
Open Source Robotics-Research Article

Unmanned aerial vehicle abstraction
layer: An abstraction layer to operate
unmanned aerial vehicles

Fran Real , Arturo Torres-González, Pablo Ramón-Soria ,
Jesús Capitán and Anı́bal Ollero

Abstract
This article presents a software layer to abstract users of unmanned aerial vehicles from the specific hardware of the
platform and the autopilot interfaces. The main objective of our unmanned aerial vehicle abstraction layer (UAL) is to simplify
the development and testing of higher-level algorithms in aerial robotics by trying to standardize and simplify the interfaces
with the unmanned aerial vehicles. Unmanned aerial vehicle abstraction layer supports operation with PX4 and DJI
autopilots (among others), which are current leading manufacturers. Besides, unmanned aerial vehicle abstraction layer
can work seamlessly with simulated or real platforms and it provides calls to issue standard commands such as taking off,
landing or pose, and velocity controls. Even though unmanned aerial vehicle abstraction layer is under continuous
development, a stable version is available for public use. We showcase the use of unmanned aerial vehicle abstraction layer
with a set of applications coming from several European research projects, where different academic and industrial entities
have adopted unmanned aerial vehicle abstraction layer as a common development framework.

Keywords
UAVs, open-source middleware, autonomous navigation

Date received: 31 March 2019; accepted: 11 March 2020

Topic: Robotics Software Design and Engineering
Topic Editor: David Portugal
Associate Editor: David Portugal

Introduction

In the last few years, there has been an outstanding increase

in the number of applications for unmanned aerial vehicles

(UAVs).1 Their current levels of autonomy and cognition

make them suitable to perform many different tasks, which

are usually implemented by high-level algorithms. UAV

technology is advancing fast, and hence, there is a wide

spectrum of platforms and autopilots (i.e. on-board soft-

ware for basic operation) available for the community. This

variability is also due to the specific constraints associated

with each application. Platforms with different payload

capacity, maneuverability, or autopilot functionalities may

be required depending on the context. Nonetheless, high-

level algorithms should be able to operate UAVs in a

transparent manner, regardless of the autopilot or platform

underneath. Otherwise, it would become too complex

maintaining multiple versions of the application software

depending on the particular communication protocols for

each autopilot.

Several frameworks for UAV operation, both proprie-

tary and open-source, have been developed over the past

years.2 Moreover, some open-source organizations like

GRVC Robotics Lab, University of Seville, Sevilla, Spain

Corresponding author:

Fran Real, GRVC Robotics Lab, University of Seville, 41092 Sevilla, Spain.

Email: freal@us.es

International Journal of Advanced
Robotic Systems

July-August 2020: 1–13
ª The Author(s) 2020

Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/1729881420925011

journals.sagepub.com/home/arx

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License

(https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without

further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/

open-access-at-sage).

https://orcid.org/0000-0002-7533-6153
https://orcid.org/0000-0002-7533-6153
https://orcid.org/0000-0002-1411-0281
https://orcid.org/0000-0002-1411-0281
mailto:freal@us.es
https://sagepub.com/journals-permissions
https://doi.org/10.1177/1729881420925011
http://journals.sagepub.com/home/arx
https://creativecommons.org/licenses/by/4.0/
https://us.sagepub.com/en-us/nam/open-access-at-sage
https://us.sagepub.com/en-us/nam/open-access-at-sage
http://crossmark.crossref.org/dialog/?doi=10.1177%2F1729881420925011&domain=pdf&date_stamp=2020-07-31

Dronecode (https://www.dronecode.org/) have proposed

standard communication protocols for UAVs, as for

instance MAVLink.3 However, despite the increasing use

of this protocol, there are still many autopilots that do not

support it. For example, the industrial leader in UAV man-

ufacturing DJI (https://www.dji.com/) works with its own

proprietary autopilot framework. There are also more ela-

borate and complex frameworks to deal with teams of mul-

tiple aerial4 or heterogeneous5 robots, or to propose

complete solutions including the hardware platform.6 How-

ever, our focus is more on abstracting the autopilot to make

easier the development of higher-level algorithms, that is,

algorithms that operate with the UAVs in a transparent

manner.

Royo et al.7 proposed a service abstraction layer to ease

application development with UAVs. This is a big and

complex architecture to cope with every possible applica-

tion and functionality related to a UAV. Inside this com-

plex architecture, they proposed a virtual autopilot system8

that tried to abstract and standardize the autopilot interface.

However, there is no publicly available implementation of

this work. On the other hand, we propose a simple layer in

the framework of the robot operating system (ROS)9 which

is public, open-source, ready to use, and easy to expand to

other autopilots.

Additionally, it is essential to integrate the UAV soft-

ware frameworks with simulation environments in order to

switch from simulated to real platforms with minor efforts.

Due to the fact that UAVs are more sensitive and fragile

than common ground vehicles, preliminary simulations to

verify the correct operation of the whole system become

even more critical. For that, there are widespread simula-

tors, such as Gazebo,10 V-REP,11 or AirSim,12 that allow

researchers to test UAV and multi-UAV systems, for task

allocation13 or path planning algorithms,14 among others.

MATLAB Simulink has also been proposed as a rapid pro-

totyping environment for UAVs.15 Simulators with realistic

3-D engines (e.g. AirSim) can also be used for testing

computer vision algorithms.

In this article, we introduce our software framework for

UAV operation, which provides users with an abstract

interface independent of the autopilot. First, we describe

a relevant set of functionalities that every UAV should

implement. From this set, we define a common interface

that we call unmanned aerial vehicle abstraction layer

(UAL). Then, for each supported autopilot, a back end

dealing with its specific features must be created. Our

framework aims to ease the development pipeline of UAV

algorithms and their deployment into real platforms.

