Implications of ${ }^{151} \mathrm{Sm}(\mathrm{n}, \mathrm{y})$ Cross Section at n_TOF

Cite as: AIP Conference Proceedings 831, 502 (2006); https://
doi.org/10.1063/1.2200996

Published Online: 03 May 2006

Abstract

S. Marrone, U. Abbondanno, G. Aerts, H. Álvarez, F. Alvarez-Velarde, S. Andriamonje, J. Andrzejewski, P. Assimakopoulos, L. Audouin, G. Badurek, P. Baumann, F. Bečvář, E. Berthoumieux, F. Calviño, D. Cano-Ott, R. Capote, A. Carrillo de Albornoz, P. Cennini, V. Chepell, E. Chiaveri, N. Colonna, G. Cortes, A. Couture, J. Cox, S. David, R. Dolfini, C. Domingo-Pardo, M. Dahlfors, W. Dridi, I. Duran, C. Eleftheriadis, M. Embid-Segura, L. Ferrant, A. Ferrari, R. Ferreira-Marques, L. Fitzpatrick, H. FraisKoelb, K. Fujii, W. Furman, C. Guerrero, I. Goncalves, R. Gallino, E. Gonzalez-Romero, A. Goverdovski, F. Gramegna, E. Griesmayer, F. Gunsing, B. Haas, R. Haight, M. Heil, A. Herrera-Martinez, M. Igashira, S. Isaev, E. Jericha, Y. Kadi, F. Käppeler, D. Karamanis, D. Karadimos, M. Kerveno, V. Ketlerov, P. Koehler, V. Konovalov, E. Kossionides, M. Krtička, C. Lamboudis, H. Leeb, A. Lindote, I. Lopes, M. Lozano, S. Lukic, J. Marganiec, L. Marques, P. Mastinu, A. Mengoni, P. M. Milazzo, C. Moreau, M. Mosconi, F. Neves, H. Oberhummer, S. O'Brien, M. Oshima, J. Pancin, C. Papachristodoulou, C. T. Papadopoulos, C. Paradela, N. Patronis, A. Pavlik, P. Pavlopoulos, L. Perrot, R. Plag, A. Plompen, A. Plukis, A. Poch, C. Pretel, J. Quesada, T. Rauscher, R. Reifarth, M. Rosetti, C. Rubbia, G. Rudolf, P. Rullhusen, J. Salgado, L. Sarchiapone, I. Savvidis, C. Stephan, G. Tagliente, J. L. Tain, L. Tassan-Got, L. Tavora, R. Terlizzi, I. Dillmann, G. Vannini, P. Vaz, A. Ventura, D. Villamarin, M. C. Vincente, V. Vlachoudis, R. Vlastou, F. Voss, S. Walter, H. Wendler, M. Wiescher, and K. Wisshak

View Online

ARTICLES YOU MAY BE INTERESTED IN

Measurement of ${ }^{139} \mathrm{La}(\mathrm{n}, \gamma)$ Cross Section at $\mathrm{n} _$TOF AIP Conference Proceedings 831, 551 (2006); https://
doi.org/10.1063/1.2201012
Measurements at n _TOF of the Neutron Capture Cross Section of Minor Actinides Relevant to the Nuclear Waste Transmutation AIP Conference Proceedings 769, 1442 (2005); https:// doi.org/10.1063/1.1945275

