
111Equation Chapter 1 Section
1Equation Chapter 1 Section 1

Degree Final Dissertation
Telecommunications Engineering - Telematics

Shift scheduling and management service

Author: Miguel Ángel González-Alorda Cantero

Tutor: Dra. Isabel Román Martínez

Dept. Telematics Engineering
Higher Technical School of Engineering

University of Seville

Seville, 2020

Servicio para la gestión de actividades asistenciales
complementarias

Degree Final Dissertation
Telecommunications Engineering

Shift scheduling and management service

Servicio para la gestión de actividades asistenciales
complementarias

Author:

Miguel Ángel González-Alorda Cantero

Tutor:

Dra. Isabel Román Martínez

Dept. Telematics Engineering

Higher Technical School of Engineering

University of Seville

Seville, 2020

Proyecto Fin de Grado: Servicio para la gestión de actividades asistenciales complementarias (Shift scheduling
and management service)

Autor: Miguel Ángel González-Alorda Cantero

Tutor: Dra. Isabel Román Martínez

El tribunal nombrado para juzgar el Proyecto arriba indicado, compuesto por los siguientes miembros:

Presidente:

Vocales:

Secretario:

Acuerdan otorgarle la calificación de:

Sevilla, 2020

El Secretario del Tribunal

ACKNOWLEDGEMENTS

I think time is our most valuable resource. For this reason, I would like to thank my tutor, Isabel Román, for her
availability and dedication; and specially for her will to pass her knowledge on to me. This project would not
have reached its current state if she had not contributed with her knowledge and experience. Moreover, I would
like to thank Miguel Ángel Rico, doctor at Hospital Universitario Virgen Macarena, for taking his time to
provide us with the requirements of the project. I would also like to thank all of my professors, and the University
of Seville, for giving me the opportunity to study this bachelor in Telecommunications Engineering.

Regarding the technologies that I have used, I would like to give a special mention to the Spring team and
community. It has been because of their excellent framework, and their plenty of useful guides and
documentation, that I have been able to complete this project. Moreover, I would like to acknowledge the
development team of Google ORTools. It has been because of their incredible tool that I have been able to easily
solve the linear programming problem modelling the scheduling problem. I would also like to mention the
development team of Postman. It has been by using their tool that I have been able to easily test the REST API
designed and implemented in this project. Lastly, I would like to thank the creators of ERDplus, a free online
application that makes the creation of ER diagrams very simple. This is the tool I have used to represent this
application’s ER model.

I

ABSTRACT

Currently, at the Internal Medicine Department at Hospital Universitario Virgen Macarena (HUVM), one person
needs to spend between two to three days per month scheduling and managing the doctor’s shifts. For this reason,
the aim of this project is to design and implement a system that automates this tasks, reducing the amount of time
needed to complete them. Even though the system has been designed to meet the requirements of the Internal
Medicine Department at HUVM, these are very general needs that can be extended to either other hospitals or
organizations.

The solution is composed of three different systems: A simple web application, to provide an interface to the
users; a REST service, to provide access to the actual data of the application; and a service responsible for
scheduling the shifts, according to the given requirements. These three separate systems cooperate as follows: the
web application consumes the REST API to provide the user interface; and the REST service uses the scheduling
service to assign the doctor’s shifts.

The solution designed does not intend to be a new technology, but rather a combination of different already
existent ones. Specifically, this project uses the Spring framework to implement both the Web application and the
REST service, and the Google ORTools to solve the scheduling problem.

III

RESUMEN

Actualmente, en el Departamento de Medicina Interna del Hospital Universitario Virgen Macarena (HUVM),
una persona debe dedicar entre dos y tres días al mes a la planificación de los turnos de los médicos (guardias y
continuidades asistenciales). El objetivo de este proyecto es diseñar e implementar un sistema que permita
automatizar estas tareas, reduciendo el tiempo necesario para completarlas. Por otra parte, aunque el sistema vaya
a ser diseñado para cumplir con los requisitos concretos del Departamento de Medicina Interna del HUVM, estos
son suficientemente genéricos como para que el sistema pueda ser útil a otros hospitales u organizaciones.

En concreto, el sistema a diseñar se va a dividir en tres partes: Una aplicación web sencilla, que va a proporcionar
una interfaz a los usuarios; un servicio REST, que va a ofrecer acceso a la información del sistema; y un servicio
responsable de la planificación de los turnos acorde a los requisitos. Estos tres sistemas se comunican de la
siguiente forma: La aplicación web utiliza la interfaz REST, y el servicio REST utiliza el servicio de
planificación.

La solución que ha sido diseñada no pretende ser una nueva tecnología, sino una combinación de varias ya
existentes. En concreto, en este proyecto se va a hacer uso del entorno Spring para el desarrollo de la aplicación
web y del servicio REST, y de la herramienta Google ORTools para resolver el problema de planificación.

V

INDEX

Acknowledgements..I

Abstract...III

Resumen...V

Index...VII

List of Tables...XI

List of Figures..XIII

List of code snippets..XVII

Notation...XIX

1. Introduction..1
1.1. Description of the problem..1

1.1.1. The scheduling problem...1
1.1.2. The pager assignment problem...3
1.1.3. The management problem...3

1.2. Current situation...4
1.3. Scope of the project..4
1.4. Description of next chapters..5

2. State of technology...7
2.1. Linear programming...7
2.2. UML...8
2.3. Design pattern..9
2.4. Python..10
2.5. Java..13

2.5.1. Lambda expressions...13
2.5.2. Streams API..15
2.5.3. Annotations...16

2.6. REST...17
2.7. HAL..17

2.7.1. Templated links..18
2.8. Spring...19

2.8.1. Spring Web..21

VII

Index

2.8.1.1. Simple GET example...21
2.8.1.2. POST example..22
2.8.1.3. Path parameter and ResponseEntity example...23
2.8.1.4. Exception handling example...24
2.8.1.5. Dependency injection...25

2.8.2. Lombok..26
2.8.3. Spring Data JPA..27
2.8.4. Spring HATEOAS...30

2.8.4.1. Server side...30
2.8.4.2. Client side..33

2.8.5. Thymeleaf..34

3. Requirements..37
3.1. Actors...37
3.2. Use cases..38

3.2.1. Current situation..38
3.2.2. Desired situation..40

3.3. Behavioural requirements..42
3.3.1. Scheduling problem..43
3.3.2. Pager assignment...45
3.3.3. Management problem..47

3.4. Information requirements...48

4. Solution designed..51
4.1. Designed procedure..51
4.2. Division in subsystems...52
4.3. Entity-Relation model..54
4.4. REST service..57

4.4.1. Service’s resources...57
4.4.2. Structural design..72

4.4.2.1. Model classes..74
4.4.2.2. View classes...76
4.4.2.3. DAO interfaces...78
4.4.2.4. Controller classes...78

4.4.3. Behavioural design...80
4.4.4. Communication with the Scheduler..86

4.5. Scheduler..87
4.5.1. Cyclic-shift scheduling algorithm...87
4.5.2. Non-cyclic-shift linear programming problem..88

4.5.2.1. Definitions...88
4.5.2.2. The linear programming problem...89
4.5.2.3. The objective function..90
4.5.2.4. CS implies a NCS...90
4.5.2.5. Only one shift per day..91
4.5.2.6. Maximums and minimums per doctor..91
4.5.2.7. Minimums per day...91

4.5.3. Scheduler’s design..91
4.6. Web application..95

4.6.1. Structural design..95
4.6.2. Behavioural design...97

5. Conclusions and future work..105
5.1. Future work..105

Index

5.1.1. Scheduling problem..106
5.1.1.1. Edit a schedule...106
5.1.1.2. Doctor’s absences..111
5.1.1.3. Mandatory / Unavailable shifts...111
5.1.1.4. Consultation preferences...111

5.1.2. Pager assignment problem...111
5.1.3. Management problem..111

5.1.3.1. Notifying doctors of their schedule...112
5.1.3.2. Allowing shift changes..112

References...113

Appendix A – Code...1

Appendix B – Web application usage..1
1. Create a new doctor...1
2. Edit a doctor..4
3. Generate a new schedule...6

Appendix C – Deployment..1
1. Modifying the application’s configuration files..2
2. Moving the different files to their corresponding locations..3
3. Configuring the database...4
4. Configuring permissions on the application’s files...5

IX

Index

LIST OF TABLES

Table 1: A-01 - Doctor..37

Table 2: A-02 – Shift manager..37

Table 3: A-03 - Manager...38

Table 4: A-04 - Secretary..38

Table 5: BR-01 – Doctor’s identity..42

Table 6: BR-SCH-01 - Types of shifts...43

Table 7: BR-SCH-02 - CS rate..43

Table 8: BR-SCH-03 - NCS allowed days..43

Table 9: BR-SCH-04 - Minimum regular-shifts per doctor...44

Table 10: BR-SCH-05 - Maximum NCS per doctor...44

Table 11: BR-SCH-06 – Consultations per doctor..44

Table 12: BR-SCH-07 - A CS implies a regular-shift...44

Table 13: BR-SCH-08 - Minimum number of regular-shifts and consultations per day............................44

Table 14: BR-SCH-09 - Shift preferences..45

Table 15: BR-SCH-10 - History of schedules...45

Table 16: BR-SCH-11 - NCS only when CS..45

Table 17: BR-PG-01 – Pager allowed days..45

Table 18: BR-PG-02 - Doctors per day..46

Table 19: BR-PG-03 – Pager allowed doctors..46

Table 20: BR-PG-04 - Maximum assignments per month...46

XI

List of Tables

Table 21: BR-PG-05 - History of pagers..46

Table 22: BR-PG-06 - Second pager assignment order...46

Table 23: BR-MGMT-01 - Doctor's notification..47

Table 24: BR- MGMT-02 - Awareness of changes...47

Table 25: BR-MGMT-03 - Shift changes allowed..47

Table 26: BR-MGMT-04 - Shift changes authorised..47

Table 27: BR-MGMT-04 - Shift changes registered...47

Table 28: IR-01 - Doctor...48

Table 29: IR-02 - Calendar..48

Table 30: IR-03 - Schedule..49

Table 31: Root resource...58

Table 32: Doctors resource..60

Table 33: Doctor resource...61

Table 34: ShiftConfigs resource...63

Table 35: ShiftConfig resource..64

Table 36: AllowedShifts resource..65

Table 37: Calendars resource...66

Table 38: Calendar resource..67

Table 39: Schedules resource...69

Table 40: Schedule resource..70

LIST OF FIGURES

 Figure 1: Cyclic-shifts example (One cycle)..2

 Figure 2: Cyclic-shifts example (Following cycles)...2

 Figure 3: Excel schedule example...4

 Figure 4: Class diagram example..9

 Figure 5: DTO pattern example..10

 Figure 6: Current use cases...38

 Figure 7: Current scheduling procedure...39

 Figure 8: Current shift change procedure...39

 Figure 9: Desired use cases...40

 Figure 10: Desired create/edit doctor procedure...40

 Figure 11: Desired scheduling procedure..41

 Figure 12: Desired shift change procedure...42

 Figure 13: Designed use cases..51

 Figure 14: Designed scheduling procedure..52

 Figure 15: Designed create/edit doctor procedure - Systems communication..53

 Figure 16: Designed scheduling procedure - Systems interaction...53

 Figure 17: Deployment diagram...54

 Figure 18: IR-01 Doctor - ER Model..55

 Figure 19: IR-02 - Calendar - ER Model...56

XIII

List of Figures

 Figure 20: IR-03 - Schedule - ER Model...57

 Figure 21: REST Service - Overview class diagram..73

 Figure 22: REST Service - Doctor controller overview..74

 Figure 23: REST Service - Model class diagram - Doctor, Absence, DoctorStatus, ShiftConfiguration and
AllowedShift..75