The main contribution of the article is to explain the

design of our UAL and the details of its implementation,

which is publicly available.16 We also describe how our

UAL provides a simple way to simulate multiple UAVs

and how its interfaces make use of real or simulated robots

transparent to the user. The current implementation

addresses mainly multi-rotor platforms, but it is general

enough to be extended to fixed-wing vehicles. Finally,

we showcase the usability and versatility of our framework

by means of several use cases. In particular, our UAL has

been in a continuous development process for more than 2

years and it has been successfully tested in multiple experi-

ments within the context of different European R&D proj-

ects. For each use case, the context of the project is

explained as well as how UAL is used to integrate UAVs

into high-level missions.

The remainder of the article is structured as follows. The

second section details the architecture of our UAL and its

core functionalities; the third section describes simulation

functionalities; the fourth section discusses valuable les-

sons learned during our field tests with UAL; the fifth

section shows use cases on the use of UAL for research

projects; and the last section provides conclusions and

future work.

UAL architecture and implementation

This section describes the design and implementation of the

main features of our UAL. For more details, a thorough

wiki with instructions for installation and use is available

online (https://github.com/grvcTeam/grvc-ual/wiki).

Preliminaries

Even though their implementation details may vary drasti-

cally, all autopilots share similar functionalities. First, they

are all meant to provide some level of autonomous flight.

To achieve that, they typically implement a cascade of

modules for estimating and controlling angle rate, angle,

velocity, and position. Some autopilots accept external

references in any of the controllers, but the most common

and useful controls for high-level users are velocity, posi-

tion, and yaw controls. Another common concept for autop-

ilots is the flight mode. Depending on the current state, the

task that is being executed, or the set of controllers that are

handling the flight, the autopilot declares to be in a defined

flight mode. Typically, each mode provides some level of

control to the radio control (RC) human pilot (the so-called

safety pilot), and at least one of them allows for autono-

mous control from an external computer. We generalize

and refer to the first set as manual modes, and the last one

as auto mode. Moreover, in order to provide complete

autonomous flights, autopilots usually implement addi-

tional basic maneuvers, such as takeoff and landing.

UAL tries to abstract the user-programmer from the

platform’s autopilot. With that in mind, we defined a com-

mon interface with a collection of the most used UAV

functionalities:

� Performing a takeoff maneuver to a given height.

� Going from current position to a specified waypoint

in geographical (or any other global) coordinates

with a specified yaw.

2 International Journal of Advanced Robotic Systems

https://www.dji.com/
https://github.com/grvcTeam/grvc-ual/wiki

� Setting linear velocities and yaw rate.

� Landing on the current position.

� Recovering from manual flight mode.

� Setting home position to the current position.

� Getting latest UAV pose estimation.

� Getting latest UAV velocity estimation.

� Getting latest UAV coordinate transform

estimations.

UAL builds on top of the widespread ROS,9 which pro-

vides libraries and tools to help software developers to

create robot applications. It provides hardware abstraction,

sensor drivers, dedicated libraries, visualizers, message-

passing communication, package management, and so on.

The main advantages of using ROS are their extended use

among the community and the fact that the communication

between different processes and machines is easily solved.

In particular, UAL has been developed and tested on ROS

Kinetic Kame, even though it could be used with other

versions with minor adaptation.

Core functionalities

The proposed framework consists of three basic layers (see

Figure 1). The first layer is the UAL itself and it is imple-

mented in Cþþ language. The second layer is the Back-

end class, which establishes a common interface to the

UAL and it is also implemented in Cþþ. Last, in order

to support each particular autopilot, a specifically derived

back end for that autopilot must be implemented in Cþþ.

This back end communicates with the autopilot and handles

specific details, offering a common interface on the user

side. For instance, any autopilot that uses MAVLink as

communication protocol (e.g. PX4 and ArduPilot) is

currently supported via our MAVROS back end. The

MAVROS back end communicates via MAVROS with the

autopilot and handles specific issues such as mode switch-

ing and pose reference smoothing.UAL offers a double

interface (see Figure 2) to be accessed by external users:

� Class: the developer can instantiate an object of the

class UAL and access data and functionalities via its

class interface, directly calling its member functions.

� Server: at the same time, inside the instance of the

class and in a separate thread, UAL can be continu-

ously publishing data and responding to service calls

as any other node inside the ROS network.

While the class interface is middleware independent, it

is always available and introduces no delay; the server

interface depends on middleware (ROS in our case) is

available only if server mode is enabled (it is by default)

and may introduce network delays. Moreover, only one

process can have one (and only one) class interface for a

certain UAV. This may be an issue to handle multiple

robots. However, the server interface can be reached from

any host in the network and has been successfully tested

with multiple UAVs.

The two interfaces are not exclusive in design nor in

implementation (every function in UAL interface is

thread-safe), and it might be convenient to use both of

them, profiting from the advantages of each one. For exam-

ple, delay-sensitive functionalities like velocity control are

better suited to the class interface, whereas it is more useful

to call the recover_from_manual service from any

console using the server interface.

We ran a simple benchmark experiment to evaluate the

effect of the extra communication layer introduced by the

UAL server interface with respect to the class interface. We

set up a single computer running UAL with the MAVROS

back end. On one side, a process commanded messages

with a constant velocity and a timestamp using one of the

two UAL interfaces. On the other side, another process

reads actively (with no sleep) those velocity messages from

Figure 1. Scheme with the different layers to implement the back
ends in UAL. UAL and back-end layers are common, while derived
back end is autopilot/protocol specific. UAL: unmanned aerial
vehicle abstraction layer.

Figure 2. UAL offers a double interface with the user, either as a
class or as an ROS server responding to requests. UAL:
unmanned aerial vehicle abstraction layer; ROS: robot operating
system.

