an input image goes into the CNN model. It takes one pixel to the 

convolutional layer and transfer the pixel information to the next layer. The pixel information is a 

number, which could be between 0 and 255 as RGB or RGBA. And finally the output is a digit 

number between 0 and 9. 
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2.2.1 Structure of Convolutional Neural Networks 

 CNN algorithm has several components in a deep learning model. These components can 

be different, which depends on the work purpose. These components help to simplify the images 

and understand the pixel information. Also they help to optimize weights and bias values. A simple 

classification model has these components: 

 Convolutional Kernel 

 Activation Function 

 Padding 

 Pooling 

 Dropout 

 Flattening 

 

2.2.1.1 Convolutional Kernel 

Convolutional kernel is a matrix, which is working as a filter for CNN layers. The main 

task of convolutional kernel is resembling the original image. With this method, the image size 

could be reduced and simplified to use by algorithm. 

 

Figure 5. Calculation of convolutional kernel 

 

Filter can be 3x3, 5x5 or different sizes, which is defined by the user. The filter shifts over 

the all image pixels, it goes from left to right then from top to bottom. At this example from figure 

5 [6], the kernel size is 3x3 and it shifts 25 times on the image. Each time, there is a matrix 

multiplication between source pixel and convolutional kernel. Finally the output goes to 5x5 

matrix with these results. 
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If the source image has multiple channels like RGB then the kernel has the same depth as 

as 3x3x3, 5x5x3 etc. For RGB example, the kernel has 3 channels and it shifts 3 times on the image 

channels. 

 

2.2.1.2 Activation Function 

 Activation function gives the output of the node. It converts all the values to a logic output 

like “yes” or “no”. They are used after just convolutional layers. Activation functions could be 

categorized as linear and non-linear. However, non-linearity is the form that is wanted to have in 

the model. Mostly non-linear activation functions are used for deep learning. There are several 

types of activation functions, and the most used will be discussed next: 

Sigmoid, Softmax, Tanh, Arctan, ReLU, PReLU etc. 

 

2.2.1.2.1 Sigmoid Activation Function 

 Sigmoid is a non-linear activation function. It gives the outputs between 0 and 1. It is quite 

popular with probability prediction models. The most famous partner of sigmoid is logistic 

regression model. 

 

Figure 6. Sigmoid Function 

 

As it is seen from figure 6, the output is always between 0 and 1. For logistic regression, 

there is a filter to classify the outputs. If the output of the sigmoid is lower than 0.5 than it classifies 

as 0, if higher than 0.5 than it classifies as 1. Sigmoid is mostly used for binary classification 

methods. It is not usually employed to hidden layers because of vanishing gradient problem.  

In the formula, z means sum of all multiplications of weights and x and bias values (see section 

2.1.1.1). 
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2.2.1.2.2 Softmax Activation Function 

 For multi class classification and binary classification problems, softmax is a useful 

activation function. It gives the probability of each class like sigmoid function. When one class’s 

probability increases, the rest decreases. 

The formula could be written as: 

∅(𝑧) =
𝑒𝑧𝑖

∑ 𝑒𝑧𝑗𝑘
𝑗=0

 

 

In the formula, z means sum of all multiplications of weights and x and bias values, k is the total 

number of examples, j is the current index of the normalization and i is the current index of the 

example. 

 

2.2.1.2.3 Tanh Activation Function 

 Tanh activation function is similar to sigmoid function. Since sigmoid only gives positive 

results, tanh tolerates negative outputs as well. It works between -1 and 1. 

The formula can be written as: 

∅(𝑧) =
1 − 𝑒−2𝑧

(1 + 𝑒−2𝑧)
 

 

In the formula, z means sum of all multiplications of weights and x and bias values. 

 

 

 

Figure 7. Tanh activation function [7] 
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2.2.1.2.4 ReLU Activation Function 

 ReLU can be used for all neural networks, but only with hidden layers. When the input is 

positive, ReLU gives the same output. When the input is zero or less then the output is always 

zero. While it is linear with positive values, it is zero with negative values. ReLU is the most 

common activation function in deep learning. 

The formula is: 

∅(𝑧) = max (𝑧, 0) 

 

Figure 8. ReLU activation function 

 

ReLU is the simplest activation function in usage, for this reason it is the most popular one. 

 

2.2.1.3 Padding 

 When using convolutional kernels, the image size is decreased and simplified. However 

sometimes it could affect to lose information at the corners or edges. To avoid this problem, 

padding is the correct choose. Padding covers the border of the image with zero values and extends 

the size of the pixels. When the filter shifts the image, it does not lose the information at the 

borders. 

 

Figure 9. Same padding 
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As it is described at figure 9, same padding avoids lose information at the borders. For 

training, it is important to keep all information as much as possible. 

 

2.2.1.4 Pooling 

 Pooling method down samples the image kernel. It helps to decrease computational cost 

by reducing the size of the image. Also it helps to avoid over fitting by providing abstracted form 

of the kernel. There are several type of pooling as max pooling, average pooling etc.  

 

 

Figure 10. Pooling method 

 

Figure 10 shows how to down sample image by max pooling and average pooling. Pooling 

size is 2x2 and it runs over all image. Then it checks the each selected 2x2 matrix. With max 

pooling, filter takes the maximum value and places to new output of 2x2 matrix. Average pooling 

takes average of each 2x2 matrix and places to the output matrix. 

