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Abstract 
This paper outlines the conditions under which 

the Translinear Principle can be fully exploited for 
MOS transistors operating in subthreshold. Due to 
the exponential nature of subthreshold MOS 
transistors the Translinear principle applies 
immediately as long as the Source-to-Bulk voltages 
are made equal to zero (or constant). This paper 
addresses the conditions under which subthreshold 
MOS transistors still satisfy a Translinear principle 
but without imposing this constraint. It is found that 
the Translinear principle results in a more general 
formulation than the original for BJTs since now 
multiple Translinear loops can be involved. The 
constraint of even number of transistors is no longer 
necessary. 

I. Introduction 
The translinear principle, introduced by Barry 

Gilbert in 1975 [I],  is one of the most important circuit 
theory contributions in the electronics era. In its original 
formulation, the translinear principle provides a simple 
and efficient way to analyze and synthesize nonlinear 
circuits based on bipolar junction transistors (BJTs). 
Due to their exponential characteristics, the translinear 
principle can be extended to MOS transistors operating 
in weak inversion [2], [3] without and with floating-gate 
devices [4]. For MOS transistors operating above 
threshold there has also been found a similar way to 
analyze and synthesize nonlinear circuits [5].  

For bipolar transistors one practical problem that 
may require some attention when applying the 
translinear principle is the nonzero base current [6]. In 
contrast, the translinear principle holds for MOS 
subthreshold transistors in an exact manner if source 
and bulk are short-circuited. However, it has been found 
that the principle holds as well in an exact manner under 
different circumstances [2]-[3], although a general 
subthreshold MOS translinear theorem has not been 
devised until now. In this paper we provide this general 
theorem and outline the conditions under which 
subthreshold MOS transistors, viewed as four terminal 
devices, satisfy a general translinear principle. 

The operation of a subthreshold MOS can be 
described by the following equation [2 ] ,  [7]-[9] 

where Vth = KTIq is thermal voltage, I ,  is a positive 
constant current, S is the transistor size factor 
( S  = WIL , where W is transistor width and L is its 
length), and K is a technology dependent positive 
parameter. This equation holds true as long as 

where @ F B  is the device’s flat band voltage [lo]. 
Voltage VBs can take either positive or negative values 
as long as the parallel PN diode junction is biased below 
its forward conduction threshold voltage. Parameter K 
is known to have a slight dependency on voltage VBS 
[2]. However, in this paper we will assume K to be 
constant, which is a reasonable assumption if care is 
taken to make the VBs voltages similar for all 
transistors. 

For operation in saturation eq. (1) can be simplified 
to (if VDs >> V t h )  

(3) 

and be rewritten as 

where I (a “normalized current”) is transistor current 
normalized with respect to transistor size factor 
S = WIL,  and i,, i, are dimensionless numbers 
called pseudo-currents and equal to 

(5) 
vGS‘vIh . ‘BSI ‘1 h i, = e iB = e 

Let us use the symbol in Fig. 1 to represent a weak- 
inversion MOS in saturation. Let us call the path that 
goes from the gate terminal G to the source terminal S 
the G - brunch (or Gate-brunch), and the path that 
goes from the bulk terminal B to terminal S the 

B - brunch (or Bulk-brunch). We are using a diode- 
like symbol to represent the exponential relationship 
between the voltage of the branch and the current 
flowing out of the device and a capacitive-like 
termination to each diode symbol to represent the 
capacitive coupling nature of the Gate and Bulk 
terminals. If Vss = 0 (or constant) there is an exact 
exponential relationship between VGs and ZDs (see 
eq. (3)) and the original BJT translinear formulation can 
be directly and exactly applied. 