Implications of ${ }^{151} \operatorname{Sm}(n, \gamma)$ Cross Section at n_TOF

S. Marrone ${ }^{13 \mathrm{a}}$, U. Abbondanno ${ }^{14}$, G. Aerts ${ }^{7}$, H. Álvarez ${ }^{24}$, F. Alvarez- Velarde ${ }^{20}$, S. Andriamonje ${ }^{7}$, J. Andrzejewski ${ }^{33}$, P. Assimakopoulos ${ }^{9}$, L. Audouin ${ }^{5}$, G. Badurek ${ }^{1}$, P. Baumann ${ }^{6}$, F. Bečvár ${ }^{31}$, E. Berthoumieux ${ }^{7}$, F. Calviño ${ }^{25}$, D. Cano-Ott ${ }^{20}$, R. Capote ${ }^{23}$, A. Carrillo de Albornoz ${ }^{30}$, P. Cennini ${ }^{4}$, V. Chepel1 ${ }^{7}$, E. Chiaveri ${ }^{4}$, N. Colonna ${ }^{13}$, G. Cortes ${ }^{25}$, A. Couture ${ }^{29}$, J. Cox ${ }^{29}$, S. David ${ }^{5}$, R. Dolfini ${ }^{15}$, C. Domingo-Pardo ${ }^{21}$, M. Dahlfors ${ }^{4}$, W. Dridi ${ }^{7}$, I. Duran ${ }^{24}$, C. Eleftheriadis ${ }^{10}$, M. EmbidSegura ${ }^{20}$, L. Ferrant ${ }^{5}$, A. Ferrari ${ }^{4}$, R. Ferreira-Marques ${ }^{17}$, L. Fitzpatrick ${ }^{4}$, H. Frais-Koelb ${ }^{13}$, K. Fujii ${ }^{13}$, W. Furman ${ }^{18}$, C. Guerrero ${ }^{20}$, I. Goncalves ${ }^{30}$, R. Gallino ${ }^{36}$, E. Gonzalez-Romero ${ }^{20}$, A .Goverdovski ${ }^{19}$, F. Gramegna ${ }^{12}$, E. Griesmayer ${ }^{3}$, F. Gunsing ${ }^{7}$, B. Haas ${ }^{32}$, R. Haight ${ }^{27}$, M. Heil ${ }^{8}$, A. HerreraMartinez ${ }^{4}$, M. Igashira ${ }^{37}$, S. Isaev 5, E. Jericha ${ }^{1}$, Y. Kadi ${ }^{4}$, F. Käppeler ${ }^{8}$, D. Karamanis ${ }^{9}$, D. Karadimos ${ }^{9}$, M. Kerveno ${ }^{6}$, V. Ketlerov ${ }^{19}$, P. Koehler ${ }^{28}$, V. Konovalov ${ }^{18}$, E. Kossionides ${ }^{39}$, M. Krtička ${ }^{31}$, C. Lamboudis ${ }^{10}$, H. Leeb ${ }^{1}$, A. Lindote ${ }^{17}$, I. Lopes ${ }^{17}$, M. Lozano ${ }^{23}$, S. Lukic ${ }^{6}$, J. Marganiec ${ }^{33}$, L. Marques ${ }^{30}$, P. Mastinu ${ }^{12}$, A. Mengoni ${ }^{4}$, P. M. Milazzo ${ }^{14}$, C. Moreau ${ }^{14}$, M. Mosconi ${ }^{8}$, F. Neves ${ }^{17}$, H. Oberhummer ${ }^{1}$, S. O'Brien ${ }^{29}$, M. Oshima ${ }^{38}$, J. Pancin ${ }^{7}$, C. Papachristodoulou ${ }^{9}$, C. T. Papadopoulos ${ }^{40}$, C. Paradela ${ }^{24}$, N. Patronis ${ }^{9}$, A. Pavlik ${ }^{2}$, P. Pavlopoulos ${ }^{34}$, L. Perrot ${ }^{7}$, R. Plag^{8}, A. Plompen ${ }^{16}$, A. Plukis ${ }^{7}$, A. Poch ${ }^{25}$, C. Pretel ${ }^{25}$, J. Quesada ${ }^{23}$, T. Rauscher ${ }^{26}$, R. Reifarth ${ }^{27}$, M. Rosetti ${ }^{11}$, C. Rubbia ${ }^{15}$, G. Rudolf ${ }^{6}$, P. Rullhusen ${ }^{16}$, J. Salgado ${ }^{30}$, L. Sarchiapone ${ }^{4}$, I. Savvidis ${ }^{10}$, C. Stephan ${ }^{5}$, G. Tagliente ${ }^{13}$, J. L. Tain ${ }^{21}$, L. Tassan-Got ${ }^{5}$, L. Tavora ${ }^{30}$, R. Terlizzi ${ }^{13}$, I. Dillmann ${ }^{8}$, G. Vannini ${ }^{35}$, P. Vaz ${ }^{30}$, A. Ventura ${ }^{11}$, D. Villamarin ${ }^{20}$, M. C. Vincente ${ }^{20}$, V. Vlachoudis ${ }^{4}$, R. Vlastou ${ }^{40}$, F. Voss ${ }^{8}$, S. Walter ${ }^{8}$, H. Wendler ${ }^{4}, \mathrm{M}$. Wiescher ${ }^{29}$ and K. Wisshak ${ }^{8}$