 

2.2.1.5 Over-fitting 

 Over-fitting happens when the model learns the training data too well [8] and cannot 

predict new data. The model can stack in some specific neurons and learns noise in the learning 

way and cannot learn more important path. Neural networks are often over-fitted because of the 

similarities inside of the dataset, choosing wrong hyper parameters, wrong model structures and 

other reasons. This case damages the performance of the model. It can be detected with validation 

and testing data. When training loss is low and validation-testing loss is higher than expected, the 

model is probably over-fitted. 
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2.2.1.6 Dropout 

 Dropout is a tool that helps to prevent over-fitting during the training of the model (a.k.a. 

regularization method). Dropout ignores random neurons; it means it does not take into account 

these neurons during the calculation of forward and backward propagation [9]. 

 

 

 

Figure 11. Dropout removes some neurons 

 

2.2.1.7 Flattening 

 Flattening is the final section of CNN model. With flattening the input shape is converted 

into 1-dimensional array form. As it is seen at figure 12, all pixels are long 1-d vector. After 

flattening the model is ready for the next layer. 

 

 

 

Figure 12. Flattening 
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2.3 Recurrent Neural Networks 

 Recurrent Neural Network (RNN) is a special deep learning method to work with time 

series. Basically it has own memory to remember previous case in dataset. It checks the previous 

data, keeps the information in the memory and use that memory to make a prediction. Mostly it is 

used in natural language processing (NLP), speech recognition, time series problems and video 

classification. 

 

Figure 13. RNN structure 

 

As it was described before, in the working principle of neural networks there are forward 

and backward propagations. However, the input of the calculation was only about current data. 

Here in RNN the loop is unfolded and the units are duplicated for a certain time steps, then the 

output of the current data stays in the memory and goes to the next data’s calculation as an input. 

At figure 13, prediction goes to the output layer and also they are kept in the memory to be used 

again in hidden layers. 

Loss calculation for backward propagation, instead of one data RNN model checks all historic 

time-series predictions. It means there are n times derivation for the loss function. Then it 

optimizes all the time series weights. 

 

 

ℎ(𝑡) = ∅(𝑤𝑥(𝑡)
+ 𝑈ℎ(𝑡−1)) 

 

As above formula explains, h(t) means the output of the hidden layers at t time, U is a special 

weight for previous values . The previous h(t-1) is multiplied with U values. Finally h(t) goes to 

activation function. 
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2.4 Long Short- Term Memory 

 Long short- term memory (LSTM) is an updated version of RNN. With LSTM it is easy to 

remember important past data. It was designed, because RNN is not enough for time series models 

in deep learning. With RNN there is a gradient vanishing problem, which happens with long 

sequences data. LSTM trains the dataset with back-propagation like RNN model. The main 

differences is the structure. While in RNN there is one section, LSTM has three different sections; 

Input Gate, Forget Gate and Output Gate. 

 

 

 

Figure 14. Long short term memory structure [10] 

 

In Input Gate, sigmoid and tanh functions work together to decide which input should 

modify the memory. Sigmoid gives the result as 0 or 1 and tanh makes an effect on the performance 

with values between -1 and 1 and finally they are multiplied. The formula can be seen below. 

 

𝑖𝑡 = 𝜎(𝑤𝑖[ℎ(𝑡−1), 𝑥𝑡] + 𝑏𝑖) 

Ĉ𝑡 = 𝑡𝑎𝑛ℎ(𝑤𝐶[ℎ(𝑡−1), 𝑥𝑡] + 𝑏𝐶) 

 

 The function of the Forget Gate is removing useless or non-necessary details from the 

model. It is done by sigmoid function. Sigmoid looks at the previous hidden layer values h(t-1) and 

current input xt and decides to keep in the memory or not. bi, and bc are bias values, wi and wc are 

weights. 
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𝑓𝑡 = 𝜎(𝑤𝑓[ℎ(𝑡−1), 𝑥𝑡] + 𝑏𝑓) 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ Ĉ𝑡 

 Final section is Output Gate. Here sigmoid decides which part is going to be used as output. 

Then tanh gives probabilistic result between -1 and 1. Then finally this both results are multiplied 

and go out of Output Gate as the main output. The formula variables are similar to input gate 

formula. 

 

𝑜𝑡 = 𝜎(𝑤𝑜[(ℎ(𝑡−1), 𝑥𝑡] + 𝑏𝑜) 

ℎ𝑡 = 𝑜𝑡 ∗ tanh (𝐶𝑡) 

 

2.5 Software and Hardware 

 During action recognition project, the author used some specific software and hardware to 

train the model, show the results and improve the performance.  

 

2.5.1 Software 

All the process during collecting dataset, data preparation, training the neural network 

models are done with Python. Python is an open sourced programming language. It was created 

by Guido van Rossum at 1991[11]. Currently Python is one of the most famous programming 

language in the world. 

 OpenCV and Numpy libraries were used for collecting data and data processing parts. 

OpenCV is an open sourced library for image processing applications. OpenCV was used for 

changing image formats, reading, resizing and reshaping the images. 

During data preparation, Numpy is the correct library to make the mathematical 

calculations. It was used by author to create multi-dimensional arrays and matrices. For image 

processing Numpy is an essential library. 