Real et al. 3

the MAVROS topic setpoint_velocity/cmd_vel.

Then, we repeated the experiment for 1 min with each UAL

interface and measured the time elapsed from message

generation to reception. Figure 3 shows the results of the

benchmark. Even when we run all processes in the same

machine, though not significant, a certain delay is included

by the server interface. Therefore, the class interface is

preferred for uses where communication delay could be

an issue.

We implemented several back ends for UAL (see Fig-

ure 4), but the project is alive and our software layer is

designed so that other users from the robotics community

could easily create their own back ends. Currently, the main

back end is for MAVROS (the ROS adaptation of MAV-

Link protocol), which is a widely spread protocol for com-

munication with autopilots. Some well-known autopilots

such as PX4 and ArduPilot support it. The MAVROS back

end together with PX4 is the most tested combination of

UAL so far, and it supports both the last MAVROS version

and older versions. We recently enhanced it by adding a

back end interfacing directly with MAVLink without using

MAVROS. The second main back end is the one using the

ROS SDK from DJI. This one allows us to communicate

with DJI proprietary autopilots such as A3 or N3. The Light

back end is used to provide support for simple simulation

and the unreal engine (UE) back end supports simulation

through the UE. They both will be detailed in the next

section about simulation functionalities. There is also a

back end to support the Crazyflie miniature quadcopters

(https://www.bitcraze.io/crazyflie-2-1/). Finally, the Cus-

tom back end is under development and interfaces with our

own autopilot. We are developing our custom autopilot in

order to have the possibility of modify the internal control-

lers easily.

Coordinate frames

As many other ROS applications, UAL also publishes coor-

dinate frames or TFs. We treat UAL as the interface with

the robot (UAV in this case) so it publishes odom and

base_link TFs. We followed ROS standards in ROS

enhancement proposals (http://www.ros.org/reps/) 103 and

105. We assume that odom frame is east-north-up (ENU),

and base_link is the local frame attached to the UAV

body with the X-axis pointing forward, Y-axis pointing left,

and Z-axis upward.

The TF odom is a static TF referred to map frame, which

is the global static frame and it is also ENU, although this

parent frame can be modified with the ROS parameter

home_pose_parent_frame. This transform can also

be defined as the ROS parameter home_pose when run-

ning UAL server node (<rosparam param¼home_

pose>[0, 0, 0]</rosparam><!-- [x, y, z] -->).

This parameter does not include yaw orientation because

it is internally calculated with the transform between the

parent frame and map. The TF base_link is the TF of the

frame attached to the UAV body referred to the odom
frame.

UAL is prepared to be used with multiple UAVs simul-

taneously, so these frames are automatically adapted to the

corresponding namespace. Figure 5 shows the result of

running the ROS command rqt_tf_tree in an example

simulation with three UAVs. The example is available in

UAL repository calling the launch file test_server.-

launch with the argument multi¼true. It runs three

UAVs with namespaces uav_1, uav_2, and uav_3. Thus,

the published frames are uav_1/odom, uav_1/base_-

link, and so on.

Teleoperation

A UAV can be teleoperated, that is, manually controlled

through UAL (RC control is reserved to the safety pilot).

The teleoperation package, called ual_teleop, is in

charge of translating user inputs into commands for UAL.

Currently, supported user inputs are:

ssalcrevres

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

de
la

y
[s

]

Figure 3. Results of benchmark experiment to compare time
performance for the class and service UAL interfaces. Median
values are indicated in red within blue boxes delimited by the 25th
and 75th percentiles. The whiskers represent the extreme values
and the red crosses outliers. UAL: unmanned aerial vehicle
abstraction layer.

Figure 4. Scheme with the existing back ends for UAL. Each
implemented back end can communicate with different autopilots
using the same protocol. Additional back ends can be added easily
to extend UAL reachability. UAL: unmanned aerial vehicle
abstraction layer.

4 International Journal of Advanced Robotic Systems

https://www.bitcraze.io/crazyflie-2-1/
http://www.ros.org/reps/

� Keyboard: The user is guided through a simple con-

sole menu that enables her/him to take off, land, and

control the UAV in pose or velocity. In pose and

velocity control, a set of joystick axes are emulated

through arrow keys and w/a/s/d keys in order to

allow for smooth control of movements in every

direction. Arrows are used for forward, backward,

and sideways movements, whereas w/a/s/d keys

control altitude and yaw.

� Joystick: Through a combination of buttons and axes

of any ROS supported joystick, the user can take off,

land, and control the UAV in velocity. It is also

possible to change maximum speed and enter in

headless mode, where the UAV velocity is com-

manded in a ground fixed frame (ENU), regardless

of UAV current orientation (yaw).

In the keyboard case, the used keys and their meaning

are fixed, but there are many possible joystick devices that

have different axes/buttons layouts and are mapped differ-

ently by the ROS joystick package. To achieve a more

coherent joystick use, we have developed a two-step solu-

tion. First, any joystick must be translated to a standard

layout. In our case, the standard of 6 axes and 12 buttons

is inspired by the RetroPad from the RetroArch project

(https://github.com/RetroPie/RetroPie-Setup/wiki/Retro

Arch-Configuration). Axes and buttons layout are shown in

Figure 6. By means of a configuration process, any joystick

can be mapped to this standard joystick layout. Second,

another configuration is used to map desired user actions

to the standard joystick layout. This allows us to refer in the

code to axes and buttons by the action they trigger instead

of by the label in the joystick layout. In case a given joy-

stick does not have a button that was initially mapped to

some function, only the configuration file has to be modi-

fied, not the actual code.

These joystick functionalities are implemented in an

independent module, so they can be used by other software

packages, being the second configuration step optional.