11. Generalized Translinear Theorem for 
Subthreshold MOS Transistors 

In this section we will consider the conditions under 
which translinear principles can be applied to circuits 

PB 

S 
Fig. 1: Translinear Symbol Representation for 
Subthreshold MOS Tkansistor in Saturation 
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Fig. 2: Example of Coupled G-loops using 
translinear symbol representation 

Fig. 3: Illustration of the G-order concept. Devices ‘1-2-3- 
6’ form a G-loop which is coupled to G-loop formed by 
devices ‘2-4-5’, because devices ‘1-2-3-4’ form a B-loop. 
Devices ‘1-2-3-4-5-6’ form a Closed Translinear Set, and 

so do devices 6 and 7. Device 2 has a G-order of nc2 = 2 
because its G-branch belongs to two G-loops of the same 
Closed Translinear Set. All other devices have G-order 

one. 

with subthreshold MOS transistors but without 
imposing the constraint of making Vss = 0 .  We will 
introduce first some preliminary theorems and 
definitions, and then state and proof the generalized 
translinear theorem for subthreshold MOS devices. 

The first concepts to be introduced are G-loop and 
B-loop. A G-loop (or Gate-loop) is a closed loop of G- 
branches, and a B-loop (or Bulk-loop) is a closed loop of 
B-branches. For these loops we can state translinear 
theorems for their pseudo-currents, whose proof is 
identical as for the original BJT Translinear Theorem. 
Theorem: In a G-loop containing an arbitrary 
number of G-branches, the product of pseudo- 
currents of branches cpnnected in the 
Clock-Wis~G(CW) direction is equal to the 
corresponding product for branches connected 
in the Counter-Clock-Wise (CCW) direction. 

Note that since pseudo-currents are dimensionless 
entities we can have an arbitrary number of branches 
oriented CW and another arbitrary number of branches 
oriented CCW (as opposed to the case of eq. (7)). A 
completely equivalent theorem holds directly for B- 

Up to now things are similar to classical translinear 
loops, except that an arbitrary number of branches are 
allowed. However, the presence of two exponential 
branch voltages in eq. (3) is what makes subthreshold 
MOS translinear loops more general and complicated 
than the classical ones. A first consequence of this fact is 
the following concept of coupled loops: 
Definition: Two G-loops are said to be 
coupled if at least one MOS device of the 
first G-loop and at least one other different 
device of the second G-loop share their 
respective B-branches in a common B-loop. 

loops. 

This is illustrated in Fig. 3. Devices ‘1-3-5’ form a G- 
loop and devices ‘2-4-6’ form another G-loop. 
However, devices ‘1-2-3-4’ form a B-loop, thus making 
the previous two G-loops to be coupled through the B- 
branches of devices 1 , 2 , 3  and 4. 

An equivalent definition applies for coupled B- 
loops. Note that two loops may have a common branch 
without being necessarily coupled loops. 

In the example of Fig. 3, we can write for the two 
G-loops 

( ‘SS4 + ‘LIS6 - ‘BSZ) 

= Ioe 

where all pseudo-currents i, have cancelled out by 
applying the above Theorem. However, due to B-loop 
‘1-2-3-4’, 

‘BSI  + ‘BS4 = ‘LIS2 + ‘BS3 (7) 

which introduces a coupling between the two equations 
in ( I l ) ,  and makes G-loops ‘1-3-5’ and ‘2-4-6’ to be 
coupled loops. 

When devices form multiple touching loops it is not 
clear which ones to choose or how many to choose. For 
example, in Fig. 4 one can choose G-loops ‘1-2-3-6’, ‘6- 
7’, and ‘2-4-5’. But why not consider ‘1-3-4-56’, ‘6-7’, 
and ‘2-4-5’, or ‘1-3-4-5-7’ and ‘1-2-3-6’. One can try all 
possible options as long as one chooses a set of Non- 
Redundant (NR) loops: 
Definition: A set of loops is said to be Non- 
Redundant (NR) if the sum of branch voltages 
of any loop cannot be expressed as a linear 
combination of the sum of branch voltages of 
other loops in the set. 

For example, in Fig. 4, for G-loops ‘1-2-3-6’, ‘2-4- 
5’, and ‘1-3-4-5-6’ their respective sum of branch 
voltages is, 

‘GS6 + ‘GS, = ‘CS2 + ‘GS3 

“GS2 + VGS4 = VGSS 

VGS6 + V C S l +  VGS4 = VGS3 + VGSS 

(8) 

Any of these three equations can be expressed as a 
linear combination of the other two. Thus the three G- 
loops do not form a Non-Redundant set of G-loops. 
However, any two of these three G-loops do form a 
Non-Redundant set of G-loops. 