 For Training and evaluating of the model, TensorFlow library is the main tool during the 

project. TensorFlow is an open sourced library, which was created by Google Brain Team at 2015. 

TensorFlow is a numerical computation tool meant for automatic differentiation. It was invented 

specifically for deep learning projects. 

During training, Keras and LSTM of TensorFlow tools are used to create the neural 

network model. Also TensorFlow Object Detection API helps to detect only person in the image. 

As the preprocessing of training and testing, these tools are used by the author. This method will 

be explained in the following sections. 
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2.5.2 Hardware 

 Deep learning has intense computational requirements during the calculation of the neural 

network models. There are thousands of calculations inside of a simple model. GPU power makes 

these heavy calculations faster than CPU. Google Colab GPUs are used during training section. 

Google Colab has NVIDIA Tesla K80 GPU and 24 GBs of Ram. 
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3. STATE OF ART 
 

Recent years there are significant demands on human action recognition with deep learning 

by researchers. They try to build new models with different neural network structures, train their 

models with large dataset and use different approaches for this purpose. However video 

classification or action recognition is still not enough accurate and needs to be researched more. 

For this reason there are several methods on this research area. 

In the research of Jeff Donahue and team members, Long-term Recurrent Convolutional 

Networks for Visual Recognition and Description [12] was published on 17 November 2014. 

Basically researchers used CNN and LSTM blocks to memorize frames of the action. There is an 

action, which is spread into n-times images. Within these images there is a relationship to 

recognize this action. The researchers focus on this sequence and try to find the pattern relation to 

explain the action. With LSTM, they proposed they can capture temporal information from the 

video. As the structure of the model, they used CNN to check the image information, after CNN 

they connected image information to LSTM blocks. It means for each image they can keep the 

sequence information with LSTM. 

 

As article explains they took 16 frames as one action and they used these frames for the 

input of the deep learning model. On the project, the color format of the images is RGB model. 

They calculate each image frames and take the average of the total sequence. While training and 

validation they used UCF101 dataset [13], which consists 13320 videos and it is categorized to 

101 actions. Dataset is collected from YouTube for action recognition by Khurram Soomro, Amir 

Roshan Zamir and Mubarak Shah. It can be seen at figure 15. 

 

 

Figure 15. Sample of the dataset 
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 Below figure explains the structure of the training and prediction model. Input images go 

into CNN modules. Then LSTM helps to keep information in the memory. Finally output classifies 

the actions. The figure on the left, shows how the model learns image sequences. There are T times 

images in the sequence and the model gives T times output. The right figure shows prediction of 

the model. Each image gives an output as y value, then Average block takes the average of the 

results as the output action. For this example the output is predicted as HighJump. 

 

    

 

Figure 16. Training and prediction structure 

 

 Second project on this research is Learning Spatiotemporal Features with 3D 

Convolutional Networks [14] by Du Tran and their research fellows. The paper was published in 

2 December 2014. UCF101 dataset was used while training and testing the deep learning model.  

They used 3D convolutional neural network (3D ConvNet) for the project. For one action 

they took 16 frames, which means almost 2 seconds. All images were resized to 112x112 with 

RGB color model. Basic one action size is 16x112x112x3, which is the input of the deep learning 

model. The network architecture has learning rate as 0.003, mini-batch as 30, and it is stopped 

after 16 epochs. 

 

Figure 17. Basic structure of the model [14] 

 

We got ideas from these two papers to solve action recognition with deep learning models. 

The effective way to use neural network is connecting CNN layers with LSTM layers. 
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4. DATASET 
  

 This chapter provides all information concerning the dataset, created specifically for this 

project: how it was collected, which kinds of video and video categories were used, what kind of 

data processing were applied and also some examples will be seen. 

 

4.1 Description 

 In the project there are several types of videos, which were collected and were used for 

training the models. The author trained multiple TensorFlow models to show the importance of 

artificial neural networks. 

 Dataset contains a total of 78000 images. These images were converted from multiple 

different video clips. The videos were recorded by the author specifically for action recognition. 

Also they were collected from some video games to make a variation at dataset in order to avoid 

over fitting. These 78000 images include some artificial images as well, which were created with 

data augmentation technics. 

 

 

 

Figure 18. Overview of the dataset 
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 The dataset has 4 different categories; shooting, fighting, running and sitting. A sample 

could be seen at figure 18. These actions are interesting in daily life, for this reason they were 

chosen for the project. Especially violence, shooting and running detection is important to help 

security and safety. One of the important goals of the author is using artificial intelligence technics 

to improve the life quality and help the community. 

 

 

Figure 19. Count plot of training dataset 

 

 As it can be seen from above figure, the dataset is almost balanced and contains 17700 

shooting, 17950 fighting, 17420 running and 17730 sitting action images. 

 

 Almost all dataset was recorded by the author. Public datasets are not used for the project. 

Because the technic is a way different than other projects. Also it could be seen that the dataset 

only has human body, like inside of a bounding box. Because the background, outside of the human 

body was removed with rectangle box, to make it ready to use for training section. The reason of 

background elimination is to train a neural network considering only the changes on the body 

shape at the moment. Background noises always affect negative to the performance of the model. 

 

4.2 Construction 

 There are two different data types in training dataset. First one is real-world videos. At 

real-world videos, the author recorded himself to collect data. Second type is called artificial 

videos. These video images were collected from some video games in order to increase the data 

size and also give a variation to the dataset. 