Simulation functionalities

In addition to the main advantage of abstracting users from

the autopilot, UAL also provides tools that help users to

Figure 5. Screenshot of the output of the ROS command rqt_tf_tree when running an example test of UAL with three UAVs.
UAL: unmanned aerial vehicle abstraction layer; ROS: robot operating system; UAV: unmanned aerial vehicle.

Figure 6. Layout for a standard joystick. Top: 6 axes used; bot-
tom: 12 buttons used.

Real et al. 5

https://github.com/RetroPie/RetroPie-Setup/wiki/RetroArch-Configuration
https://github.com/RetroPie/RetroPie-Setup/wiki/RetroArch-Configuration

easily test their algorithms in simulation. In particular,

UAL is totally integrated with the well-known open-

source robot simulator Gazebo (http://gazebosim.org). This

simulator allows for fast robot prototyping and creation of

new scenarios, and it is already integrated within ROS.

Besides, we have recently integrated UAL with the UE

(https://www.unrealengine.com) and its plugin AirSim12

for UAV simulation. Finally, we have also successfully

tested the DJI SDK back end with the DJI hardware-in-

the-loop (HITL) simulation tools.

Integration with Gazebo

UAL comes with two possibilities for simulation in

Gazebo: a light simulation and the PX4 software-in-the-

loop (SITL) simulation. The first one uses a Light back end

that provides a simple model of the UAV, avoiding

dynamics, and draws the simulated UAV in Gazebo. This

is particularly useful to perform simulations with large

numbers of UAVs, where the focus is on high-level beha-

vior and not on having realistic dynamics for the UAVs,

which may entail computational issues.

The second simulation option is based on the PX4 firm-

ware,17 which is an open-source autopilot software. Along

with the usual autopilot functionalities, PX4 firmware

comes with an SITL simulation environment based on

Gazebo and RotorS.18 This SITL has several Gazebo plu-

gins that simulate sensors (e.g. IMU, GPS, etc.) and

dynamics (e.g. rotor velocities and forces) of the UAV.

UAL comes with the possibility to run SITL simulations

with the PX4 SITL, using the MAVROS back end. This

feature allows users to run in simulation the same software

as in the real platform, replicating low-level behaviors of

the autopilot (such as waypoint transformations and mode

switching) in a more realistic fashion.

Apart from the above options, UAL provides some scripts

to launch quite easily simulations with multiple UAVs. It

also provides different UAV models, included in an ROS

package called robots_description. Some of these

models are adaptations from the models provided with

PX4 SITL and others are designed by us. The simulated

platforms available in UAL at the moment are the following:

� iris. A small quadrotor.

� mbzirc. A medium-sized hexarotor designed in our

lab for Mohamed Bin Zayed International Robot

Competition (MBZIRC) 2017. It has a camera point-

ing downward.

� aeroarms. Based on the mbzirc model but

mounting two robotic arms.

� aeroarms_pendulum. Like aeroarms but with

the arms mounted at the end of a bar attached to the

bottom of the UAV.

� typhoon_h480. A small quadrotor with a visual

color camera mounted on a gimbal and a depth cam-

era pointing forward.

Integration with UE

Gazebo simulator is quite extended in the robotics commu-

nity for UAV simulation. However, it lacks for a realistic

graphics engine, which can be essential for testing com-

puter vision and machine learning algorithms. Therefore,

we have also enhanced UAL with a back end that provides

an interface to simulate in realistic environments using

UE.19 UE is a game engine with a long tradition in the

world of computer games. Its source code is publicly avail-

able and written in Cþþ, which eases integration with

UAL. Recently, Microsoft published AirSim,20 which is a

plugin for UE so that users can simulate robots. Figure 7

shows the modules involved and their interactions to inte-

grate UAL with UE.

With this enhancement, UAL is also able to provide

more realistic simulations to test computer vision algo-

rithms. Thanks to the powerful rendering engine of UE,

it is possible to acquire high-quality footage that can be

used online to feed those algorithms. Figure 8 shows

three example platforms that have been tested in simu-

lation via UAL.

UAL back end for UE includes an interface for the

AirSim UE plugin, enabling UAV control in a similar

manner as it does with Gazebo. Additionally, since some

of our integrated UAVs have manipulators, UAL’s basic

interface has been extended to control the aerial manip-

ulators too.

Even though we enhance remarkably the visual realism

of the simulations with UE, the downside is that it also

increases the rendering time with respect to Gazebo. In

principle, this higher computational load may jeopardize

simulations when keeping up with real-time constraints.

Nevertheless, UE is a professional framework that is

extremely optimized, making it versatile and adaptable to

the existing hardware.

In fact, we ran some tests with standard desktop com-

puters to verify that simulations with UE integrated into

UAL can hold with reasonable rendering times. Table 1

summarizes the average frequency update with different

hardware configurations. The update rate of the physics

engine remains stable independently of the computer,

whereas the rendering engine speed, though always slower,

increases notably with the power of the GPU.

Figure 7. Interaction diagram between modules required for
UAL integration with UE. UAL: unmanned aerial vehicle abstrac-
tion layer; UE: unreal engine.

6 International Journal of Advanced Robotic Systems

http://gazebosim.org
https://www.unrealengine.com

Integration with DJI HITL

The UAV manufacturer DJI provides a set of tools that

enable HITL simulation for their proprietary autopilots.

In the development of the DJI SDK back end for UAL,

these tools have been intensively used for testing before

flying real platforms with our abstraction software.

In Figure 9, the setup required for the DJI HITL simula-

tion and its integration with UAL are depicted. It involves

three different major components:

� A computer running the DJI simulation software,

currently available only for Windows and OS X. It

simulates sensors and actuators within a simple

empty simulated world, and it communicates with

the autopilot as if they were real.