 Figure 24: REST Service - Model class diagram - Calendar and DayConfiguration................................75

 Figure 25: REST Service - Model class diagram - Schedule, ScheduleStatus, ScheduleDay....................76

 Figure 26: REST Service - View class diagram - doctor..77

 Figure 27: REST Service - View class diagram - shiftConfig and allowedShift......................................77

 Figure 28: REST Service - View class diagram - calendar and schedule...77

 Figure 29: REST Service - DAO class diagram - DoctorRepository...78

 Figure 30: REST Service - ScheduleController class diagram..79

 Figure 31: REST Service - DoctorController.newDoctor sequence..81

 Figure 32: REST Service - DoctorController.getDoctors sequence...82

 Figure 33: REST service - ScheduleController.generateSchedule sequence - Overview..........................83

 Figure 34: REST Service - ScheduleController.generateSchedule sequence - Upper part........................84

 Figure 35: REST Service - ScheduleController.generateSchedule sequence - Bottom part......................85

 Figure 36: REST service - Communication with the Scheduler..86

 Figure 37: Web application - Class diagram..96

 Figure 38: Web application - DoctorsController.getDoctors sequence..97

 Figure 39: Web application - DoctorsController.newDoctorForm sequence...98

 Figure 40: Web application - DoctorsContrller.newDoctorForm sequence - left part...............................98

 Figure 41: Web application - DoctorsController.newDoctorForm sequence - right part...........................99

 Figure 42: Web application - DoctorsController.newDoctor sequence..100

 Figure 43: Web application - DoctorsController.newDoctor sequence - Submit form............................101

 Figure 44: Web application - DoctorsController.newDoctor sequence - Persist doctor..........................101

Figure 45: Web application - DoctorsController.newDoctor sequence - Persist shift configuration.........102

 Figure 46: Web application - DoctorsController.newDoctor sequence - Response................................102

Figure 47: Web application - ScheduleController.newSchedule sequence...103

List of Figures

 Figure 48: Web application - ScheduleController.newSchedule sequence - User submits form.............103

Figure 49: Web application - ScheduleController.newSchedule sequence - Request schedule generation
...104

 Figure 50: Web application - ScheduleController.newSchedule sequence - Redirect user......................104

 Figure 51: Desired scheduling procedure - Edit schedule...106

 Figure 52: Excel file example...107

 Figure 53: Schedule2ExcelService class..108

 Figure 54: ScheduleController.downloadExcelFor...109

 Figure 55: ScheduleController.updateSchedule...110

XV

List of Figures

LIST OF CODE SNIPPETS

Python – List and dictionary comprehensions example..10

Python – json module – Example..11

Python – json module – Read from file..11

Python – ortools library example..12

Java – Lambda expression – Syntax...13

Java – Lambda expressions – Runnable example...13

Java – Lambda expressions – Runnable example with lambda expression..14

Java – Lambda expressions – Another thread with MyRunnable..14

Java – Lambda expressions – Another thread with a lambda expression..14

Java – Streams API example...15

Java – Annotation declaration example..16

Java – Annotation usage example...17

REST – Request example..17

REST – Response example..17

HAL – Request example..17

HAL – Request response...18

HAL – Templated link – Optional query parameter..18

HAL – Templated link – Mandatory query parameter..19

HAL – Templated link – Path parameter..19

Spring – Directory structure..19

Spring – Spring Web – Simple GET example – GreetingController...21

Spring – Spring Web – Simple GET example – MyApplication...21

Spring – Spring Web – Build and Run the application...22

Spring – Spring Web – POST example – Book...22

Spring – Spring Web – POST example – BookController...22

XVII

List of code snippets

Spring – Spring Web – POST example – POSTing a Book resource...23

Spring – Spring Web – Path parameter and ResponseEntity example – getBook method....................23

Spring – Spring Web – Path parameter and ResponseEntity example – GETting a Book.......................24

Spring – Spring Web – Exception handling example – BookNotFoundException..................................24

Spring – Spring Web – Exception handling example – Modified getBook method................................24

Spring – Spring Web – Exception handling example – MyAdviceController...24

Spring – Spring Web – Exception handling example – Querying the server..25

Spring – Spring Web – Dependency injection – BookDAO..25

Spring – Spring Web – Dependency injection – Injecting BookDAO to BookController.........................26

Spring – Lombok – Book redefinition with @Data..26

Spring – Lombok - @Slf4j log annotation...27

Spring – Lombok – Logging configuration..27

Spring – Spring Data JPA – Usage of @Entity...27

Spring – Spring Data JPA – Usage of JpaRepository..28

Spring – Spring Data JPA – Validation..28

Spring – Spring Data JPA - @Valid...29

Spring – Spring Data JPA – Entity’s relations..29

Spring – HATEOAS – Server side – UserController..30

Spring – HATEOAS – Server side – RepresentationModelAssembler...30

Spring – HATEOAS – Server side – UserController.getTestUser method..31

Spring – HATEOAS – Server side – Request the representation state of a User in HAL..........................31

Spring – HATEOAS – Server side – toCollectionModel..32

Spring – HATEOAS – Server side – UserController.getTestUsers method...32

Spring – HATEOAS – Server side – Representation of a collection of resources states..........................32

Spring – HATEOAS – Client side – Traverson usage...33

Thyemleaf – Template example..34

NOTATION

HUVM Hospital Universitario Virgen Macarena

CS Cyclic-shift (Jornada Complementaria)

NCS Non-cyclic-shift (Continuidad Asistencial)

NSP Nurse Scheduling Problem

∑ Sum operator

≥ Greater than or equal to

≤ Less than or equal to

∀ For all

Mod Modulus operator

ℕ The set of natural numbers

⊂ Subset of

∈ Belong to

 i Superscripts will be used to represent footnotes.

[1] References will be represented between square brackets.

(1) Formulas identifiers will be represented between round brackets.

XIX

Notation

1. INTRODUCTION

The aim of this project is to design and implement a system that schedules and manages medical doctor’s
shifts. More precisely, the system will be designed to meet the specific requirements of the internal
medicine department at Hospital Universitario Virgen Macarena (HUVM)i. However, these are quite
general; so the use of the system can be extended to other hospitals or organizations.

1.1. Description of the problem

The problem of scheduling and managing doctor’s shifts has three different parts. The first one is
scheduling the doctor’s shifts. This is, assigning a set of doctors to each day and each type of shift of any
given month, meeting some requirements. The second part would be, after shifts have been scheduled,
assigning a pager each working day to a doctor. The third part would be, after shifts have been scheduled
and pagers assigned, the actual management of these shifts. This is, notifying doctors of their shifts, and
allowing them to change them with one another.

To better understand these three problems, we will study them separately:

1.1.1. The scheduling problem

The scheduling problem consists on assigning shifts to the doctors of the hospital, but meeting certain
requirements. This is a common problem, also known as the Nurse Scheduling Problem, or NSP in short.
Particularly, in the problem we are currently concerned with, each day may have two different types of
shifts:

 Cyclic-shifts (Jornadas Complementarias):

These refer to certain shifts that occur periodically, and independently of any other restriction
Particularly, they correspond to the doctor’s guards that start at 20.00 of a certain day, and
end at 8.00 of the following day. Cyclic-shifts will be referred to as CS throughout the rest of
the document.

For example, let’s say there are six different doctors whose shifts are to be scheduled: A, B,
C, D, E and F; and we know that each day there has to be two shifts. Now, let’s say we know
the CSs that took place the first three days of a month:

iAll the information regarding the requirements and the current situation has been directly received from the HUVM. Specifically,
from the shift manager of the internal medicine department at the time this project is being developed.

1

1. Introduction

The previous picture represents that doctors A and B had a shift on day 1, doctors C and D
had a shift on day 2, and doctors E and F had a shift on day 3.

Now, if we know that CSs are repeated every three days, we can easily predict that shifts for
days four to nine will be as follows:

Figure 2: Cyclic-shifts example (Following cycles)

The rate at which doctors have CSs is the same for all doctors.

 Non-cyclic-shifts (Continuidades Asistenciales):

These refer to any other shifts that do not occur periodically, and are subject to different
restrictions. Particularly, these shifts represent the ones that start at 15.00 of a certain day, and
end at 20.00 of the same day. Throughout the rest of the document, they will be referred to as
NCS.

There are two types of NCSs: Consultations (Consultas) and Regular-shifts (Continuidades
Asistencialesii).

The restrictions that apply to these shifts are as follows:

1. There are certain doctor who only have CSs, others who only have NCSs, and others
who have both CSs and NCSs.

2. NCSs can only be scheduled on working days. E.g. there cannot be any
consultations or regular-shifts on Saturdays or Sundays, neither on holidays.

3. Each day, there is a minimum number of NCSs that have to be assigned.

4. From all available doctors for NCSs, only some of these do consultations.
Specifically, the doctors who do have consultations have to have a certain amount of
them each month. For example, doctor A does consultations and has to have 2
consultations each month.

5. If a doctor has a CS a certain day, they have to have a regular-shift that day (only if

ii Note that NCSs and regular-shifts are called identically in Spanish. The reason for this is, most NCSs are regular-shifts.

2

Figure 1: Cyclic-shifts example (One cycle)

1. Introduction

the doctor can have NCSs).

6. Some doctors can only have NCSs the same days they have CSs.

7. Each doctor has a minimum and a maximum number of NCSs they can work in
each month.

8. Doctors can have certain NCSs preferences. For example, doctor B would like to
have their regular-shifts on Thursdays and their consultations on Tuesdays; doctor D
would not like to have their shifts on Wednesdays; doctor F would like to have a
regular-shift the 5th day of next month.

1.1.2. The pager assignment problem

Each working day, one doctor needs to be responsible for a pager (Busca). The assignment of the pager
has some restrictions:

1. Pagers only have to be assigned on working days.

2. Exactly one pager has to be assigned to one doctor each working day.

3. On a certain day, the pager has to be assigned to a doctor having a CS that day (Hence, the
scheduling problem as to be solved before pagers are assigned).

4. Doctors should only have the pager assigned once per month. However, if a certain month all
doctors have had it once already, some doctors have to have it twice. To decide which doctors
will have the pager twice, we need the history of pager assignmentiii. Then, the doctors who had
the pager assigned twice the longest time ago should now have it assigned twice. E.g. let’s say
there are three doctors, A, B and C. Now, let’s say doctor A had the pager assigned two days this
month, and doctor B had it two days last month. Then, if a doctor needs to have the pager
assigned two days the following month, it should be doctor C who has it.