 

 



23 
 

4.2.1 Real-World Videos 

 While collecting data, the author recorded himself and other people to focus only human 

body in the center of the video. The human does actions during the video. While doing these 

actions, they should do these actions with different sequences, different lengths and with different 

body shapes in aim to avoid over-fitting of the model. If all the actions are the same and collected 

by only one person, the neural network model could be over-fitted. It can only learn trained dataset, 

then it cannot predict the actions by other people. Also the person at the video wears different 

clothes. Some of the videos were collected at different time of the day with considering light effect. 

The data augmentation was applied to all dataset to avoid over-fitting and increase the size 

of the dataset. Data augmentation is an artificial method to increase the data size. Mainly the image 

shapes, image quality, zooming in and out, brightness or colors are modified during augmentation 

process. Finally there are new images, which are created and added to the dataset. This method 

helps training process. 

ImageDataGenerator module of Keras library was used for data augmentation method. The 

brightness of images were modified in the range of 1.5 and 1.7. The author modified images with 

zooming in and zooming out as well. Finally the dataset is doubled and ready to use for training 

section. 

 The other point for real-world images is video recording angle. In real world, videos could 

be recorded by different angles. After a training images with one angle, the author realized that 

there was a need to collect more data with different angles. For this reason all action videos were 

recorded with different angles. Some examples could be seen at Figure 18. 

 

4.2.2 Artificial Videos 

 As it was mentioned before, dataset includes video- game images. The idea is similar; in 

the game there is a person, who is doing these actions with the same sequences. While fighting, 

running and sitting, the images were recorded and saved to dataset. The video- game is called 

Knight Online. There is a high definition character, which has a human appearance. The 

character’s actions are similar to human actions, for this reason the author decided to collect data 

from this game. 

 

 

Figure 20. Overview of the video-game images 
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Dataset overview could be seen above figure. While character is doing actions, the frames 

are being saved to dataset. 

 

4.2.3 Dataset Architecture 

 To record real world and video games images, some Python libraries were used. These 

libraries are grabscreen, ImageGrab of PIL, Numpy and OpenCV. After recording all videos and 

images, there are some preprocessing sections. Only human body is needed to train the model. For 

this reason all background is removed from images. While cropping background, Numpy and 

OpenCV libraries were used. 

Finally dataset includes only human body and the actions. The images were needed to 

convert to Gray Scale format for empty CNN model. For transfer learning they are kept in RGB 

format. 

 

           

 

Figure 21. RGB and Gran Scale matrix 

 

The both RGB and Gray Scale formats could be seen at figure 21. The images were 

converted from 3d matrix to 2d matrix format. From 3d to 2d, the images lose their colors and they 

only have gray colors. 

After all, the image shape is modified from (w, h, 3) to (w, h, 1). Third number shows the 

channel of image. 

Convolutional neural networks only understand input as images. It is not possible to use 

videos directly as an input. For this reason the videos should be converted to image format and 

then kept as image sequences.  
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Figure 26. 3D image sequence 

 

All dataset is reshaped from shape of (n_images, w, h, 1) to (n_sequences, 10, w, h, 1). 
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Fighting action image sequence 

 

 
 

Shooting action image sequence 

 

 
 

Running action image sequence 

 

 
 

Sitting action image sequence 

 

 
 

 

Figure 27. Dataset categories with sequences 

 

 Above figure shows each actions from dataset. The images collected from video, then 

reshaped as 10 frames. After several try and combinations, author decided to take each 10 frames 

as one action. It can be seen from above figures that, it is possible to recognize an action in 10 

images. 

During the training, these sequences will be used as the target of the model. 
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5. MODELS FOR ACTION RECOGNITION 
 

 This section contains information about neural network models, which are built by the 

author of the project. The author gives details to explain the approaches and the technology behind 

of the algorithms. 

 

5.1 Approach 

 The main goal of this project is building and comparing deep learning models to recognize 

human actions in the video. Different structure of deep neural network model has different effect 

on each dataset. While sometimes small changes can increase the performance of the model, 

sometimes it does not effect on the model. For this reason the author decided to train multiple 

neural network models to get the best performance. While doing this, also it is important to see 

what the differences is, what the effect of the model is and how to choose the correct model to 

have better results. 

 There are three models, which were trained for action recognition project.  

 First model is trained from Empty CNN model with Keras library of TensorFlow. 

 Second model is trained with Transfer Learning method. 

 Third model is based on transfer learning from a pre-trained model using feature extractor. 

For transfer learning, the author used Keras library of TensorFlow.  

Three models have different requirements while data pre-processing, training and testing sections. 

Also it will be seen that, the results, training time and model weights are different in these three 

models. 

 

5.1.1 Data Preprocessing 

 Data preprocessing section is almost the same for all models. The dataset, which is 

recorded and collected by the author was used for training. Transfer learning pre-trained models 

only support to use RGB images for training. For this reason the images are not converted to 

GrayScale during data processing. For training Empty CNN model, all images are converted to 

GrayScale as it was explained at section 4. 

 

 

Figure 28. Dataset image sizes 
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 Figure 28 shows all image sizes in the dataset. It can be seen that the images are not fixed 

sizes and not the same quality. For this reason the author resized all the images to a fix size as 

(200,145,3) for transfer learning and (200,145,1) for Empty CNN model. For deep learning, neural 

network input images should be in the fix sizes.  