� A DJI autopilot hardware running the DJI autopilot

firmware (currently the A3 and N3 models are com-

patible with HITL). These are exactly the same hard-

ware and software that would fly on the real

platform.

� A computer running UAL and its DJI SDK back end,

currently only available for Linux-based operating

systems.

This setup has two advantages. First, it uses the real

autopilot hardware, so simulation is closer to reality. Sec-

ond, it moves the often computationally heavy simulation,

from the computer running UAL to a dedicated computer.

However, these features come at the high cost; three pieces

of hardware are required for a single UAV simulation. This

is more complex than the aforementioned PX4 SITL solu-

tion, which allows running simulations even with multiple

UAVs with a single computer. Furthermore, the DJI simu-

lation environment is too simple and it does not support the

addition or edition of scenarios, so it cannot be used to

simulate missions where UAVs have to interact with the

environment.

Lessons learned from field
experimentation

This section discusses some lessons we learned during the

process of development of UAL and throughout the multi-

ple field experiments that we performed testing UAL with

different UAVs.

SITL simulation for integration

In general, the UAL functionality to run SITL tests with

PX4 proved to be quite relevant for system integration. The

ability to simulate complete multi-UAV missions is a

remarkable feature to test and debug the interfaces and

functionalities of all high-level modules involved in any

UAV application. Although DJI autopilots offer highly sta-

ble controllers, we consider the lack of an SITL function-

ality a major disadvantage for this reason. In case of

platforms with PX4 embedded, our systems cannot distin-

guish a simulation from real flight behavior, which accel-

erates the process of integration before the actual flights.

Figure 8. Realistic simulation using UE in a mountainous envi-
ronment. UE: unreal engine.

Table 1. Average frequency (Hz) of the physics and rendering
engines in UE with three different GPUs.a

GTX 980 GTX 1070 RTX 2080

Physics engine *300 *300 *300
Render engine *25 *50 *60

UE: unreal engine.
aAll of them used an Intel i7 CPU.

Figure 9. Interaction diagram between modules required for
UAL integration with the DJI HITL. UAL: unmanned aerial vehicle
abstraction layer; HITL: hardware-in-the-loop.

Real et al. 7

Once the system has been integrated via SITL, only the

gains of the low-level controllers for the aerial platforms

need an additional adjustment in order to jump into experi-

ments with the actual UAVs.

UAL state handling

It is usual practice trying to summarize the UAV state

with a single variable that takes values from a finite set.

For example, the set of possible states could be defined

as flanded, flyingg. As we wanted this concept of

state to be also abstracted from the autopilot specifics,

we decided to give to UAL the responsibility of both

defining the set of possible states and keeping updated

the current state of the UAV. In the first software ver-

sions, we tried to implement the UAL state update with

a simple state machine. Initial state was landed and

each of the following function calls caused a logical

change in state. For example, calling the takeoff func-

tion changed state to flying, and then calling the land

function turned the state again to landed. However,

this approach did not work properly in field tests. Any-

time the system needed to restart while flying, or when

the human safety pilot had to take control and take off

or land, the UAL state did not correspond to reality.

This led us to the conclusion that it was more realistic

to estimate the state at each update instead of keeping a

state machine running. As the function in charge of

estimating the state has to deal with some autopilot

specifics, it is implemented at back-end level.

The states considered by UAL are the following:

� uninitialized: The system is not initialized and

cannot perform any task.

� landed_disarmed: The system is landed and the

safety pilot has not armed it yet.

� landed_armed: The system is landed and the

safety pilot has already armed it.

� taking_off: The system is taking off automati-

cally. Only the safety pilot can abort this

maneuver.

� flying_auto: The system is flying automatically.

� flying_manual: The system is being flown by the

safety pilot.

� landing: The system is landing automatically.

Only the safety pilot can abort this maneuver.

The arming process occurs before taking off and it

consists of sending pulse width modulation (PWM)

references to the electronic speed controllers (ESCs) of

the UAV motors, so that they start to move and enable

flight. The opposite process when the autopilot stops

sending commands to the ESCs of the motors is called

disarming.

As an illustrative example, the flowchart of the state

update function for the MAVROS back end is shown

in Figure 10. The state update is not governed by a state

machine anymore, as it does not take into account previous

states. In contrast, at each iteration of the update loop, it

estimates the UAV state by asking the system the proper

questions in the proper order. This approach ended up being

more robust to system failures.

Finally, UAL uses its state to check consistency during

function calls. For instance, the system must be lande-

d_armed before a takeoff function can be called.

Go to waypoint

When UAL was issuing go-to-waypoint commands, we

realized that the autopilot translated them automatically

into a set of set points (references) for each of the axis

(x–y–z) and yaw. As a result, not desired behaviors

could arise:

Figure 10. Flowchart of the UAL state update function for the
MAVROS back end. UAL: unmanned aerial vehicle abstraction
layer.

8 International Journal of Advanced Robotic Systems

� If the reference is far from the current value, the

autopilot controller saturates and the movement is

harsh.

� If we consider axis and yaw as four independent

systems (as the controller usually does), each of the

axis may have different dynamics. This means that

each system evolves differently in time, and the path

is not a straight line as one would expect.

Those harsh movements could be avoided by imple-

menting any method for reference smoothing on top of

UAL, that is, algorithms for trajectory generation and

tracking. Users could implement their own algorithms for

trajectory tracking and use the setPose interface to send

the smoothed pose references to the autopilot. Apart from

that, within the goToWaypoint interface, we implemen-

ted a default method for trajectory tracking, based on a pure

pursuit algorithm with look-ahead. This method can be

tuned to avoid abrupt movements due to controller’s satura-

tion. Even though there are alternative methods that may

work better, we implemented this one in order to provide a

simple, functional, and default trajectory tracker for users

not interested in using more elaborate algorithms.