1.1.3. The management problem

The management problem consists on two different parts. The first one is notifying doctors of their shifts,
and the second one is allowing doctors to change their shifts with one another. Both of these will occur
after the scheduling of a certain month has been completed.

Notifying the doctors of their shifts means doctors should always be able to know, for each day of the
month, which doctors will be having a CS or a NCS, and which doctor will be having the pager.

With regards to the second part of the problem, if a doctor would like to change one of their CS or NCS,
they have to follow these steps:

1. The doctor willing to change a shift should find another doctor who will take it.

2. After two doctors have agreed on changing a shift, they have to make a request to be reviewed
by the doctor’s manager.

3. The doctor’s manager can either accept or decline the request.

4. In case the request is accepted, all doctors have to be notified of the change.

iii The history of pager assignment is just a record of which doctor had the pager assigned each day of each month.

3

1. Introduction

1.2. Current situation

Currently, all three problems described above are solved manually. There is a person (which we will refer
to as “shift manager”) responsible for scheduling and managing shifts. More precisely, the shift manager
has to spend between two to three days per month scheduling and managing shift changes.

The scheduling problem is solved using an Excel file. This means, a table is created in an Excel file and,
for each day of the month, the shift manager will assign shifts according to the restrictions. To have a
better idea on this procedure, this is an extract of the schedule of a certain month (note that names have
been changed to letters on purpose, to avoid revealing confidential information):

The image above shows the cycle (first two columns) and non-cycle (the rest of columns) shifts of days
16th to 22nd of a certain month. The colours have a specific meaning, but it is not currently relevant to this
introduction. Pagers are assigned on another Excel file in a similar fashion.

Then, after the Excel file has been produced, it is sent via email to all the doctors, and lastly it is printed
and attached to a notice board.

Next, if two doctors agree on changing a shift, they have to sign a documentiv to confirm the will.
Afterwards, the document has to be reviewed and signed by the doctor’s manager. Finally, if the change is
accepted, the printed version of the Excel is manually changed on the notice board.

Note that shift changes will not be emailed back to all other doctors, so it would be up to them to check
the notice board if they wanted to know the most updated version of the schedule.

1.3. Scope of the project

The scope of this project is to automate and reduce the amount of time needed to schedule the doctor’s
shifts. This is, the shift manager should only need to configure the restrictions applied and the schedule
should be automatically generated. Moreover, the restrictions should be saved so that, on the following
schedule generations, no configuration has to be done.

The system to be designed should also allow changing any configuration related to the scheduling. This is,
from something as simple as introducing a new doctor to the system, to something more sophisticated like
changing which day a certain doctor prefers their regular-shifts to take place.

The system should also be able to retrieve the schedules’ history. This is, the shift manager may want to
check the schedule of a certain month. For example, they may want to check the schedule of December
2019 to know which doctors had a shift on Christmas day.

iv The document to change a shift has a specific format, and it is provided by the HUVM. However, it is not relevant to the project, so it
will not be shown.

4

Figure 3: Excel schedule example

1. Introduction

It will not be in the scope of this project to solve neither the pager assignment problem nor the
management problem. These will be left as further improvements that can be done to the designed system.
Moreover, the most important goal of the project is to make a first working version of the system, so that
we can have feedback from the doctors. With this goal in mind, the implemented version of the system
might not meet all the requirements, for no other reason but to provide an initial functioning prototype.

1.4. Description of next chapters

The rest of this document will be divided into four different chapters as follows:

 2 State of technology: A description of the key concepts needed to understand this project.
Moreover, this chapter will explain how to use the technologies needed to develop this project.

 3 Requirements: A formal description of the requirements of the system.

 4 Solution designed: This chapter will describe the solution that has been decided for the
problem. This is, the subsystems in which the solution has been divided, and the design of each of
these subsystems.

 5 Conclusions and future work: This chapter will briefly summarize the previous ones, and will
give an overview on the future steps to be taken to continue with this project.

5

1. Introduction

6

2. STATE OF TECHNOLOGY

This chapter will give an overview on the key concepts and technologies that are needed to understand this
project. It will also briefly explain how to use the different technologies needed to develop the project’s
application.

2.1. Linear programming

Linear programming is a mathematical approach to optimally allocate certain resources, regarding a
specific set of constraints. A linear programming model is defined in terms of a function of N variables to
be maximized or minimized, and certain constraints that restrict the values of these variables. The function
is usually referred to as Objective Function. If all the variables are restricted to integer values, the problem
is called Integer Programming. [1]

Example:

Max x1+x2−3 x3+4 x4 Objective Function

x1−3x2+x4≤5 Constraint 1

x1+x3+3 x4≤3 Constraint 2

x2≤1 Constraint 3

x1, x2 , x3 , x4∈ℝ Constraint 4

A common problem involving linear programming is the Nurse Scheduling Problem (NSP). It consists on
allocating a set of workers to some shifts, according to certain restrictions. Usually, this kind of problem is
modelled as an Integer Programming problem with binary variables. This is, variables can only have
values ‘0’ or ‘1’. [2] [3]

For example, these could be the restrictions applied to schedule the shifts in a certain bar:

• There are 8 employees in the bar.

• There are two different types shifts: afternoon and evening.

7

2. State of technology

• Each day, there are two afternoon and two evening shifts.

• Each shift has to be assigned to exactly one employee.

• If an employee had an afternoon shift, they should not have an evening shift.

• An employee should not have shifts assigned three consecutive days.

• Employees may have requests for certain shifts. For example, they might want to have one of their
shifts on Monday’s afternoons.

Given these problem, we could define binary variables:

x ijk∈{0,1}∀ i=1,2 , ...,8 j=1,2, ... ,7 k=1,2

Where i represents the employees, j the days of the week (1=Monday, 2=Tuesdays...) and k the type of
shift (1=afternoon, 2=evening). This is, if x1,3,2=1, then the employee number 1 would have a shift on
Wednesday’s evenings.

Then, we could define the constraints with these variables. For example, “Each day, there are two
afternoon and two evening shifts” and “Each shift has to be assigned to exactly one employee” could be
defined as:

∑
i=1

8

x ijk=2∀ j=1,2 , ...,7 k=1,2

Lastly, we can define the objective function to maximize the number of requests met:

Max∑
i=1

8

∑
j=1

7

∑
k=1

2

r ijk x ijk

Where r ijk∈{0,1 }∀ i=1,2, ... ,8 j=1,2 , ...,7 , k=1,2 represents whether employee i wants the k
shift on the j day of the week.

2.2. UML

The Unified Modelling Language is a standard developed by the OMG (Object Management Group) used
to analyse, design and implement software-base systems.

For example, it can be used to represent relations between classes in a class diagram:

8

2. State of technology

In the previous example, an Owner is related to one or more Pets, and a Pet is related to exactly one owner.
A Pet and can be either a Dog or a Cat.

More information about UML can be found in its specification [4].

2.3. Design pattern

A design pattern is a description of the most accepted solution to a specific and common design problem
[5]. The following patterns are the ones relevant to the project:

 MVC Pattern: The Model-View-Controller pattern divides responsibilities within a system into
three categories:

◦ Model: The model classes represent the information or data of a system. E.g. a User class
responsible for containing a username and an email would comply with the model role.

◦ View: The view classes are responsible for representing the information of the model to
another system or to a user. E.g. a class responsible for presenting a graphical interface would
comply with the view role.

◦ Controller: The controller classes contain the business logic concerning the application. E.g. a
Servlet responding to HTTP requests would comply with the controller role.

We can find an implementation of this pattern explained at [6].

 DAO Pattern: The Data Access Object pattern isolates the responsibility of data persistence. E.g.
let’s say we have a system whose persistence relies on a relational database. Then, a class
implementing the DAO pattern would be responsible for communicating with that database to
either extract or persist information. This way, the rest of the application would not need to know
the communication process with the database. We can find a simple implementation of this pattern
in the example at [7].

9

Figure 4: Class diagram example

2. State of technology

 DTO Pattern: The Data Transfer Object pattern consists on separating the internal and external
representations of an object. Understanding internal representation as the classes that model
information inside a system, and external representation as the model information that gets
serialized and sent to a different system. This is easier to understand with an example:

In the previous example, the internal representation of an album is composed of two classes:
Album and Artist. However, its external representation should just be the fields title and artist. For
this purpose, the AlbumDTO class is created. This example has been taken from [8].

2.4. Python

A scripted object-oriented strongly and dynamically typed language. Some of the most basic features of
Python can be found at [9]. Particularly, for this project, we will use Python 3.7. Its official documentation
can be found at [10].

To understand the code written for this project, we need to understand two advanced features of the
language: list and dictionary comprehensions. These two features allow creating lists [11] and dicts
[12] in just one line of code:

Python – List and dictionary comprehensions example
numbers = [i for i in range(10)]
Result: numbers from 0 to 9 -> [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
The previous list comprehension is equivalent to:
numbers = [] # Declare an empty list
for i in range(10): # ‘i’ will have the values 0, 1,..., 9
 numbers.append(i) # Add ‘i’ to the end of the list

evenNumbers = [num for num in numbers if num%2 == 0]
Result: even numbers in the ‘numbers’ list -> [0, 2, 4, 6, 8]
Note ‘%’ is the modulus operator in python
The previous list comprehension is equivalent to:
evenNumbers = []
for num in numbers:
 if num%2 == 0:
 evenNumber.append(num)

isOdd = {num: num%2 != 0 for num in range(5)}

10

Figure 5: DTO pattern example

2. State of technology

Result: a dict with boolean values indicating whether a
number is odd or not
-> {0: False, 1: True, 2: False, 3: True, 4: False}
The previous dict comprehension is equivalent to:
isOdd = {} # Declare an empty dict
for num in range(5):
 isOdd[num] = num%2 != 0 # Assign to the key ‘num’ the
 # value ‘num%2 != 0’

More information on these two features can be found at [13] and [14].

There are also two important python modules needed to understand this project:

• json [15]:A module from the standard library used to encode and decode JSON [16] strings.

Some basic examples taken from the official documentation are:

Python – json module – Example
import json

Convert from a list to an encoded string
json.dumps(['foo', {'bar': ('baz', None, 1.0, 2)}])
Result: '["foo", {"bar": ["baz", null, 1.0, 2]}]'

Convert from encoded string to a list
json.loads('["foo", {"bar":["baz", null, 1.0, 2]}]')
Result: ['foo', {'bar': ['baz', None, 1.0, 2]}]

This module will be used in the project to read and write JSON files. For example:

Python – json module – Read from file
import json

with open('doctors.json') as doctorsFile:
 doctors = json.loads(doctorsFile.read())

The previous example reads the ‘doctors.json’ file and parses it as JSON. The resulting value is
assigned to the loggingConf variable.

Where the ‘doctors.json’ file content could be the one defined in 4.5.3 Scheduler’s design section.