It is chosen (200,145), because the author avoids lose pixel information of the images. If 

the images are resized to lower values then it is not easy to learn by neural network models. 

(200,145) is the optimum values of all dataset. 

 

 There are 4 categories as explained in dataset section. These categories are converted to 

binary format with One-Hot Encoding method. One-hot encoder converts string categories to 0 

and 1 values. So they are meaningful for neural network. 

 

 

Figure 29. Classes after One-Hot Encoding 

 

After one-hot encoding method, binary format can be seen at figure 29 for all classes. 

Number of classes also define last layer of neural network models. So it means the last layer of 

both models should be 4. 

 

 Before model training part, there is a last process to prepare dataset. Total dataset has 

almost 78000 images for training. It should be split to training and validation data. While training, 

at the end of the each epoch there is a model validation to see how the performance of the model. 

The user can stop training, when the loss is at the minimum stage and model accuracy is maximum 

stage. 

 

Figure 30. Train-Test Set separation 
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 For this purpose, train_test_split module of SkLearn library helps to separate dataset. The 

dataset was split as 85% of training and 15% of validation set. Before train-test splitting, the data 

is already converted to sequences, as it was mentioned at Dataset section. So mixing data is not 

important, because all dataset is sequence format now. 

 

5.2 Empty CNN Model 

 The Keras model was trained from scratch without pre-trained models. The model was 

built and all the hyper parameters were chosen by the author. The model was built with Sequential 

of Keras library. Firstly, CNN layer added to the sequential model with TimeDistributed, as 

activation function tanh and ReLU are applied to CNN layer. MaxPooling and Dropout follows 

the model. There are several CNN model were added to the model, then Flatten feature comes after 

all CNN layers. After that, LSTM layer was added and Dense layers follow to the LSTM layers. 

To give the output, last layer of the model is added as Dense layer with 4 size with softmax 

activation function. 

Convolutional layers only work with image inputs and they are not compatible with 

sequence inputs. Image sequence has an extra dimension as 5-d shape. In order to use image 

sequence, TimeDistributed of Keras library should be applied. TimeDistributed works as a bridge 

between each image in the sequence. It passes information from current image to the next image. 

It applies the same layer to several inputs and produces one output per each input. It is good to be 

noted that, TimeDistributed is applied only for convolutional layers. It is not used for LSTM or 

Dense layers. 

 

 

Figure 31. TimeDistributed model for image sequence [15] 
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 Image sequence structure can be seen above. There are 10 images in each sequence and 

with TimeDistributed, the layers are applied to each image. 

 

 

Figure 32. Empty CNN Model structure 

 

 The model summary is shown above figure. Model has 63,115,636 total parameters. As 

optimizer Stochastic Gradient Descent (SGD) with 0.001 learning rate, momentum as 0.9 and 

nesterov as True boolean is applied to the model. Mean squared error (MSE) function is chosen as 

the loss function. Action recognition is a continuous scoring problem as it is applied 

TimeDistributed function. TimeDistributed gives the result as number of images inside of the 

sequence. The output of the model is a probabilistic result of each classes, for this reason MSE is 

the good choice for action recognition model [16]. The batch size and number of epochs are chosen 

as 5 and 40. 
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Figure 33. Accuracy graph for both train and validation set 

 

 

Figure 34. Loss graph for both train and validation set 

 

 Figure 33 and figure 34 give information about training results. The models reached 98% 

of training and 95% of testing accuracy after 40 epochs. Also, loss values drop under 0.01 for 

training and 0.02 for validation set. 
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5.3 Transfer Learning Models 

 Other action recognition model was trained with transfer learning approach. VGG16 pre-

trained Keras model helped to use transfer learning method. Two VGG16 models were trained 

with transfer learning. First transfer learning model is VGG16 with full layers. Second model is 

Feature Extractor VGG16 from block4_pool layer. In the following chapters all details will be 

explained. 

 

5.3.1 Transfer Learning Approach 

 Transfer learning is a method to use pre-trained models to build a new model. Instead of 

training a model from scratch, this method allows to use existing weights, which are already trained 

with millions of parameters and images. With transfer learning the author avoids to train longer 

training time and having more data. It can be seen from figure 35 that, there is a Base model. This 

was trained with very large dataset under long training time. 

 

 

 

Figure 35. Transfer learning 

 

The definition of transfer learning is based on domain D and task T. The domain D consists of 

features χ and probability distribution P(X), where X={ x1,x2,x3,….,xn } and D={ χ , P(X) }. 

The task consist of two components, which are label space y and predictive function f(.). Task 

function is T={y, f(.)}. 

With a source domain Ds and source learning task Ts, transfer learning aims to improve the learning 

of the target predictive function fT(.) in DT with using the knowledge in the source domain and 

learning tasks. Here DS ≠ DT and TS ≠ TT  [17]. 
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Figure 36. Keras pre-trained models 

 

A sample of Keras pre-trained models is shown at figure 36. These models were trained 

with ImageNet [18] dataset, which is an open sourced dataset for deep learning applications. 

ImageNet has more than 14 million images under 1000 categories. 

The author chose VGG16 pre-trained model for action recognition model. The model 

achieves 90.1% top-5 accuracy in ImageNet. It was trained for week with NVIDIA Titan Black 

GPUs [19]. VGG16 has enough parameters to train and predict action recognition model, it is also 

well accurate. For this reason author decided to use this model. 