Use cases

In this section, we present several use cases where UAL

was used to interface with real and simulated UAVs. In

particular, we showcase the use of UAL for different appli-

cations with UAVs within the framework of European proj-

ects, where the collaboration between robotics labs has

been eased by means of UAL.

Multiple drones for media production

UAL is highly integrated in the architecture of the MULTI-

DRONE project (https://multidrone.eu/). This project aims

at building teams of multiple UAVs that cover outdoor

sports events such as cycling or rowing races.

The MULTIDRONE European consortium is develop-

ing algorithms that translate the ideas of the media produc-

tion team into autonomous plans and control actions so that

the UAVs can shot the event with their onboard cameras.21

All partners have adopted UAL to interface with the UAVs

and they are using it to simulate and execute real missions

for UAV media production. Figure 11 shows a simulated

mockup scenario to test autonomous shooting missions in

the project. A video of the full mission simulation is avail-

able online (https://youtu.be/9R5bnsM9_eI).

In this project, UAL is used in its server interface. In the

proposed architecture, there is a module in charge of the

control of the drone, gimbal, and camera that communi-

cates with UAL server to get the current pose and velocity

and to send velocity control commands to it. Moreover,

field tests have been performed using this architecture with

UAL integrated. In the study by Sabetghadam et al.,22 for

instance, some results for autonomous aerial cinematogra-

phy through UAL are demonstrated.

Autonomous inspection

UAL has been adopted for autonomous inspection with

UAVs in different projects and with autopilots. In the

AEROBI project, we used it with a PX4 autopilot, whereas

in the INSPECTOR project, the DJI A3 autopilot is used.

The European project AEROBI (http://www.aerobi.eu)

aims to automate the inspection of bridges’ concrete beams

and piers by the use of flying unmanned robots equipped

with manipulators driven by an intelligent control and a

computer vision and sensing system.

For instance, measuring the deflection of bridges is a

tedious operation in which an operator places a tool on the

beam with a pole or aided with a crane. The tool is a prism

which is used by a Total Station (https://leica-geosystems.

com/products/total-stations) to accurately measure positions.

One of the objectives in the project is to use a UAV

equipped with such a prism. As described by Sánchez-

Cuevas et al.,23 the UAV can use the drag forces generated

by the propellers in the proximity to the ceiling to remain

stuck to the beam. Therefore, the total station can measure

any deformation of any beam at any bridge without putting

into risk neither any human operator nor machine.

In that context, the UAL framework has been used to

automate the control and movement of the aerial platform

during the experimental missions. Figure 12 shows an

experiment where the UAV follows a trajectory with three

contact points chosen to measure the deflection of a bridge

beam. In this particular example, the process of measuring

the deflection uses the class interface to make a collection

of goToWaypoint calls to send the platform to the desired

measuring points. Once there, the setVelocity method

is used to trigger the beam-contact condition.

The national Spanish project INSPECTOR is another

project to use UAVs for inspection and maintenance of

unattended facilities. In one of the particular use cases,

we developed an outdoor platform to inspect large areas

of gas pipelines searching for leaks. We based our system

on commercial platforms by DJI and integrated our DJI

Figure 11. Simulated mockup scenario for MULTIDRONE
where two UAVs follow a car taking different types of shots.
Views from the two onboard cameras can be seen. UAV:
unmanned aerial vehicle.

Real et al. 9

https://multidrone.eu/
https://youtu.be/9R5bnsM9_eI
http://www.aerobi.eu
https://leica-geosystems.com/products/total-stations
https://leica-geosystems.com/products/total-stations

back end with an A3 autopilot. UAL was used in outdoor

field experiments to command high-level exploration mis-

sions through the goToWaypoint service. Also, the DJI

HITL functionality was used for testing software integra-

tion before the tests.

Aerial manipulation

UAL has also been used for applications in aerial manip-

ulation. First, it was used in the European project AERO-

ARMS (https://aeroarms-project.eu/), where a UAV

equipped with a dual robotic arm operates in complex

industrial environments for inspection and maintenance.

Within the framework of the project, UAL has been

extended with similar abstract interfaces to operate the

robotic arms. In Figure 13, some experiments in a mockup

scenario are shown. In the experiments, a reactive naviga-

tion algorithm14 is used to avoid collisions while operating.

The algorithm uses UAL for state estimation and velocity

control, both in simulation and real experiments. In this

particular case, the process in charge of the reactive naviga-

tion makes use of the class interface, calls the pose method

to update the current pose of the platform (and hence the

map of the perceived world), and calls the setVelocity
method with the desired velocity for obstacle avoidance.

The UAL UE back end has also been used to test algo-

rithms before deploying then in real platforms. As an exam-

ple, center image of Figure 8 shows a UAV equipped with a

manipulator to grasp objects.

UAL has also been tested in another European project

that involves aerial manipulation, the project HYFLIERS

(https://www.oulu.fi/hyfliers/). This project aims to

develop teams of UAVs to perform the autonomous inspec-

tion of industrial environments. Particularly, UAL has been

used to control a UAV to autonomously perch on pipes

using a zenithal camera. The final objective is to be able

to inspect these pipes using contact sensors and even to

interact with them. Figure 14 shows the aerial platform

used for that purpose.

Fast development on robot competitions

The last use case concerns the MBZIRC (http://www.

mbzirc.com/), which takes place in Abu Dhabi.

Figure 12. UAV measuring beam deflection in a bridge. Left: UAV trajectory during the mission with a point cloud captured by the total
station. Right: snapshot of the UAV stuck to the beam. UAV: unmanned aerial vehicle.

Figure 13. Experiments for aerial manipulation in a mockup scenario emulating pipes in a plant. Real and simulated environments are
depicted.