• ortools [17]: An open source software suite developed by Google that allows solving optimisation
problems. Specifically, we are interested in the ortools.sat.python.cp_model module
[18].

From this module, we are interested in four classes: CpModel, CpSolver, IntVar and
Constraint.

• CpModel provides methods for defining a Constraint Programming (CP) problem.

• IntVar will represent the integer variables of the problem.

• Constraint will represent, as its name suggests, the constraints of the problem.

11

2. State of technology

• CpSolver is responsible for finding the optimal solution of a given CpModel.

The usage of these classes is better illustrated with an example. First, let’s define a simple binary
programming problem:

Max∑
i=0

4

x i

5 x0+2 x1−3 x3≤3

x2+x4=1

x i∈{0,1}∀ i=0,1,2,3,4

Now, we will present the code that can be used to define and solve the problem:

Python – ortools library example
from ortools.sat.python import cp_model

Create the model instance
model = cp_model.CpModel()

Create five boolean variables
vars = [model.NewBoolVar(f'var{i}') for i in range(5)]

Create the constraints
model.Add(5*vars[0] + 2*vars[1] - 3*vars[3] <= 3)
model.Add(vars[2] + vars[4] == 1)

Define the objective function
model.Maximize(sum(vars))

Solve the problem
solver = cp_model.CpSolver()
status = solver.Solve(model)
The most common status’ of a solution are:
cp_model.FEASIBLE, cp_model.OPTIMAL or cp_model.INFEASIBLE

Obtain the value of a variable
solver.Value(vars[0])

There are two comments we can add to the above code:

• We are creating the variables of the problem with the factory method NewBoolVar
from our CpModel object. Particularly, this method creates and instance of an IntVar
whose values are restricted to 0 or 1 (just like we defined it in the mathematical model).
Note this method takes a string as an argument, which is the name of the created variable
(var1, var2... in our example). To create this string, we are using f-strings [19].

• Note that we are seamlessly creating instances of the Constraint class by operating
on the variables (vars[2] + vars[4] == 1). The reason for this is the IntVar
class has overloaded the mathematical operators and the comparison operators.

12

2. State of technology

Google provides a more advanced example on the usage of their module at [20].

2.5. Java

An interpreted object-oriented language. A basic introduction to the language and some of its features can
be found at [21]. Particularly, this project will be developed using Java 8. Its official documentation can be
found at [22].

To understand the code written for this project, we will briefly describe three advanced features of this
language:

2.5.1. Lambda expressions

Lambda expressions provide a concise way of creating a one method anonymous class [23] instance. This
is, with just one expression, we can declare and instantiate a class that only declares one method.

First of all, we will show the syntax of lambda expressions, and then provide examples of its usage:

Java – Lambda expression – Syntax
(arg1, arg2...) -> {
 // Inside these brackets, we can write regular Java code
 arg1.doSomething();
 arg2.doSomethingElse();
 ...
 return ...;
}

arg1, and arg2 would be the parameters of the method being declared. If the method has no parameters,
the brackets will be empty “() -> {...}”. Note that, as in regular method declarations, if the method
being declared returns void, the return statement is not necessary.

For example, let’s say we need a class that implements the java.lang.Runnable interface (it only declares
one method run(void)->void). However, this class will only be used once in our code. For example,
to create a java.lang.Thread. Then, a possible solution to this could be:

Java – Lambda expressions – Runnable example
// We first declare a class that implements the interface
public class MyRunnable implements Runnable {
 public void run() {
 System.out.println("Hello, world!");
 // Some other code
 }
}

// Then, in some other class
...
Thread myThread = new Thread(new MyRunnable());
myThread.start();
...

However, this previous code can be simplified by using a lambda expression (the code that is simplified
has been highlighted in yellow):

13

2. State of technology

Java – Lambda expressions – Runnable example with lambda expression
...
Thread myThread = new Thread(() -> {
 System.out.println("Hello, world!");
 // Some other code
});
myThread.start();
...

Note that it is specially important knowing that this implementation of the Runnable interface will only be
used once in our code. The reason for this is the created class is anonymous and cannot be instantiated
again. E.g. if we wanted to create a new thread, in the first example we would only need to create another
instance of MyRunnable. However, on the second example, we would have to create a new anonymous
class using a lambda expression, which would lead to duplicated code:

Java – Lambda expressions – Another thread with MyRunnable
// In some class
...
Thread myThread = new Thread(new MyRunnable());
...

// In some other class
...
Thread anotherThread = new Thread(new MyRunnable());
...

Java – Lambda expressions – Another thread with a lambda expression
// In some class
...
Thread myThread = new Thread(() -> {
 System.out.println("Hello, world!");
 // Some other code
});
...

// In some other class
...
Thread anotherThread = new Thread(() -> {
 // This code would be duplicated
 System.out.println("Hello, world!");
 // Some other code
});
...

If the method being declared only contains one statement, the syntax can be further simplified:

Thread myThread = new Thread(() -> System.out.println("Hello!"));
// In general (arg1, arg2...) -> someStatement...

With this simplified syntax, if the method being declared had a return type other than void, the value
returned by someStatement would be returned. For example, we can use a lambda expression to create
an instance of a class implementing the java.util.Comparator<E> interface:

Comparator<Integer> comp = (num1, num2) -> num1 – num2;

14

2. State of technology

For further information on Lambda expressions, refer to the Oracle documentation at [24].

2.5.2. Streams API

Briefly described, the Streams API allows performing operations in sequences of elements from a
declarative programming [25] perspective. From the official documentation [26]:

“Streams differ from collections in several ways:

• No storage. A stream is not a data structure that stores elements; instead, it conveys elements from a
source such as a data structure, an array, a generator function, or an I/O channel, through a pipeline of
computational operations.

• Functional in nature. An operation on a stream produces a result, but does not modify its source. For
example, filtering a Stream obtained from a collection produces a new Stream without the filtered
elements, rather than removing elements from the source collection.

• Laziness-seeking. Many stream operations, such as filtering, mapping, or duplicate removal, can be
implemented lazily, exposing opportunities for optimization. For example, "find the first String with
three consecutive vowels" need not examine all the input strings. Stream operations are divided into
intermediate (Stream-producing) operations and terminal (value- or side-effect-producing) operations.
Intermediate operations are always lazy.

• Possibly unbounded. While collections have a finite size, streams need not. Short-circuiting
operations such as limit(n) or findFirst() can allow computations on infinite streams to complete in
finite time.

• Consumable. The elements of a stream are only visited once during the life of a stream. Like an
Iterator, a new stream must be generated to revisit the same elements of the source.”

Stream operations can be divided into intermediate and terminal operations. This operations are combined
to form a stream pipeline, which consists of a data source such as a Collection; then zero or more
intermediate operations such as Stream.map; and a terminal operation such as Stream.reduce.

One of the Streams API common use cases is applying the Filter/Map/Reduce design pattern [27]. For
example, we can calculate the sum of the squares of all even numbers from 1 to 10 as:

Java – Streams API example
// First, we create the list
List<Integer> myList = new ArrayList<>();
for (int i = 1; i <= 10; i++) {
 myList.add(i);
}
// Apply the streams api to get the result
int result = myList.stream()
 .filter(i -> i%2 == 0)
 .map(i -> i*i)
 // The first argument of reduce is partialSum’s initial value
 .reduce(0, (partialSum, i) -> partialSum + i);

Note: filter requires an instance of a class implementing the java.util.function.Predicate interface, map
requires an instance of a class implementing the java.util.function.Function interface and reduce’s
second argument has to be an instance of a class implementing the java.util.function.BiFunction interface.
For all of these, we are using lambda expressions.

15

2. State of technology

For further information, refer to the official documentation [26].

2.5.3. Annotations

From the Oracle tutorial at [28]:

“Annotations, a form of metadata, provide data about a program that is not part of the program itself.
Annotations have no direct effect on the operation of the code they annotate.

Annotations have a number of uses, among them:

• Information for the compiler — Annotations can be used by the compiler to detect errors or
suppress warnings.

• Compile-time and deployment-time processing — Software tools can process annotation
information to generate code, XML files, and so forth.

• Runtime processing — Some annotations are available to be examined at runtime.”

We can annotate, among others, method declarations, class declarations and properties of a class. To use
an annotation, we prefix the annotation name with the at sign (@). E.g. (@Entity)

A common use of annotations is to declare a method is being overridden:

@Override
String toString() {...}

The @Override annotation informs the compiler we are trying to override an element declared in a
superclass. This annotation is not required. However, it will make the compiler generate an error if the
element does not correctly override a method on one of its superclasses. This allows us to easily detect an
error that could otherwise be harder to find.

Now, let’s say we want to create an annotation of our own that will be used to declare metadata about a
class, such as its author, the last modified date… Then, the information in this annotation has to be
included in the generated javadoc (We know the standard javadoc already provides tags to include this
information, but this is just an example). To do this, we use @interface:

Java – Annotation declaration example
import java.lang.annotation.Documented;

// This will make the information in ClassPreamble appear
// in Javadoc-genereted documentation
@Documented
// We declare the annotation
@interface ClassPreamble {
 String author();
 String date();
 // Annotation’s elements can have default values
 int currentRevision() default 1;
 String lastModified() default "N/A";
 String lastModifiedBy() default "N/A";
 // Note use of array
 String[] reviewers();
}

16

2. State of technology

Now, we can use the annotation as follows:

Java – Annotation usage example
@ClassPreamble (
 author = "John Doe",
 date = "3/17/2002",
 currentRevision = 6,
 lastModified = "4/12/2004",
 lastModifiedBy = "Jane Doe",
 // Note array notation
 reviewers = {"Alice", "Bob", "Cindy"}
)
public class SomeClass extends SomeOtherClass {…}

This example has been taken from the previously mentioned Oracle tutorial. Refer to it for further
information on annotations.

2.6. REST

REST stands for Representational State Transfer [29], and it is an architectural design pattern that can be
used to communicate distributed systems. Specifically, this pattern states we can identify Resources within
a system (which represent the system’s information). Then, exchanged data corresponds to the
representation of the state of a specific Resource. Lastly, the basic CRUD (Create, Read, Update and
Delete) operations should be provided to be able to act upon these resources.

Usually, a REST service uses HTTP [30], and takes advantage of its methods to provide CRUD
operations on the resources: GET, to read; POST, to create; PUT, to update; DELETE, etc. Then, the
resources are usually encoded as JSON [16] or XML [31] and included in the body of the requests. For
example:

REST – Request example
GET users/1 HTTP/1.1
Accept: application/json

REST – Response example
HTTP/1.1 200 OK
Content-type: application/json

{“username”: “example1234”, “email”: “example@example.com”...}

2.7. HAL

HAL stands for JSON Hypertext Application Language [32]. Simply put, HAL defines certain JSON
properties to represent resources and their related hyper-links. E.g. the property __links represents links
related to a resource. To better understand HAL, the following example represents a GET request of the
state of an order resource, and its response:

HAL – Request example
GET /orders/523 HTTP/1.1
Host: example.org

17

2. State of technology

Accept: application/hal+json

HAL – Request response
HTTP/1.1 200 OK
Content-Type: application/hal+json

{
 "_links": {
 "self": { "href": "/orders/523" },
 "warehouse": { "href": "/warehouse/56" },
 "invoice": { "href": "/invoices/873" }
 },
 "currency": "USD",
 "status": "shipped",
 "total": 10.20
}

The state of the resource is accessed by the URI “/orders/523”, with links to its “warehouse” and “invoice”
associated resources. This example has been taken from the HAL specification.