[^0][^1]GmbH (FZK), Institut für Kernphysik, Germany, ${ }^{9}$ University of Ioannina, Greece, ${ }^{10}$ Aristotle University of Thessaloniki, Greece, ${ }^{11}$ ENEA, Bologna, Italy, ${ }^{12}$ Laboratori Nazionali di Legnaro, Italy,
${ }^{13}$ Dipartimento di Fisica and INFN, Bari, Italy, ${ }^{14}$ Istituto Nazionale di Fisica Nucleare, Trieste, Italy,
${ }^{15}$ Università degli Studi Pavia, Pavia, Italy, ${ }^{16}$ CEC-JRC-IRMM, Geel, Belgium, ${ }^{17}$ LIP - Coimbra \& Departamento de Fisica da Universidade de Coimbra, Portugal, ${ }^{18}$ Joint Institute for Nuclear Research, Frank Laboratory of Neutron Physics, Dubna, Russia, ${ }^{19}$ Institute of Physics and Power Engineering, Kaluga region, Obninsk, Russia, ${ }^{20}$ Centro de Investigaciones Energeticas Medioambientales y Technologicas, Madrid, Spain, ${ }^{21}$ Consejo Superior de Investigaciones Cientificas - University of Valencia, Spain, ${ }^{22}$ Universidad Politecnica de Madrid, Spain, ${ }^{23}$ Universidad de Sevilla, Spain,
${ }^{24}$ Universidade de Santiago de Compostela, Spain, ${ }^{25}$ Universitat Politecnica de Catalunya, Barcelona, Spain, ${ }^{26}$ Department of Physics and Astronomy - University of Basel, Basel, Switzerland, ${ }^{27}$ Los Alamos National Laboratory, New Mexico, USA, ${ }^{28}$ Oak Ridge National Laboratory, Physics Division, Oak Ridge, USA, ${ }^{29}$ University of Notre Dame, Notre Dame, USA, ${ }^{30}$ Instituto Tecnológico e Nuclear, Lisbon, Portugal, ${ }^{31}$ Charles University, Prague, Czech Republic, ${ }^{32}$ Centre National de la Recherche Scientifique/IN2P3 - CENBG, Bordeaux, France, ${ }^{33}$ University of Lodz, Lodz, Poland, ${ }^{34}$ Pôle Universitaire Léonard de Vinci, Paris La Défense, France, ${ }^{35}$ Dipartimento di Fisica, Università di Bologna, and Sezione INFN di Bologna, Italy, ${ }^{36}$ Dipartimento di Fisica Generale, Università di Torino INFN di Torino, I-10125 Torino, Italy, ${ }^{37}$ Tokyo Institute of Technology, Tokyo, Japan, ${ }^{38}$ Japan Atomic Energy Research Institute, Tokai-mura, Japan, ${ }^{39}$ NCSR, Athens, Greece, ${ }^{40}$ National Technical University of Athens, Greece.

Abstract

The accurate knowledge of the ${ }^{151} \operatorname{Sm}(\mathrm{n}, \gamma)$ cross section has important implications for the nuclear technologies as well as for fundamental studies. Due to its radioactivity, the only experimental data available on ${ }^{151} \mathrm{Sm}$ were derived from a transmission measurement [1]. Nowadays thanks to the innovative features of neutron time-of-flight facility (n_TOF), it was possible to measure ${ }^{151} \mathrm{Sm}(\mathrm{n}, \gamma)$ cross section in a wide energy range and with good accuracy [2]. We present, here, the main experimental results together with the implications concerning the nuclear astrophysical part.