Figure 14. An experiment for UAV autonomous perching on a
mockup pipe for inspection. UAV: unmanned aerial vehicle.

10 International Journal of Advanced Robotic Systems

https://aeroarms-project.eu/
https://www.oulu.fi/hyfliers/
http://www.mbzirc.com/
http://www.mbzirc.com/

We participated as the Al-robotics team in this challenge

in 2017 (see Figure 15), where a team of three UAVs had to

perform a mission that combined exploration and picking

and placing objects into a box. The participation in this

competition and the need for a common framework for both

the actual UAVs and the simulation motivated the devel-

opment of a layer for the PX4 flight stack.

Preliminary versions of the current UAL were designed

during our participation in the MBZIRC 2017. Later, these

first approaches converged and generalized as a framework

for interfacing UAVs in a standard fashion. In the compe-

tition, the UAVs performed a cooperative mission where

they executed an area coverage algorithm (see Figure 16) to

search for the objects, and then a task allocation algorithm

to get objects assigned for collection. UAL was used by

these high-level algorithms to operate the UAVs, for

instance, by sending waypoints or controlling them in velo-

city while collecting the objects. Given the multi-robot

character of the application, the server interface was mostly

used in this case.

Our lab is also participating in the next edition of the

competition, MBZIRC 2020. In the next edition, the

challenges have a strong focus on heterogeneous robot

cooperation. For instance, UAVs and a ground robot must

work together to assemble a wall of bricks or to detect and

extinguish a set of fires. The other challenge is about

searching, tracking, and catching a ball that hangs from

another moving UAV. UAL is being used as the underlying

layer of our software architecture to command UAVs and

to communicate with the ground robot. For the tasks that

require high precision in velocity control, such as picking

up and dropping bricks with the UAVs, or reacting fast to

track another moving UAV, we use the UAL class interface

and its setVelocity method.

To face the new competition, we first implemented

simulations of all the challenges based on the MAVROS

UAL back end, using the PX4 SITL functionality. Then, we

ran preliminary tests with our customized platforms based

on the new hardware Pixhawk 2. For that, we were using

the MAVROS back end too. As we detected some issues

with the sensor reading of the Pixhawk that made our con-

trollers unstable, we are now testing in parallel the whole

system mounting DJI A3 autopilots on our UAVs. Thanks

to UAL, switching between autopilots is straightforward

and does not affect the overall project architecture.

Conclusions

This article has presented UAL, a framework to abstract

high-level software development in UAVs, allowing users

to work with different autopilots and platforms by means of

common interfaces. After using UAL within the context of

several R&D projects, we can conclude that it eases the

development of high-level algorithms. It allowed us to

operate a wide variety of aerial platforms with autopilots

from the major manufacturers in a transparent manner.

Researchers from different organizations have provided

positive feedback and found useful UAL as an enhanced

middleware. Moreover, the functionality to interface simu-

lated or real UAVs, in the same way, has proved to be quite

helpful.

Figure 15. Left: competition arena for the MBZIRC 2017. A multi-UAV team must find, pick, and place a set of objects. Right: the Al-
robotics team during the competition. UAV: unmanned aerial vehicle.

Figure 16. Map of the MBZIRC 2017 arena. The scenario is split
into three areas where the UAVs search for objects at the
beginning of the mission. The routes assigned to the UAVs are
depicted in different colors. The landing zone of the UAVs (LZ)
and the dropping zone (DZ) to place the objects are also shown.
UAV: unmanned aerial vehicle.

Real et al. 11

We presented a stable version that is publicly available

in Github.16 However, UAL is in continuous development,

adding new features and fixing issues as they are detected.

This development is profiting from the use of UAL by

the robotics community. In fact, UAL was conceived as

a modular and adaptable framework so that users from

the community can extend it easily with their own back

ends.

As future work, we are constantly working on adapting

UAL to newer versions of the platforms already supported.

For instance, MAVROS updates are very frequent and we

maintain backward compatibility with several previous

versions. Besides, we think of migrating UAL to ROS 2

version. Last, we would also like to explore possibilities to

enhance the functionalities of UAL to simulate DJI plat-

forms, mainly for multi-UAV environments.

Acknowledgements

The authors would like to thank all the GRVC Robotics Lab

members for their valuable feedback and contribution to UAL.

Special thanks to Alejandro Castillejo, Héctor Pérez, Manuel

Fernández, José Andrés Millán, Ángel Montes, Ricardo López,

Pedro Sánchez, Rafael Salmoral, and Vı́ctor Vega.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with

respect to the research, authorship, and/or publication of this

article.

Funding

The author(s) disclosed receipt of the following financial support

for the research, authorship, and/or publication of this article: This

work was partially funded by the European Union’s Horizon 2020

research and innovation program under grant agreements no.

731667 (MULTIDRONE) and by the MULTICOP project (Junta

de Andalucia, FEDER Program, US-1265072).

ORCID iDs

Fran Real https://orcid.org/0000-0002-7533-6153

Pablo Ramón-Soria https://orcid.org/0000-0002-1411-0281

References

1. Visiongain. The unmanned aerial vehicles (UAV) market

2011-2021: technologies for ISR and counter-insurgency.

Technical report, Visiongain, London, 2011.

2. Sabikan S and Nawawi S. Open-source project (OSPs) plat-

form for outdoor quadcopter. J Adv Res Des 2016; 24: 13–27.

3. Meier L, Camacho J, Godbolt B, et al. Mavlink: micro air

vehicle communication protocol, http://qgroundcontrol org/

mavlink/start (2013, accessed 22 May 2014).

4. Varadharajan VS, St-Onge D, Švogor I, et al. A software

ecosystem for autonomous UAV swarms. In: International

symposium on aerial robotics, Philadelphia, PA, USA, 19

June 2017.