 

 

 

Figure 37. VGG16 model structure 
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 The model structure can be seen above figure. The input is fixed size as 224x224 RGB 

color images. The input images pass to convolutional layers, after that they go through pooling 

layers. Max pooling layers follow each convolutional layers. Finally the images leave the model 

with softmax activation function.  

 

5.3.2 VGG16 Transfer Learning Model 

 First the model is downloaded the same size as the dataset from Keras library. As it was 

mentioned before, pre-trained models were trained with RGB images. So dataset has to be used as 

RGB format. After data implementation, dataset shape is (7080, 10, 145, 200, 3). 

 

 

Figure 38. VGG16 Pre-trained model summary 

 

Default VGG16 model can be seen at figure 38. After last layer, the model should be 

flattened for custom input shape, which is 5 dim (None, 10, 145, 200, 3) for action recognition 

model. Firstly, Global Average Pooling is used for this purpose. But author realized that, there is 

a problem during detection of the actions. Action is a sequence problem and taking average of the 

convolutional layers occurs information lose, for this reason Flatten feature was applied. While 

giving input shape, TimeDistributed feature is added to the model. With TimeDistributed, 

convolutional part (transfer learning model) can use sequence information for training.  
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After VGG16, LSTM layer follows the model structure. It is connected directly to the end 

of the transfer learning part. Size of the LSTM layer is selected as 100. Also dropout is added after 

the LSTM layer. A hidden dense layer follows the structure. It was added as the size of 512 with 

tanh activation function and dropout layer. After all, the output layer is added to the neural network 

model. The size of output dense layer should be the same as number of classes. Because one hot 

encoding was applied during data processing to convert string classes to binary format. As 

activation function, Softmax is added to the hidden layer. Model summary can be seen at below 

figure. 

 

 

Figure 39. Summary of training model 

 

 As it is shown above, the model has 19,724,052 total parameters as the same amount of 

trainable parameters. As optimizer Stochastic Gradient Descent (SGD) of Keras is selected with 

learning rate as 0.0001, momentum as 0.9 and nesterov as True boolean. Mean squared error 

(MSE) function is chosen as loss function. 

The batch size and number of epochs are chosen as 10. After each epoch, model is saved 

to the training directory. Finally, model with the best score is chosen as the main model. 



36 
 

 

Figure 40. Accuracy graph for both train and validation set 

 

Figure 41. Loss graph for both train and validation set 

 

After 10 epoch model accuracy is around 99% for both train and validation set. The loss 

is significantly decreased to 0.01 for both train and validation set. 
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5.3.3 Feature Extraction Model 

 Pre-trained models can be retrained from several part of the model. It means it is possible 

to choose a layer and start training after that layer. This method is called Feature Extraction. The 

author decided to cut the last block- block4_pool of VGG16 and add new layers to train custom 

model. The reason behind of this idea is detecting actions, instead of images. When the features is 

extracted from earlier layers, the model has lower abstraction and it is ready to apply for action 

recognition. 

        

 

 

Figure 42. VGG16 structure after Feature Extraction 

 

 After feature extraction, total number of parameters reduced to 7,635,264 as the same 

amount of trainable parameters. The same layers as transfer learning model are added to the new 

model structure: 100 LSTM layer, Dropout, Dense with tanh activation function and Dense with 

softmax activation function. MSE and SGD are applied to training model. 
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Figure 43. Summary of the model 

 

Above figure shows the structure of the training model. The model has total parameters 

and trainable parameters as 29,847,828. The batch size and number of epochs are chosen as 10. 

As transfer learning model, all training epochs are saved and chosen the most accurate model. 

 

 

Figure 44. Accuracy graph for both train and validation set 
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Figure 45. Loss graph for both train and validation set 

 

 At the end of the training, the model accuracy reached around 97% for both training and 

validation data. Training loss decreased to 0.03 and validation loss is around 0.005. 

 

5.4 Model Output 

The output of the neural network model is ten times of each classes. Because one sequence 

contains ten images, which means one action. Inside of these ten classes, each result contains four 

results, because of the last layer of the model. The last layer gives one-hot encoding output and 

dataset has four different actions. 

 

 

Figure 46. Model output for one action 
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 Figure 46 shows prediction result of sitting action. This result is a probabilistic result of all 

classes of the model. The sum of the each rows equals 1. It can be seen that third column with 

green box, the values are smoothly higher than other columns, it means the model predicts this 

image sequence as third action. The columns represent fighting, running, sitting and shooting in 

order. 

The author took the maximum values of each rows and keep them as classes. To convert 

these probabilistic values to classes, argmax formula of Numpy module is applied to the array 

result. After argmax, the array looks like array([2, 2, 2, 2, 2, 2, 2, 2, 2, 2]). Finally, mode function 

of statistics library of Python is applied and the final result is 2. Mode function counts all array 

and takes the highest amount of the list.  
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6. EXPERIMENTS WITH OTHER DATASETS 
 

 In this section, the experiments related to testing dataset will be seen. Training is done with 

training and validation dataset. On the other hand there is also another dataset which is independent 

to training data. Test data is always necessary to predict independent results to measure the real 

model performance. 