The fact that subthreshold MOS transistors can 
form coupled loops yields naturally to the following 
concept of Closed Translinear Set, 
Definition: Given a set of MOS devices, and 
once a Non-Redundant set of loops has been 
chosen, a Closed Translinear Set (CTS) is a 
set of devices such that all loops they form 
are only coupled among them, but not t.o loops 

11-303 



-I A + r L  B H C L  
8 1V3TH BFfl 8T&JfT- Fig. 4 Example of Closed 3’5 Translinear Sets. MOS 

Devices 7 and 8 form a Closed Translinear Set, and 
so do MOS Devices 1-7. 

where branches of other devices (not 
belonging to the CTS) are present. 

This is illustrated in Fig. 5. Let us select the NR set of 
G-loops ‘1-2-3-7’, ‘4-5-6’, and ‘7-8’, and the NR set of 
B-loops ‘1-2-3-4-56’, ‘7’, and ‘8’. G-loops ‘1-2-3-7’ 
and ‘4-5-6’ are coupled because there is are B-branches 
of devices of both G-loops that are shared in the 
common B-loop ‘1-2-3-4-5-6’. The two G-loops ‘1-2-3- 
7’ and ‘4-5-6’, and the two B-loops ‘1-2-3-4-5-6’ and 
‘7’ are not coupled to other loops (either G-loop ‘7-8’ 
nor B-loop ‘8’), thus (for the chosen NR set of loops) 
devices ‘1-2-3-4-5-6-7’ form a Closed Translinear Set. 
On the other hand, G-loop ‘7-8’ is not coupled to any 
other loop, nor are B-loops ‘7’ and ‘8’. Therefore, 
devices ‘7-8’ form another Closed Translinear Set. 

When working with multiple G-loops and B-loops, 
with some of them being coupled, it is not very 
convenient to classify each branch as being CW or 
CCW oriented, as will become apparent later. Let us 
instead classify all branches into two orientation groups, 
the a-wise oriented branches and the p-wise oriented 
branches. Two branches are classified into the same 
group (either the a-wise or the p-wise) if they appear in 
the same loop with the same orientation. On the 
contrary, two branches are classified each into a 
different group (one into the a-wise, the other into the p- 
wise) if they appear in the same loop with opposite 
orientation. Note that now a CW branch in one loop and 
a CCW branch in another loop can be classified into the 
same a-wise or p-wise group. If a branch is short- 
circuited, it forms a one branch loop and can be 
classified as either a-wise or p-wise. 

Another concept that is useful for stating the 
generalized translinear subthreshold MOS theorem is 
that of G-order and B-order of a MOS device in a 
Closed Translinear Set: 
Definition 4: Once a NR set of loops has been 
chosen, a subthreshold MOS transistor which 
is part of a Closed Translinear Set is said 
to have a G-order of value n c ,  if its G- 
branch belongs to nc G-loops of the given 
Closed Translinear Set. 

An equivalent definition of B-order can be stated for B- 
loops. The concept is illustrated in Fig. 4. Let us choose 
the NR set of G-loops ‘1-2-3-6’, ‘2-4-5’, and ‘6-7’ and 
of B-loops ‘1-2-3-4’, ‘5’, ‘6’, and ‘7’. G-loops ‘1-2-3-6’ 
and ‘2-4-5’ are coupled because devices ‘1-2-3-4’ form 
a B-loop. There are no other couplings among the 
chosen loops. Consequently, devices ‘ 1-2-3-4-5-6’ form 
a Closed Translinear Set which consists of G-loops ‘1- 
2-3-6’ and ‘2-4-5’ and B-loops ‘1-2-3-4’, ‘5’, and ‘6’. 
Devices 6 and 7 form one G-loop (‘6-7’) and two B- 
loops (‘6’ and ‘7’) which are not coupled to any other 
loop. Therefore devices 6 and 7 form another Closed 
Translinear Set. MOS device 2 has G-order nG2 = 2 

because its G-branch appears in two G-loops of the 
same Closed Translinear Set. MOS device 6 does not 
have G-order 2 because, although its G-branch belongs 
to two different G-loops, these two loops do not belong 
to the same Closed Translinear Set. All MOS devices 
have B-order one because their B-branches appear only 
in one B-loop. 