5. Michael N, Fink J, Loizou S, et al. Architecture, abstractions,

and algorithms for controlling large teams of robots:

experimental testbed and results. In: Kaneko M and Naka-

mura Y (eds) Robotics research. Berlin, Heidelberg:

Springer, pp. 409–419.

6. Spica R, Robuffo Giordano P, Ryll M, et al. An open-source

hardware/software architecture for quadrotor UAVs. IFAC

Proc Vol 2013; 46(30): 198–205.

7. Royo P, López J, Barrado C, et al. Service abstraction layer

for UAV flexible application development. In: 46th AIAA

aerospace sciences meeting and exhibit, Reno, Nevada, USA,

7–10 January 2008, p. 484.

8. Royo P, Pastor E, Barrado C, et al. Autopilot abstraction and

standardization for seamless integration of unmanned aircraft

system applications. J Aerosp Comput Inf Commun 2011;

8(7): 197–223.

9. Quigley M, Conley K, Gerkey B, et al. ROS: an open-source

robot operating system. In: ICRA workshop on open source

software, Kobe, Japan, 12–17 May 2009, vol. 3, p. 5.

10. Koenig N and Howard A. Design and use paradigms for

Gazebo, an open-source multi-robot simulator. In: In

IEEE/RSJ international conference on intelligent robots

and systems, Sendai, 28 September–2 October 2004, pp.

2149–2154.

11. Rohmer EMF and Surya PNS. V-REP: a versatile and scal-

able robot simulation framework. In: Proceedings of the

international conference on intelligent robots and systems

(IROS), Tokyo, 3–7 November 2013.

12. Shah S, Dey D, Lovett C, et al. AirSim: high-fidelity visual

and physical simulation for autonomous vehicles. In: Field

and service robotics, https://arxiv.org/abs/1705.05065

(accessed 15 November 2019).

13. Kurdi HA and How JP. Dynamic task allocation in an auton-

omous multi-UAV mission. US Patent App. 15/344,014,

2017.

14. Real F, Rodriguez Castaño A, and Capitán J. A Monte-Carlo

reactive navigation algorithm for a dual arm aerial robot. In:

Iberian robotics conference, 22–24 November 2017, pp.

780–790. Berlin: Springer.

15. Fulford CD, Lie NHM, Earon EJP, et al. The vehicle abstrac-

tion layer: a simplified approach to multi-agent, autonomous

UAV systems development. In: 2008 Asia simulation confer-

ence, Beijing, 10–12 October 2008, pp. 483–487.

16. grvc-ual [online]. https://github.com/grvcteam/grvc-ual

(accessed 15 November 2019).

17. Meier L, Gubler T, Oes J, et al. Px4/firmware: v1.7.3 stable

release, 2018. DOI:10.5281/zenodo.1136171.

18. Furrer F, Burri M, Achtelik M, et al. Robot operating system

(ROS): the complete reference (volume 1), chapter RotorS—a

modular Gazebo MAV simulator framework. Cham: Springer

International Publishing, 2016, pp. 595–625.

19. Sanders A. An introduction to unreal engine 4. Natick, MA,

USA: A. K. Peters, Ltd, 2016.

20. Shah S, Dey D, Lovett C, et al. AirSim: high-fidelity visual

and physical simulation for autonomous vehicles. CoRR

2017; abs/1705.05065. Available at: http://arxiv.org/abs/

1705.05065.

12 International Journal of Advanced Robotic Systems

https://orcid.org/0000-0002-7533-6153
https://orcid.org/0000-0002-7533-6153
https://orcid.org/0000-0002-7533-6153
https://orcid.org/0000-0002-1411-0281
https://orcid.org/0000-0002-1411-0281
https://orcid.org/0000-0002-1411-0281
http://qgroundcontrol org/mavlink/start
http://qgroundcontrol org/mavlink/start
https://arxiv.org/abs/1705.05065
https://github.com/grvcteam/grvc-ual
http://arxiv.org/abs/1705.05065
http://arxiv.org/abs/1705.05065

21. Torres-González A, Capitán J, Cunha R, et al. A multidrone

approach for autonomous cinematography planning. In: Iber-

ian robotics conference, 22–24 November 2017, pp.

337–349. Berlin: Springer.

22. Sabetghadam B, Alcantara A, Capitan J, et al. Optimal tra-

jectory planning for autonomous drone cinematography. In:

European conference on mobile robots, Prague, 4–6 Septem-

ber 2019, pp. 1–7.

23. Sánchez-Cuevas P, Heredia G, and Ollero A. Multirotor UAS

for bridge inspection by contact using the ceiling effect. In:

2017 international conference on unmanned aircraft systems

(ICUAS), Miami, FL, 13–16 June 2017, pp. 767–774, IEEE.

Real et al. 13

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 266
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 175
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50286
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 266
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 175
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50286
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 900
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 175
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50286
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU <FEFF005500730065002000740068006500730065002000530061006700650020007300740061006e0064006100720064002000730065007400740069006e0067007300200066006f00720020006300720065006100740069006e006700200077006500620020005000440046002000660069006c00650073002e002000540068006500730065002000730065007400740069006e0067007300200063006f006e006600690067007500720065006400200066006f00720020004100630072006f006200610074002000760037002e0030002e00200043007200650061007400650064002000620079002000540072006f00790020004f00740073002000610074002000530061006700650020005500530020006f006e002000310031002f00310030002f0032003000300036002e000d000d003200300030005000500049002f003600300030005000500049002f004a0050004500470020004d0065006400690075006d002f00430043004900540054002000470072006f0075007000200034>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [288 288]
 /PageSize [612.000 792.000]
>> setpagedevice