Note that the inclusion of hypertext (__links) will simplify the client’s development. For instance, the
client would not need to evaluate resource’s states, but could just make decisions based to the response’s
links. E.g. let’s imagine the order from the previous example had a state in which it could be cancelled.
Then, if the order was in that state the server would include a “cancel” link in the response. This way the
client knows an order can be cancelled only when this link is present.

2.7.1. Templated links

A relevant feature to this project is that link representations is HAL can be templated. This is, they can
contain parameters whose values will be chosen by the client before making a request. The process of
choosing the values for the template parameters will be referred to as building a link.

Now, we will provide different examples on the types of link parameters that will be used in this project.
However, in this section, we will not explain the meaning of these links, but just show how they are
represented and how to build them. To know the meaning of the links, refer to 4.4.1 Service’s resources.

For example, a link such as:

HAL – Templated link – Optional query parameter
“doctors”: {
 “href”: “DOMAIN/guardians/doctors/{?email}”,
 “templated”: true
}

Represents a link with an optional query parameter “email”. The client could then decide to ignore this
parameter and build the link as:

DOMAIN/guardians/doctors/

or could give it a value and build the link as:

DOMAIN/guardians/doctors/?email=example@example.com

Query parameters can also be mandatory, such as in this example:

18

2. State of technology

HAL – Templated link – Mandatory query parameter
“newDoctor”: {
 “href”: “DOMAIN/guardians/doctors/startDate={?startDate}”,
 “templated”: true
}

This way, to build the link, the client would have to assign a value to “startDate”. For example:

DOMAIN/guardians/doctors/?startDate=2020-08-15

One last comment on templated links is they can also contain path parameters. This is, a parameter needed
to complete the URI. For example:

HAL – Templated link – Path parameter
"doctor": {

 "href": "DOMAIN/guardians/doctors/{doctorId}",
 “templated”: true

}

This way, the client would have to assign a value to “doctorId”. For example:

DOMAIN/guardians/doctors/1

2.8. Spring

Spring is an open source framework for programming in Java, with useful libraries to (among others)
develop REST services. This section describes the most relevant features of this framework needed to
understand this project, as it has been developed using this framework. For further information, refer to the
Spring’s official site at [33].

First of all, to start a Spring project from scratch, the website at [34] provides with a graphical interface to
select the project type and its dependencies. This project will use Maven [35] as its management tool. All
of the dependencies of this project can be found on the repositories at Appendix A – Code. Still, we will
explain the most relevant ones in this section.

Before that, to be able to understand the following sections, we need to know the basic structure of Spring
projects:

Spring – Directory structure
projectMainDirectory/
 |- src/
 | |- main/
 | | | # The packages inside the project’s main package have
 | | | # been chosen arbitrarily, and can be different on
 | | | # different applications. These will be the ones used
 | | | # in the examples of this section
 | | |- my/project/package/
 | | | |- controllers/
 | | | | |- GreetingController.java
 | | | | |- BookController.java
 | | | | |- MyAdviceController.java
 | | | | |- ...

19

2. State of technology

 | | | |- exceptions/
 | | | | |- BookNotFoundException.java
 | | | | |- ...
 | | | |- entities/
 | | | | |- Book.java
 | | | | |- ...
 | | | |- daos/
 | | | | |- BookDAO.java
 | | | | |- ...
 | | | |- MyApplication.java
 | | | |- ...
 | |- resources/
 | | |- static/ # Contains static HTML, JS and CSS
 | | | |- index.html
 | | | |- ...
 | | |- templates/ # See 2.8.5 Thymeleaf
 | | | |- myTemplate.html
 | | | |- ...
 | | |- application.properties # Main configuration file
 | | |- ...
 | |- test/
 | | |- my/project/package/ # Contains Test classes
 | | | |- controllers/
 | | | | |- GreetingControllerTests.java
 | | | | |- BookControllerTests.java
 | | | | |- MyAdviceControllerTests.java
 | | | | |-...
 | | | |- exceptions/
 | | | | |- BookNotFoundExceptionTests.java
 | | | | |- ...
 | | | |- entities/
 | | | | |- BookTests.java
 | | | | |- ...
 | | | |- MyApplicationTests.java
 | | | |- ...
 |- mvnw # These two last files will be present only if we use
 |- pom.xml # Maven as the project’s management tool.

Besides the explanations that will be given in the following sections, the following guides have been key to
develop this project:

• Building a RESTful service with Spring [36].

• REST Beyond the Obvious – Oliver Gierke [37].

• Accessing data with MySQL [38].

• How To Do @Async In Spring | Baeldung [39].

• Guide To Internationalization In Spring Boot | Baeldung [40].

• Spring Boot: Customize Whitelabel Error Page | Baeldung [41] (E.g. 404 Not Found page).

We will now explain how to use the Spring’s features relevant to this project. Note we will only explain
how to use the features, but not how they are implemented internally. For further information with this

20

2. State of technology

regards, refer to the documentation of each library.

2.8.1. Spring Web

The Spring Web project provides an implementation of the Model-View-Controller pattern. This section
explains how to use the different annotations provided by this project to configure and run a web
application. For further information on the underlying logic, refer to the official documentation at [42]. The
post at [43] also provides a general overview on the internals of the Spring web project.

2.8.1.1. Simple GET example

In this example, we will explain how to receive and respond to a simple GET request. First of all, we will
create a controller class that will respond to GET requests to the /hello/world URI:

Spring – Spring Web – Simple GET example – GreetingController
package my.project.package.controllers;

import org.springframework.stereotype.Controller;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.ResponseBody;

@Controller // Declares this class will handle requests
@RequestMapping("/hello") // Handles request starting with /hello
public class GreetingController {
 @GetMapping("/world") // Handle GET request to /hello/world
 @ResponseBody // The return value will be the HTTP response body
 public String greeting() {
 return "Hello, World!";
 }
}

Lastly, we will have to create the entry point of the application:

Spring – Spring Web – Simple GET example – MyApplication
package my.project.package;

import org.springframework.boot.SpringApplication;
import

org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class MyApplication {
 public static void main(String[] args) {
 SpringApplication.run(MyApplication.class, args);
 }
}

This application class will be common to all the following examples. It uses the Spring Boot
autoconfiguration to create a Servlet container (Apache Tomcat [44] by default) listening to HTTP
requests (on port 8080 by default). For further information on Spring Boot, refer to its official
documentation at [45].

21

2. State of technology

Now, to run the application, we can build the project as a jar file:

Spring – Spring Web – Build and Run the application
./mvnw clean install # Run from the project main directory
java -jar target/GENERATED_FILE.jar

The generated jar file will contain all the project dependencies, so that we only need a JVM (Java Virtual
Machine) to run our application. Note the name of the generated file will depend artifactdId and
version configured on pom.xml.

We can check it is working using curl [46]:

>> curl localhost:8080/hello/world
Hello, World!

2.8.1.2. POST example

Now, we will configure a controller that will handle POST messages and will respond with a JSON object.
First of all, we will create a simple POJO (Plain Old Java Objet) to represent a book:

Spring – Spring Web – POST example – Book
package my.project.package.entities;

public class Book {
 private Integer id;
 private String title;
 private String author;

 // Setters and Getters...
}

Now, we will create the controller:

Spring – Spring Web – POST example – BookController
pacakge my.project.package.controllers;

import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.RequestBody;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;

@RestController // Short for @Controller and @ResponseBody
@RequestMapping("/books")
public class BookController {
 @PostMapping("") // Handle POST requests to /books/
 // The request body has to have a Book object encoded
 public Book newBook(@RequestBody Book book,
 // There will be an optional query parameter called
 //‘salutation’
 @RequestParam(required = false) String salutation) {
 System.out.println("Salutation is: " + salutation);
 book.setId(1);
 // The book will be sent back in the response body

22

2. State of technology

 return book;
 }
}

As mentioned before, all applications need an entry point like the one in 2.8.1.1 Simple GET example.
They will also have to be built and launched the same way. So this step will be skipped in the following
explanations.

Now we can test the controller:

Spring – Spring Web – POST example – POSTing a Book resource
First, without the query parameter
>> curl -X POST -H 'Content-Type: application/json' \
>> localhost:8080/books \
>> -d '{"title":"Lord of the Rings", "author": "J.R.R. Tolkien "}'
{"id":1,"title":"Lord of the Rings","author":"J.R.R. Tolkien "}
On the server console: ‘Salutation is: null’

Now, with the query parameter
>> curl -X POST -H 'Content-Type: application/json' \
>> localhost:8080/books?salutation=hello \
>> -d '{"title":"Lord of the Rings", "author": "J.R.R. Tolkien "}'
{"id":1,"title":"Lord of the Rings","author":"J.R.R. Tolkien "}
On the server console: ‘Salutation is: hello’

Note that, by default, Spring will serialize the response body object as JSON.

2.8.1.3. Path parameter and ResponseEntity example

Now, continuing with the previous example, we will add a GET mapping to the BookController:

Spring – Spring Web – Path parameter and ResponseEntity example – getBook
method
import org.springframework.http.ResponseEntity;
import org.springframework.web.bind.annotation.PathVariable;
...

@GetMapping("{id}") // Get requests to ‘/books/{id}’
// The id argument will be mapped from the {id} parameter in
// the path
public ResponseEntity<Book> getBook(@PathVariable Integer id) {
 if (id != 1) {
 // Respond with 404 Not Found
 return ResponseEntity.notFound().build();
 } else {
 // Respond 200 Ok and the book in the response body
 return ResponseEntity.ok(new Book(1, "Lord of the Rings",
 "J.R.R. Tolkien"));
 }
}

Now, we can test the controller:

23

2. State of technology

Spring – Spring Web – Path parameter and ResponseEntity example – GETting a
Book
>> curl localhost:8080/books/1 -v
...
Server Response
HTTP/1.1 200
Content-Type: application/json
...

{"id":1,"title":"Lord of the Rings","author":"J.R.R. Tolkien"}

>> curl localhost:8080/books/2 -v
...
Server Response
HTTP/1.1 404
Content-Length: 0
...