 

6.1 Test Dataset 

 As it was mentioned earlier chapters, the author only trained the model with recorded 

videos and artificial videos. Test dataset was collected from YouTube videos and UCF101 dataset 

[13]. Test data contains 8630 images with four categories. These images are collected RGB and 

Grayscale format. RGB images will be used with transfer learning models, grayscale images with 

Empty CNN model. 

 

 

Figure 47. Count plot of test data 

 

 As figure 47 shows that, test dataset contains 2430 fighting, 1020 shooting, 2370 running 

and 2810 sitting action images. 

 

 

 

 

 



42 
 

6.2 Empty CNN Model Experiments 

 In this part, the test data will be predicted by Empty CNN model. GrayScale images will 

we used to show the performance of the model with independent test data. 

Test accuracy of the model is 0.607 within 850 actions. 

 

 

Figure 48. Confusion matrix of test data 

 

 Above figure shows test result per each classes with confusion matrix. It can be seen that 

shooting class is classified with lowest accuracy, it will be discussed after next figure. 
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Figure 49. Classification report of test data 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                    𝑅𝑒𝑐𝑎𝑙𝑙 =  

𝑇𝑃

𝑇𝑃+𝐹𝑁
                           𝐹1 =

2∗𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
 

 

Above chart gives information about classification performance of each classes of the 

model. It is also known as classification report with precision, recall and f1-score. Precision is a 

measure to determine the cost of false positives. Recall is a measure to determine the cost of false 

negative results. F1-score measures the balance between precision and recall.  

84 actions of the fighting class misclassified as sitting class. For this reason recall metric 

is lower than precision and f1-score. Also there are some false negatives predictions as shooting 

and running classes. 

Shooting is the lowest accurate classes in the model and all metrics are lower than average 

of the rest of the classes. 57 and 28 actions are classified as fighting and sitting actions. Precision 

is the lowest metric, because 83 actions of the sitting class were classified as shooting class. Also 

it should be considered that, shooting class has lower example in testing data. 

Running has the highest precision, because there are only 21 actions, which were 

misclassified as running class. Because of the 48 false negative actions, the recall is lower than 

expected. Also it has the highest f1-score in the testing data, thanks to high precision value. 

70% of the sitting actions are classified correct. Only false negative actions classified as 

shooting class. There are many actions, which were misclassified as sitting class. This explain the 

lower precision value. 

It can be seen from the results, mostly classes are predicted correct, except shooting class. 

Shooting action is the lowest accurate class. On the other hand, running is the most accurate class 

in the model performance. 
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6.3 Transfer Learning Model Experiments 

 In this section test data will be applied to transfer learning model. The model will predict 

the results and then the performance will be measured and shown. RGB color images will be used 

for transfer learning model. 

Test data accuracy of the model is 0.65077 within 839 actions. 

 

 

Figure 50. Confusion matrix of test data 

 

Figure 50 shows confusion matrix results. It can be seen that run and sit actions have high 

accuracies. On the other hand fight and shoot action have lower accuracies. Most of the shooting 

action misclassified as running action. 
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Figure 51. Classification report of test data 

 Fighting and shooting classes have the lowest recall. Because they have high false negative 

predictions. 130 of the fighting actions were misclassified as running action, this misclassification 

affected negatively to the precision metric. Also while fighting, the person moves and sometimes 

doing running actions, this can be the reason that why fighting was misclassified as running class. 

Only 39 of 229 actions were classified correctly. 

Shooting class has the lowest precision. It can be seen from figure 50 that some of the fight 

classes are classified as shooting class. 79 of 102 shooting actions were misclassified as other 

classes. 

Running class has the highest recall, it is obvious that it only has 4 false negative 

predictions. However, on the other side 130 fighting, 35 shooting and 18 sitting actions were 

misclassified as running. This is the reason of the having low precision of the running class. 

The best performance of the model belongs to the sitting class. There are only 15 false 

positives, so this explains the high precision metric of sitting class. 
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6.4 Feature Extractor Model Experiments 

 In this section test data will be applied to feature extractor model, which was cut from 

block4_pool layer. The model will predict the results and then the performance will be measured 

and shown. RGB color images will be used for feature extractor model. 

Test data accuracy of the model is 0.6419 within 835 actions. 

 

 

Figure 52. Confusion matrix of test data 

 

 Figure 52 shows results of feature extractor model. It can be seen that there are more false 

detection of siting class. Also shooting class is barely classified when it is compared with other 

classes. True classification of the running and siting classes are still high. 
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Figure 53. Classification report of test data 

 

 Classification report shows clearly that shooting class has the lowest performance in 

compare of other classes. Only 9 actions were classified correct, the algorithm misclassified 51 

classes as fighting class.  

Model misclassified fight action as running and siting actions. This explains why fighting 

class has a low recall metric, there are 179 false negative in the classification. Only 29 actions 

were classified correct, meantime 21 actions were classified as shooting class. 

Running action mostly classified correct, when it is compared with shooting and fighting 

classes. However there are many false positives because of the fighting action, this explains why 

running has lower precision metric and recall and f1-score. There are only 5 false negative values, 

which helps to improve recall of the action. 

In the sitting action, the similar results as running action can be seen. 273 of 277 actions 

were classified correctly and 4 were misclassified. Because of the false positive of fighting and 

shooting actions, sitting has a low precision. There are 115 false positive classes in the results. 