When a G-branch has G-order greater than one it 
belongs to more than one G-loop of the same Closed 
Translinear Set. In such cases it is possible that the 
branch be classified as a-wise in some G-loops and as p- 
wise in other G-loops. Under these circumstances it is 
convenient to divide its G-order into two parts 

(9) nc = na.,+n B, G 

where na (let us call it G-a-order) denotes the times 
this G-brhnch is classified as a-wise in a CTS, and 
n (let us call it G-p-order) denotes the times it is 
c l h i e d  as p-wise in CTS. Similarly, for B-branches, 
the B-order can be separated into the B-a-order ( na, ) 
and the B-p-order ( nP, B ) .  

Using the concepts and preliminary theorems 
introduced until now, it is possible to state and proof the 
generalized translinear theorem for subthreshold MOS 
transistors’: 
Theorem: Given a set of subthreshold MOS 
devices and choosing for them a set of Non- 
Redundant G-loops and B-loops, for each 
Closed Translinear Set the following can be 
stated: 
If it is possible to find an a- and p-wise 
classification of their G-loops and B-loops 
such that 
a)the sum of G-a-orders equals the sum of G- 
P-orders 

Zna,,, = Cnp,cl (10) 
J E { a-wrse) Is { p - w i s e }  

bland, every time a device’s G-branch is 
classified as a-wise in a G-loop its B-branch 
can be classified as a-wise in some B-loop, 
and every time a device‘s G-branch is 
classified as P-wise in a G-loop its B-branch 
can be classified as p-wise in some B-loop, 
then the product of normalized currents 
raised to the power of their G-a-order of 
all transistors in the CTS whose G-branches 
have been classified a-wise equals the 
product of normalized currents raised to the 
power of their G-P-order of all transistors 
whose G-branches have been classified P-wise. 

Proof: 

For each G-loop in the Closed Translinear Set the 
following holds: 

11 iG1 
l e  { p - w i s e )  

1 .  The theorem will be stated using G-brunches as primary branches 
and making B-branches to depend on them. However, because of 
the symmetry between G-brunches and B-brunches (due to the 
symmetry between V,, and V,, voltages in eq. (3)), the theorem 
can be stated as well by interchanging G-brunches and B- 
brunches. 
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Since this is true for every single G-loop we can 
multiply these equations for the chosen set of Non- 
Redundant G-loops and their product will still be equal 
to unity, 

Furthermore, we can raise it to the power of K ,  and it 
still be equal to unity, 

Note that, since the devices form a CTS, all branches 
will be present and no branch of another CTS appears. 
Consequently, eq. (18) includes all G-branches of the 
CTS and only the branches of this CTS. Equivalently, 
the same can be stated for all B-loops, 

but raising now to the power of 1 - IC, for convenience. 
Note that, due to statement b) in Theorem 3, every time 
a device has its pseudo-current iGj in the numerator of 
eq. (1 8), its pseudo-current i B j  will also appear in the 
numerator of eq. (19), and both will appear na, cj 
times. And the same holds for pseudo-currents in the 
denominators of eqs. (18) and (19). Therefore, let us 
define na, and n such that 

1 

Also, since the devices form a Closed Translinear Set, 
eq. (1 8) includes all devices of the CTS, and so does eq. 
(1 9). Consequently, we can multiply eqs. (1 8) and (1 9) 
and index the iG and i pseudo-currents of the same 
device with the same su&cript and use this subscript to 
index the MOS device, 

On the other hand, due to statement a) in the 
theorem the following is satisfied 

By multiplying eqs. (21) and (22), and using eq. (4) we 
obtain 

which concludes the proof of the Generalized 
Subthreshold MOS Translinear Theorem. 0 
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