2.8.1.4. Exception handling example

Let’s suppose we do not want to deal with the ResponseEntity on our controller, as in the previous
example. Then, we can throw an exception, and handle it from a RestControllerAdvice. First, let’s create
the exception:

Spring – Spring Web – Exception handling example – BookNotFoundException
package my.project.package.controller.exceptions;

public class BookNotFoundException extends RuntimeException {
 public BookNotFoundException(Integer bookId) {
 super("Could not find book with id: " + bookId);
 }
}

Now, we will change the GET handler on our BookController:

Spring – Spring Web – Exception handling example – Modified getBook method
@GetMapping("{id}/")
public Book getBook(@PathVariable Integer id) {
 if (id != 1) {
 throw new BookNotFoundException(id);
 } else {
 return new Book(1, "Lord of the Rings", "J.R.R. Tolkien");
 }

 }

And lastly, we have to define a RestControllerAdvice (These type of controllers handle thrown
exceptions):

Spring – Spring Web – Exception handling example – MyAdviceController
package my.project.package.controllers;

import org.springframework.http.HttpStatus;
import org.springframework.web.bind.annotation.ExceptionHandler;

24

2. State of technology

import org.springframework.web.bind.annotation.ResponseStatus;
import
 org.springframework.web.bind.annotation.RestControllerAdvice;

@RestControllerAdvice // @ControllerAdvice plus @ResponseBody
public class MyAdviceController {
 @ExceptionHandler(BookNotFoundException.class)
 @ResponseStatus(HttpStatus.NOT_FOUND)
 public String bookNotFound(BookNotFoundException e) {
 return e.getMessage();
 }
}

We can now test the controller advice:

Spring – Spring Web – Exception handling example – Querying the server
>> curl localhost:8080/books/2
...
Server Response
HTTP/1.1 404
Content-Length: 30
...
Could not find book with id: 2

2.8.1.5. Dependency injection

As explained at [47] dependency injection allows for loose coupling of components, and moves the
responsibility of managing components onto the framework. This improves modularity, and makes testing
easier (as it allows injecting mocks). Specifically, in Spring, dependency injection is controlled with two
annotations: @Autowired and @Component.

Continuing with the previous example, let’s say we want to persist our Books. To do this, we are going to
create a DAO responsible for dealing with the database:

Spring – Spring Web – Dependency injection – BookDAO
package my.project.package.daos;

import org.springframework.stereotype.Component;

// We declare de BookDAO as a component of our application
@Component
public class BookDAO {
 public Book persist(Book book) {
 // Logic to persist a Book...
 }

 public Book findById(Integer id) {
 // Logic to find a Book...
 }

 ...
}

Now, if we need an instance on this class in the BookController, we just have to inject it with the

25

2. State of technology

Autowired annotation:

Spring – Spring Web – Dependency injection – Injecting BookDAO to
BookController
import org.springframework.beans.factory.annotation.Autowired;
...

@RestController
@RequestMapping("/books")
public class BookController {
 // This will have Spring inject an instance of BookDAO
 @Autowired
 private BookDAO bookDao;
 ...
}

This way, Spring would analyse the components of our application, their dependencies, and would then
inject them. For further information on other uses and the implementation of dependency injection in
Spring, refer to its official documentation at [48].

2.8.2. Lombok

Lombok [49] is a Java library that provides annotations to reduce boilerplate codev. Specifically, in this
project, we will make use of two of its annotations:

• lombok.Data:

This class level annotation generates Setter and Getter methods for all properties of the class. It
also generates a toString, equals and hashcode methods. For example, we can now declare our
Book class as follows:

Spring – Lombok – Book redefinition with @Data
package my.project.package.entities;

import lombok.Data;

@Data
public class Book {
 private Integer id;
 private String title;
 private String author;
}

If we convert a value to string:

System.out.prinln(
 new Book(1, "Lord of the Rings", "J.R.R. Tolkien"));

We get:

Book(id=1, title=Lord of the Rings, author=J.R.R. Tolkien)

• lombok.extern.slf4j.Slf4j:

v Boilerplate code refers to a section of code that is widely repeated with few modifications. For example, getters and setters in a POJO
(Plain Old Java Object) class.

26

2. State of technology

This class level annotation injects an org.slf4j.Logger [50] into the annotated class. The name of
the generated property will be log. Usage example:

Spring – Lombok - @Slf4j log annotation
package my.project.package.controllers;

import lombok.extern.slf4j.Slf4j;
...

@Slf4j // This will declare a private final static
 // property called log
public class BookController {
 @PostMapping("")
 public Book newBook(@RequestBody Book book,
 @RequestParam(required = true) Optional<String>

salutation) {
 log.info("Salutation is: " + salutation);
 log.debug("The sent book is: " + book);
 book.setId(1);
 return book;
 }
 ...
}

The log can be configured in the application.properties file. For example:

Spring – Lombok – Logging configuration
logging.level.my.project.packages = debug
logging.level.my.promect.packages.controllers = info
logging.level.my.project.packages.controllers.exceptions = \
 warn
logging.file.name = myProject.log

2.8.3. Spring Data JPA

From the official Spring Data JPA home page [51]:

“Implementing a data access layer of an application has been cumbersome for quite a while. Too much
boilerplate code has to be written to execute simple queries as well as perform pagination, and auditing.
Spring Data JPA aims to significantly improve the implementation of data access layers by reducing the
effort to the amount that’s actually needed. As a developer you write your repository interfaces, including
custom finder methods, and Spring will provide the implementation automatically.”

To start using the Spring Data JPA repositories, we need to define our entities using the Java Persistence
API [52] (JPA). For example, we can define a simple User entity as:

Spring – Spring Data JPA – Usage of @Entity
package my.project.package.entities;

import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.Id;

@Entity // Declare User as a JPA entity

27

2. State of technology

public class User {
 @Id // The id property will be the primary key of User
 @GeneratedValue // The value of id will be autogenerated
 private Integer id;
 private String username;
 private String email;

 // Getters and Setters
}

Then, we can declare a JpaRepository [53] that will allow us to perform all CRUD operations on this
entity:

Spring – Spring Data JPA – Usage of JpaRepository
package my.project.package.daos;

import org.springframework.data.jpa.repository.JpaRepository;

public interface UserRepository
 extends JpaRepository<User, Integer> {
 // There is no need to declare methods on the interface
 // The basic CRUD operations are already provided with the
 // ‘save(User)->User’, ‘findById(Integer)->User’,
 // ‘findAll()->List<User>’ anb ‘deleteById(Integer)->void’
 // methods.
 // These are only some of the methods declared by the
 // JpaRepository interface. Refer to its documentation for more.
}

JPA will then auto-generate a class implementing this simple interface. This implementation of this will
depend on the configured database of the project.

Now, let’s say we want to add some validation logic to the User. For example, the username cannot be
empty, and the email has to be valid:

Spring – Spring Data JPA – Validation
package my.project.package.entities;

import javax.validation.constraints.Email;
import javax.validation.constraints.NotBlank;

@Entity
public class User {
 @Id
 @GeneratedValue
 private Integer id;
 @NotBlank
 private String username;
 @Email
 private String email;

 // Getters and Setters
}

These new annotations will be used by the javax.validation.Validator [54] [55] to check whether an

28

2. State of technology

instance of an entity is valid or not. Particularly, entities will always be validated before they are persisted.
Moreover, we can make our Controllers only accept valid entities by using the @Valid [56] annotation:

Spring – Spring Data JPA - @Valid
// Inside some controller
...
@PostMapping
public User newUser(@Valid User user) {
 // Code inside this function will only be called if the received
 // User is valid. Otherwise, an error message will be
 // automatically returned.
}
...

The available validation annotations can be found at [57]. Custom validation annotations can also be
added. Refer to [58] for an explanation on how to create them.

We can also define more relations between entities using JPA. For example, let’s add an Address and a list
of friends to our User:

Spring – Spring Data JPA – Entity’s relations
package my.project.package.entities;
// New user class
import javax.persistence.ManyToMany;
import javax.persistence.OneToOne;

@Entity
public class User {
 @Id
 @GeneratedValue
 private Integer id;
 private String username;
 private String email;

 @OneToOne // One User entity is related to exactly one Address
 private Address address;

 @ManyToMany // Each User can be related to many Users
 private List<User> friends;
}

// Address class
import javax.persistence.MapsId;

@Entity
public class Address {
 @Id
 private Integer userId;
 @MapsId // Define userId as a foreign key of the User entity
 @OneToOne
 private User user;
}

For further explanations on how to map entities to classes, refer to [59]. For information on how to declare
composite primary keys (made of several properties) refer to [60].

29

2. State of technology

2.8.4. Spring HATEOAS

HATEOAS stands for Hypermedia as the Engine of Application State. As from the project’s home page
[61]:

“Spring HATEOAS provides some APIs to ease creating REST representations that follow the
HATEOAS principle when working with Spring and especially Spring MVC. The core problem it tries to
address is link creation and representation assembly.”

We can find further information on the HATEOAS principle at [62]. However, this section will focus on
how to use the Spring HATEOAS libraries for link creation and resource assembly.

2.8.4.1. Server side

The main classes involved in resource representation on Spring HATEOAS are EntityModel [63] and
CollectionModel [64]. As their names suggests, they represent a single entity, along with their relations;
and a collection of entities, along with its relations. To convert an entity in our application to their
EntityModel representation, we need a resource assembler: RepresentationModelAssembler [65].

To provide an example on link creation, we will add new mappings to the UserController from our
previous User example:

Spring – HATEOAS – Server side – UserController
...
@RestController
@RequestMapping("/users")
@Slf4j
public class UserController {
 @Autowired
 private UserRepository userRepository;
 @GetMapping("")
 public List<User> getUsers(
 // We have added a new optional parameter
 @RequestParam(required = false) String salutation) {
 log.info("Salutation is: " + salutation);
 return userRepository.findAll();
 }

 // We have added a new GET mapping: /users/{id}
 @GetMapping("/{id}")
 public User getUser(@PathVariable Integer id) {
 return userRepository.findById(id).orElse(null);
 }
}

Now, we can create a UserAssembler that will create links pointing to these methods:

Spring – HATEOAS – Server side – RepresentationModelAssembler
package my.project.package.assemblers;

import static
 org.springframework.hateoas.server.mvc.WebMvcLinkBuilder.*;
import org.springframework.hateoas.EntityModel;
import

30

2. State of technology

 org.springframework.hateoas.server.RepresentationModelAssembler;
import org.springframework.stereotype.Component;

@Component // This allows autowiring
public class UserAssembler
implements RepresentationModelAssembler<User, EntityModel<User>> {
 @Override
 public EntityModel<User> toModel(User entity) {
 return EntityModel.of(entity,
 linkTo(methodOn(UserController.class)
 .getUser(entity.getId()))
 .withSelfRel(),
 linkTo(methodOn(UserController.class).getUser(null))
 .withRel("user"),
 linkTo(methodOn(UserController.class).getUsers(null))
 .withRel("users"),
 linkTo(methodOn(UserController.class).getUsers("HelloWorld"))
 .withRel("usersWithSalutation"));
 }
}

The attributes passed on the methods are used by the HATEOAS library to construct the links. For
example, on the first link, the path variable id from the link /users/{id} will get substituted by the
user’s id. However, on the second link, as the id parameter is null, it will not be substituted (see following
example).

To try this assembler, let’s add a new mapping to our UserController:

Spring – HATEOAS – Server side – UserController.getTestUser method
@GetMapping("/test-user")
public EntityModel<User> getTestUser() {
 User user = new User();
 user.setId(1);
 user.setUsername("example");
 user.setEmail("example@example.com");
 // Assume the UserAssembler has been autowired as
 // ‘userAssembler’
 return userAssembler.toModel(user);

 }

Now, to test it, let’s make a get request:

Spring – HATEOAS – Server side – Request the representation state of a User in
HAL
>> curl localhost:8080/users/test-user
{

 "id": 1,
...