Keywords: ${ }^{151} \mathrm{Sm}$, neutron capture, level density, neutron strength function, nucleosynthesis, s process
PACS: 25.40.Lw, 26.20.+f, 27.60.+j, 97.10.Cv

OUTLOOK

The ${ }^{151} \operatorname{Sm}(\mathrm{n}, \gamma)$ cross section is recently measured at innovative neutron time-offlight facility (n_TOF) set in operation at CERN. Due to its radioactivity, up to date, the only data available on this isotope were derived from a transmission measurement [1]. Nowadays thanks to the innovative features of n_TOF such as high neutron flux, long flight path and low background, it was possible to measure ${ }^{151} \operatorname{Sm}(\mathrm{n}, \gamma)$ cross section in a wide energy range ($0.6 \mathrm{eV}-1 \mathrm{MeV}$) and with good accuracy (6\%) [2]. Neutrons at $n _$TOF are produced by spallation of the PS proton beam onto a massive Pb target, while the γ-rays, from capture events, are detected with liquid organic scintillators (C6D6)-based detectors. A detailed description of the facility, of the experimental set-up and of the data analysis is reported in the reference [2].

In the resolved resonance region $(0.6 \mathrm{eV}-1 \mathrm{keV})$, the capture cross section is represented in terms of R-matrix resonance parameters. The systematical analysis of the resonances has indicated that the most part of the detected levels are s-wave. Using the resonance parameter values, we have calculated, with better accuracy than in the
past [1] see Figure 1, the main nuclear quantities such as: average spacing $\langle\mathrm{D}\rangle_{1=0}=$ $1.48 \pm 0.04 \mathrm{eV}$, the neutron strength function $\mathrm{S}_{0}=(3.87 \pm 0.2) \times 10-4$, and the resonance integral $\mathrm{RI}=3,575 \pm 120 \mathrm{~b}$. These results assume particular relevance for the nuclear technologies. In fact, 151 Sm is produced abundantly during nuclear reactor operation and although its half-life ($\sim 93 \mathrm{yr}$) is relatively short, it is often included in advanced incineration schemes. Moreover, due to its position in between the neutron magic ${ }^{144} \mathrm{Sm}$ and the deformed rotators 154 Sm isotopes, the study of the ${ }^{152} \mathrm{Sm}$ provides important information about the nuclear structures in this mass region.

In the unresolved resonance region ($1 \mathrm{keV}-1 \mathrm{MeV}$), the capture yield is used to calculate the capture cross section, see Figure 1, and to derive the Maxwellianaveraged cross section (MACS) which has been found much higher than the theoretical predictions. This result has a great relevance in nuclear astrophysics. In fact, the relative probability of two processes (beta decay and neutron capture) of the ${ }^{151} \mathrm{Sm}$ branching-isotope, strongly varies the s abundances of the isotopes in the Sm -Eu-Gd region and particularly of the ${ }^{152} \mathrm{Gd}$ [2].

FIGURE 1. In left panel, the cumulative number of levels is represented together with previous experimental data (open circles [1]) and an interpolation of the new data (dashed line). Right panel illustrates the experimental ${ }^{151} \mathrm{Sm}(\mathrm{n}, \gamma)$ cross section compared with JEF-2.2 evaluated data (dashed line).

ACKNOWLEDGEMENTS

This work was supported by the EC under the contract FIKW-CT-2000-00107.

REFERENCES

1. G.J. Kirouac and H.M. Eiland, Physical Review C, 11, 895 (1975).
2. U. Abbondanno et al., Physical Review Letters, 63, 161103 (2004).

[^0]: ${ }^{1}$ Atominstitut der Österreichischen Universitäten,Technische Universität Wien, Austria, ${ }^{2}$ Institut für Isotopenforschung und Kernphysik, Universität Wien, Austria, ${ }^{3}$ Fachhochschule Wiener Neustadt, W iener Neustadt, Austria, ${ }^{4}$ CERN, Geneva, Switzerland, ${ }^{5}$ Centre National de la R echerche Scientifique/IN2P3-IPN, Orsay, France, ${ }^{6}$ Centre National de la Recherche Scientifique/IN2P3-IReS, Strasbourg, France, ${ }^{7}$ CEA/Saclay - DSM, Gif-sur-Yvette, France, ${ }^{8}$ Forschungszentrum Karlsruhe

[^1]: ${ }^{\text {a }}$ Corresponding author: e-mail: stefano.marrone@ba.infn.it