Also f1-score is calculated as 0.82. 
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6.5 Experiment with TensorFlow Object Detection API 

Object detection is a computer vision algorithm, which works to identify and locate the 

certain objects in video and images. It is one of the most important and challenging application in 

deep learning universe. There is two types of object detection; the first one is detection with 

bounding boxes, which shows the objects with boxes around them. Second one is marking pixel 

of the objects in the image, it is also known as segmentation. For this project TensorFlow Object 

Detection API is used by the author. TensorFlow Object Detection API was developed by 

TensorFlow team [20]. 

 

 

Figure 54. Object detection with bounding boxes and instance segmentation 

 

 In this project, object detection was applied to detect only human body in the the video and 

images. Other background noises are removed and only human body is kept in the video. Single 

Shot Detector (SSD) MobileNet pre-trained model [21] was used as the base model. SSD 

MobileNet is suitable for live videos and it has 74.3% mAP, which is quite enough for human 

detection. 

 Normally object detection detects 80 classes as person, car, table, animals etc… Only 

human class is kept inside of the label map, then the model does not detect other objects. When 

object detection detects a person in the video, the coordinates of the bounding boxes are kept and 

saved as an image format to the prediction data list. After detecting 10 images, they are resized as 

the same size of the Keras model and converted to GrayScale or kept as RGB format. Finally action 

recognition model predicts these sequences and gives the output as the actions. 
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Figure 55. Action Recognition model with object detection 

 

 Overview of the application can be seen above figure. On the left screen there is a live 

YouTube video. Object detection detects the person with white t-shirt from video. On the right 

screen the overview of the detection can be seen as inside of the box. This image is the input of 

the action recognition model. The output of the model can be seen as fight action on the right 

screen. This application was developed by the author to show how action recognition model works 

with live videos [22]. Every steps as described before in the data processing section are applied 

automatically with the combination of object detection. Below figure explains how to combine 

both models in real time detection. Object detection finds the person in the video, then this person 

is cropped and kept in the memory until collection of 10 frames. Finally this sequence goes into 

the action recognition model to predict the action. 

 

Figure 56. The connection of object detection with action recognition model 
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7. CONCLUSIONS AND FUTURE WORKS 
 

 The goal of this project was detecting human actions. We used video and images as an 

input data of our project. To detect human actions, we used deep learning approach and we tried 

to explain all details that we used during the all project. We applied Convolutional Neural Network 

of deep learning models to our images and we found some interesting results after all. These results 

are based on the dataset that was trained by our models. We recorded ourselves and did the four 

actions in front of the camera. We investigated all the steps and prepared our model for training 

section.  

During training we used three different models in order to show the results and compare 

them to get a better idea for future works. Firstly we built our Empty CNN model. This model 

includes CNN layers, TimeDistributed to create image sequences, LSTM model to keep sequence 

information in the memory and Dense layer for classification. Our model reached 99% of training 

and 95% of validation accuracy. With test data we got 60% accuracy. Second model was trained 

with transfer learning approach. We used VGG16 pre-trained model to train our dataset. We 

achieved 99% of training and validation accuracy, also we got 65% of testing accuracy. Last model 

was trained with feature extractor VGG16 pre-trained model. We cut the model from block4_pool 

layer and trained the new model. We got similar results as transfer learning: 97% of training, 96% 

of validation and 64% of test accuracy. The structure of transfer learning and feature extractor 

models were built similar as Empty CNN model. 

 

 Accuracies 

Model Train Validation Test 

Empty CNN Model 98 95 60 

Transfer Learning 99 99 65 

Feature Extractor 97 96 64 

 

Figure 57. Model performance results 

 

The performance results can be seen from figure 57. Our model achieved almost 99% of 

accuracy quickly. This is because of the similarity inside our dataset. As it was mentioned before 

that, we recorded ourselves and collected data from videogames. These videos are similar each 

other and there is no a big variance between the images. So when the loss is calculated, the model 

predicts easily to the validation data, because the images are already similar to testing data. This 

explains why our model learnt quickly. 
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The performance differences between test and training can be seen from the table. As we 

mentioned above paragraph, the reason is because of our training dataset. This dataset has similar 

actions and it does not contain a big variance. Mostly there is one person and they do the actions 

during the video. In real life, the video frames are not clear as training data. This explains why 

there is a difference between train-validation and testing data. The model mostly learnt training 

dataset and if there is a different data, it cannot predict as well as training data. 

After comparing the results and checking all metrics, we can say that Empty CNN model 

with gray scale images gives better precision and recall performance. All classes were predicted 

with average of 60% of accuracy, except shooting class. On the other hand, Transfer Learning 

models give the best performance with 64-65% of accuracies. However, Transfer Learning models 

cannot predict fighting class as good as Empty CNN model. Also Transfer Learning models trained 

much faster than Empty CNN model, this is also another positive side of using Transfer Learning. 

Cutting transfer learning model from block4_pool helped to increase the performance of 

sitting action class. However, we cannot say the same as the other classes. It is good to experience 

to train with block4_pool feature extractor model. 

 

 For this project we aimed to show that our model works accurate with similar dataset, such 

as similar angle, having all part of the human body inside of the video and similar video quality. 

For future works we need to improve our training dataset. We will add variation to the dataset with 

different videos, different angles, different person, different video quality, more data augmentation 

and more images. This can help to improve the performance of the model. 
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