 "_links": {
 "self": {
 "href": "http://localhost:8080/users/1"
 },
 "user": {
 "href": "http://localhost:8080/users/{id}",
 "templated": true

31

2. State of technology

 },
 "users": {
 "href": "http://localhost:8080/users/{?salutation}",
 "templated": true
 },
 "usersWithSalutation": {
 "href": "http://localhost:8080/users/?salutation=HelloWorld"
 }
 }
}

Note that EntityModels are serialized as HAL, and not just bare JSON.

The RepresentationModelAssembler has another useful method that can be overridden:

Spring – HATEOAS – Server side – toCollectionModel
// Inside the UserAssembler class
...
@Override
public CollectionModel<EntityModel<User>>
 toCollectionModel(Iterable<? extends User> entities) {
 List<EntityModel<User>> userEntities = new LinkedList<>();
 for (User user : entities) {
 userEntities.add(this.toModel(user));
 }
 return CollectionModel.of(userEntities,
 linkTo(methodOn(UserController.class).getUsers(null))
 .withSelfRel());
}
...

And now, we can define a new mapping on the UserController to test this method:

Spring – HATEOAS – Server side – UserController.getTestUsers method
@GetMapping("/test-users")
public CollectionModel<EntityModel<User>> getTestUsers() {
 List<User> users = new LinkedList<>();
 User user = null;
 for (int i = 1; i <=5; i++) {
 user = new User();
 user.setId(i);
 user.setUsername("example" + i);
 user.setEmail("example " + i + "@example.com");
 users.add(user);
 }
 return userAssembler.toCollectionModel(users);
}

Lastly, we test it (this is the response body of a GET message to /users/test-users):

Spring – HATEOAS – Server side – Representation of a collection of resources states
{

 "_embedded": {
 "userList": [

32

2. State of technology

 {
 "id": 1,
 ...
 "_links": {
 ...
 }
 },
 {

 "id": 2,
 ...
 "_links": {
 ...
 }
 },
 ...
]
 }
 "_links": {

 "self": {
 "href": "http://localhost:8080/users/{?salutation}",
 "templated": true
 }
 }
}

2.8.4.2. Client side

To consume HAL content with the Spring HATEOAS libraries, we can use the Traverson [66] class. This
class allows us to navigate a REST API that produces HAL content just by knowing its base URI and the
relations of the links. For example, if we were to request the user with id 1 from the previous example:

Spring – HATEOAS – Client side – Traverson usage
import java.net.URI;
import org.springframework.core.ParameterizedTypeReference;
import org.springframework.hateoas.MediaTypes;
import org.springframework.hateoas.client.Hop;
import org.springframework.hateoas.client.Traverson;
...

Traverson traverson =
 // Base URI of the REST api
 new Traverson(URI.create("http://localhost:8080/"),
 MediaTypes.HAL_JSON);
 // As we cannot apply generic types to Class objects,
 // (EntityModel<User>.class is not valid syntax) we have to
 // create a ParameterizedTypeReference, to be able to decode
 // the response User
 ParameterizedTypeReference<EntityModel<User>>
 userTypeReference =
 new ParameterizedTypeReference<EntityModel<User>>() {};
 // The traverson will make a get request to the base URI, and
 // follow the relations from there
 EntityModel<User> userEntity = traverson
 // If a relation is templated, we can substitute its

33

2. State of technology

 // parameters with this useful Hop builder method
 .follow(Hop.rel("user").withParameter("id", 1))
 .toObject(userTypeReference);

Note that, for the Traverson to be able to find the desired resources, a GET request to the base URI of our
REST service has to return an EntityModel with links to the other resources in the API. In the previous
example, we are supposing the base resource of the application contains a link as follows:

"user": {
 "href": "http://localhost:8080/users/{id}",
 "templated": true
 }

For further information on the use of a Traverson, refer to the Client-side Support section on the official
documentation at [67].

Note that the Traverson only performs GET requests. For other types of requests, we can use a
RestTemplate [68]. A useful guide to understand this class can be found at [69].

2.8.5. Thymeleaf

Thymeleaf is an XML [31] template engine. This is, it allows applying transformations to template files in
order to display application data. As they describe it in their official documentation [70]:

“The main goal of Thymeleaf is to provide an elegant and well-formed way of creating templates. In order
to achieve this, it is based on XML tags and attributes that define the execution of predefined logic on the
DOM (Document Object Model), instead of explicitly writing that logic as code inside the template.”

To give an overview on the features of thymeleaf, let’s provide a basic example template:

Thyemleaf – Template example
<!DOCTYPE html>
<html xmlns:th="http://www.thymeleaf.org">
<head>
 <title th:text="#{my-title}"></title>
</head>
<body>
 <h1 th:text="'User: ' + ${user.id}"></h1>
 <p th:if="${showUsername}" th:text="${user.username}"></p>
</body>
</html>

We can see we are using some special attributes that will be parsed by the Thymeleaf template engine. For
example, th:text will set the text of the tagged element to be the result of parsing the inner thymeleaf
standard expression. Or th:if will only include the tagged element if the inner expression evaluates to
true.

The expressions that will be most commonly used for this project are:

#{...}: A message expression that will be evaluated and searched for in the configured message source
according to the configured locale (refer to the “Using Texts” section in the official documentation).

${...}: A variable expression.

34

2. State of technology

For example, #{my-title} will search for a message identified by “my-title”. And ${user.id} will
search for a JavaBean named “user” and get its property “id”.

For further information on the usage and configuration of Thymeleaf, refer to its official documentation at
[70].

35

2. State of technology

36

3. REQUIREMENTS

This chapter describes the requirements of this project. They have been directly taken from the doctor
currently responsible for scheduling and managing shifts at the internal medicine department of the
Hospital Universitario Virgen Macarena (HUVM).

As this project is being developed, the only current requirements to the system are functional ones. They
have already been explained in plain words in the introduction section. However, to be able to track them
properly, we will describe them formally.

Note that, even if the scope of the project is to only solve the scheduling problem, this chapter will describe
the requirements to solve all three problems. This will make it a useful guide to continue developing the
system after this project is complete.

3.1. Actors

This section will define the different actors currently involved in the three stated problems:

Table 1: A-01 - Doctor

A-01 Doctor

Description This actor will refer to any doctor whose shifts have to be scheduled.

Table 2: A-02 – Shift manager

A-02 Shift manager

Description This actor refers to the person in charge of scheduling the shifts and assigning the pager to all
doctors. This person is also responsible for registering changes of shifts.

37

3. Requirements

Table 3: A-03 - Manager

A-03 Manager

Description This actor refers to the doctor’s manager. To the concerns of this project, this is just the person
responsible for accepting or declining shift changes.

Table 4: A-04 - Secretary

A-04 Secretary

Description To the concerns of this project, this actor refers to the person in charge of sending via email the
schedule to all the doctors.

3.2. Use cases

3.2.1. Current situation

The following image represents the different procedures that currently need to be handled manually by the
shift manager:

Note that currently, there is no software system responsible for implementing the uses cases in the diagram
above. The diagram just represent the different activities that have to be performed.

Each of these procedures are as follows:

38

Figure 6: Current use cases

3. Requirements

1. Scheduling of shifts:

Note that, as mentioned before, there is no dedicated software being used for scheduling. This is
the reason why all the participants in the current processes are actors.

2. Shift changes:

39

Figure 7: Current scheduling procedure

Figure 8: Current shift change procedure

3. Requirements

3.2.2. Desired situation

The following image shows the desired use cases to be implemented by the system being designed:

Note the role of the secretary will no longer be needed, and the shift manager will no longer need to be
responsible for registering shift changes. Also note that, as the design of the Change Shifts use case is not
in the scope of this project, it has not been decomposed into other use cases.

From a very general perspective, the previous procedures should be as follows:

1. Create/Edit doctor:

40

Figure 9: Desired use cases

Figure 10: Desired create/edit doctor procedure

3. Requirements

2. Generate schedule:

Note the interaction between the shift manager and the system will be through a graphical user interface.
The exact nature of this interface will be described in the chapter “Solution Designed”.

41

Figure 11: Desired scheduling procedure

3. Requirements

3. Change shift:

The previous diagram is just a suggestion on how the management problem could be solved. Still, note the
role of the shift manager would no longer be needed, as the system would automatically register and notify
the changes.

3.3. Behavioural requirements

Behavioural requirements will be named as BR.

Table 5: BR-01 – Doctor’s identity

BR-01 Doctor’s identity

Description All doctors registered in the system have to be uniquely identifiable.

42

Figure 12: Desired shift change procedure

3. Requirements

Before proceeding any further, and just as a reminder, we will explain the two main acronyms been used:

• CS: A Cyclic-shift (Jornada Complementaria) refers to the shifts that take place from 20.00 of a
certain day, until 8.00 of the following day.

• NCS: A Non-Cyclic-Shift (Continuidad Asistencial) refers to the shifts that take place from 15.00
of a certain day, until 20.00 of the same day.

3.3.1. Scheduling problem

These requirements will be named as BR-SCH (Behavioural Requirement – Scheduling problem).

Table 6: BR-SCH-01 - Types of shifts

BR-SCH-01 Types of shifts

Description There are two different types of shifts: CS and NCS. Most of the doctors can have both types of
shifts. However, there are some doctors who only have either CS or NCS.

Note The doctors who can have both CS and NCS belong to the internal medicine department.

Table 7: BR-SCH-02 - CS rate

BR-SCH-02 CS rate

Description CS occur at a certain rate. This rate is the same one for all doctors.

Example All CS are repeated every 10 days. This is, if doctor A had a CS the 1st of May, they will also
have a CS the 11th and 21st of May.

Note To calculate CSs, a reference date is needed. In the example above, we knew the doctor had a
CS the 1st of May.

Table 8: BR-SCH-03 - NCS allowed days

BR-SCH-03 NCS allowed days

Description NCS can only take place on working days. For example, there cannot be any NCS on a
Saturday, a Sunday or on national Holidays.

43

3. Requirements

Table 9: BR-SCH-04 - Minimum regular-shifts per doctor

BR-SCH-04 Minimum regular-shifts per doctor

Description Each doctor has to have a minimum number of regular-shifts per month. This minimum can be
different to each doctor.

Example Doctor A has to have 3 or more regular-shifts per month.

Table 10: BR-SCH-05 - Maximum NCS per doctor

BR-SCH-05 Maximum NCS per doctor

Description Each doctor has a maximum number of NCS they can have assigned each month. This
maximum can be different to each doctor.

Table 11: BR-SCH-06 – Consultations per doctor

BR-SCH-06 Consultations per doctor

Description Only some of the doctors who have NCS can have consultations. Specifically, the ones that do
have consultations should have a certain number of them per month.

Note This requirement has a lower priority than BR-SCH-05 - Maximum NCS per doctor.

E.g. let’s say doctor A has to have at least 3 regular-shifts per month, and has a maximum
number of 5 NCS per month. Now, let’s say doctor A does consultations, and has to have 2 per
month. If a certain month, according to other restrictions (like BR-SCH-07 - A CS implies a
regular-shift), doctor A has to have 4 regular-shifts, then they will only have 1 consultation.

Table 12: BR-SCH-07 - A CS implies a regular-shift

BR-SCH-07 A CS implies a regular-shift

Description If a doctor has a CS a certain day, and they can have NCS, they have to have a regular-shift that
day.

Table 13: BR-SCH-08 - Minimum number of regular-shifts and consultations per day

BR-SCH-08 Minimum number of regular-shifts and consultations per day

Description Each working day, there is a minimum number of regular-shifts and a minimum number of
consultations that have to be scheduled. These numbers may be different for each day.

44

3. Requirements

Table 14: BR-SCH-09 - Shift preferences

BR-SCH-09 Shift preferences

Description Each doctor may have certain preferences regarding the days they have their NCS.

Examples  Doctor A would like to have their regular-shifts on Mondays or Tuesdays.

 Doctor B would rather not have their regular-shifts on Thursdays.

 Doctor A would like to have a regular-shift the 15th of May.

 Doctor A would rather not have a regular-shift the 18th of May.

 Doctor C would like to have their consultations on Wednesdays.

Table 15: BR-SCH-10 - History of schedules

BR-SCH-10 History of schedules

Description The system has to keep a history of the schedules of each month.

Only the final version of the schedule is needed. This is, after the shift manager makes changes
(if any), and after applying shift changes (if any).

Table 16: BR-SCH-11 - NCS only when CS

BR-SCH-11 NCS only when CS

Description Some doctors only have their NCS the same days they have their CS. This is, they will only
have their NCSs assigned as per BR-SCH-07 - A CS implies a regular-shift; and no more shifts
than that.

3.3.2. Pager assignment

These requirements will be named as BR-PG (Behavioural Requirements – Pager assignment).

Table 17: BR-PG-01 – Pager allowed days

BR-PG-01 Pager allowed days

Description The pager can only be assigned on working days.

45

3. Requirements

Table 18: BR-PG-02 - Doctors per day

BR-PG-02 Doctors per day

Description Each allowed day (BR-PG-01 – Pager allowed days), the pager has to be assigned to exactly
one doctor.

Table 19: BR-PG-03 – Pager allowed doctors

BR-PG-03 Pager allowed doctors

Description Each day, the pager can only be assigned to a doctor having a CS that day.

Table 20: BR-PG-04 - Maximum assignments per month

BR-PG-04 Maximum assignments per month

Description Doctors should only be assigned the pager once per month.

Note The BR-PG-02 - Doctors per day requirement has a higher priority than this one. This is, if
necessary, some doctors may have the pager assigned more than one day each month.

Table 21: BR-PG-05 - History of pagers

BR-PG-05 History of pagers

Description A history of the assigned of pagers has to be kept for each month.

Table 22: BR-PG-06 - Second pager assignment order

BR-PG-06 Second pager assignment order

Description By meeting requirement BR-PG-02 - Doctors per day, some doctors may need to have the
pager assigned two days of a certain month. To decide which doctors will have the pager twice,
we need the history of pager assignment (BR-PG-05 - History of pagers). Then, the doctors
who had the pager assigned twice the longest time ago, should now have it assigned twice.

Example Let’s say there are three doctors, A, B and C in the system. Now, let’s say doctor A had the
pager assigned two days this month, and doctor B had it two days last month. Then, if a doctor
needs to have the pager assigned two days the following month, it should be doctor C who has
it.

46

3. Requirements

3.3.3. Management problem

These requirements will be named as BR-MGMT (Behavioural Requirements – Management problem).

Table 23: BR-MGMT-01 - Doctor's notification

BR-MGMT-01 Doctor’s notification

Description Doctors have to be notified after shifts and pagers of a month have been assigned. The
notification has to be via email, but other means of notifications can also be accepted.

Example Besides the email, doctors could be notified through an instant messaging app.

Table 24: BR- MGMT-02 - Awareness of changes

BR-MGMT-02 Awareness of changes

Description All doctors have to be able to know the most updated version of the schedule. This is, the
schedule of a month after shift changes have been applied.

Table 25: BR-MGMT-03 - Shift changes allowed

BR-MGMT-03 Shift changes allowed

Description Doctors should be allowed to change their shifts with one another.

Example Let’s say doctor A has a CS the 11th of June, and doctor B has a CS the 17 th of June. Then,
they should be allowed to change them so that doctor A does the CS the 17th of June and
doctor B does the CS the 11th of June.

Table 26: BR-MGMT-04 - Shift changes authorised

BR-MGMT-04 Shift changes authorised

Description Before a shift change is confirmed, it has to be authorised by the manager (A-03 - Manager).

Table 27: BR-MGMT-04 - Shift changes registered

BR-MGMT-04 Shift changes registered

Description After a shift change has been confirmed, it has to be registered on its corresponding schedule.

47

3. Requirements

3.4. Information requirements

From all the above, we can extract certain information requirements. These will be named as IR.

Table 28: IR-01 - Doctor

IR-01 Doctor

Information
required

 Id: Integer (BR-01 – Doctor’s identity)

 Full name: String

 Email: String (BR-MGMT-01 - Doctor's notification)

 Does CS: Boolean (BR-SCH-01 - Types of shifts)

 Has regular-shifts only when CS: Boolean (BR-SCH-11 - NCS only when CS)

 Min. Regular-shifts: Integer (BR-SCH-04 - Minimum regular-shifts per doctor)

 Max. NCS: Integer (BR-SCH-05 - Maximum NCS per doctor)

If set to zero, it represents this doctor does not have NCS (BR-SCH-01 -
Types of shifts).

 Num. Consultations: Integer (BR-SCH-06 – Consultations per doctor)

If set to zero, it represents this doctor does not have consultations.

 Ref. Date: Date

Used to calculate the CSs of this doctor. (BR-SCH-02 - CS rate)

 Wanted Regular-shifts: List of Strings [Optional] (BR-SCH-09 - Shift preferences)

 Unwanted Regular-shifts: List of Strings [Optional] (BR-SCH-09 - Shift preferences)

 Wanted Consultations: List of Strings [Optional] (BR-SCH-09 - Shift preferences)

The Strings of these lists will be days of the week: “Monday”, “Tuesday”...

Table 29: IR-02 - Calendar

IR-02 Calendar

Information
required

 Year and Month (Integers)

 For each day of the month:

◦ Whether this day is a working day: Boolean (BR-SCH-03 - NCS allowed days)

48

3. Requirements

◦ Min. Number of Regular-shifts: Integer (BR-SCH-08 - Minimum number of
regular-shifts and consultations per day)

◦ Min. Number of Consultations: Integer (BR-SCH-08 - Minimum number of
regular-shifts and consultations per day)

◦ Wanted regular-shifts: List of Doctors [Optional] (BR-SCH-09 - Shift
preferences)

◦ Unwanted regular-shifts: List of Doctors [Optional] (BR-SCH-09 - Shift
preferences)

These lists of Doctors will contain the doctors who would /would not like to
have a regular-shift this day. This allows specifying month specific shift
preferences (BR-SCH-09 - Shift preferences).

Table 30: IR-03 - Schedule

IR-03 Schedule

Information
required

 Year and Month (Integers)

 For each day of the month:

◦ CS: List of Doctors

◦ Regular-shifts: List of Doctors [Optional]

◦ Consultations: List of Doctors [Optional]

◦ Pager: Doctor [Optional] (BR-PG-02 - Doctors per day)

49

3. Requirements

50

4. SOLUTION DESIGNED

This chapter describes the systems in which the application has been divided to solve the scheduling problem.
Each of these systems will have different responsibilities. Note that, as this project does not intend to solve neither
the pager assignment nor the management problem, the solution is to be designed as flexible as possible. This will
allow future additions and changes to be simpler and easier to perform.

4.1. Designed procedure

The use cases that will be designed and implemented are:

And the procedure to generate the schedule will be as follows (The procedure to create/edit a doctor would be just
like in Figure 10: Desired create/edit doctor procedure, page 40):

51

Figure 13: Designed use cases

4. Solution designed

Note that, as mentioned in the scope of the project, neither the assignment of pagers nor the management problem
will be solved yet. For this reason, after a schedule is generated, it will still have to be sent manually via email to
the doctors.

Also note that, currently, the edit schedule use case will not be implemented. This can be justified by keeping in
mind the main goal of this project: presenting a first prototype on which to have feedback. Moreover,
implementing this use case after the system is designed, should be as simple as adding a new form the web
application, parse its data and send a request to the REST service (see the following section).

4.2. Division in subsystems

As it is a common practise, we will fProcirst divide the problem into different parts. Each of them with different
responsibilities. Particularly, the problem will be divided into three subsystems:

 Scheduler: Responsible for scheduling shifts. This is, given the information IR-01 - Doctor and IR-02 -
Calendar, it should produce the IR-03 - Schedule.

 REST service: Responsible for allowing CRUD (Create, Read, Update and Delete) operations on the
information of the system.

 Web application: Responsible for providing an interface for the user to interact with the system.

The project will also make use of an already existent implementation of a DBMS (Database Management System)
to store the data: MySQL [71].

52

Figure 14: Designed scheduling procedure

4. Solution designed

To have an idea on how these systems cooperate, the following diagram briefly summarizes their interaction on
the use cases being implemented:

1. Create/Edit doctor:

2. Generate schedule:

53

Figure 16: Designed scheduling procedure - Systems interaction

Figure 15: Designed create/edit doctor procedure - Systems communication

4. Solution designed

These three systems and their relations can be seen in the following deployment diagram:

The user’s device could be anything from a computer to a mobile phone. However, for the sake of simplicity, this
project will target a computer’s web browser. This is because the main goal of the project is the actual
functionality or back-end, rather than the presentation to the user or front-end.

The web application server and the REST server have to be understood in the broadest possible way. Its four
components could be deployed in a single machine, or they could be distributed over different servers. However,
the deployment to be performed will have all components running in a single server. This is just to keep the
deployment simple.

Note that, as mentioned before, the architecture of the service has been designed to be as flexible as possible. This
is, for example, if a new presentation layer was to be developed (for example, an Android application), it would
only have to consume the provided REST interface.

The design and implementation of the three mentioned subsystems will be explained in the following chapters.

4.3. Entity-Relation model

Before enumerating the resources, we will first analyse the information requirements and divide them into
different entities. We will describe these entities and their relations using ER diagrams.

54

Figure 17: Deployment diagram

4. Solution designed

The model to meet IR-01 - Doctor is as follows:

Three concepts have been included to make the design more flexible. These are:

 The absence of a doctor: A doctor can be absent for a certain period of time due to an illness or to
holidays.

 The status of a doctor: This will allow to mark doctors as deleted, without having to delete all of their
information from the system. This is necessary to meet requirement BR-SCH-10 - History of schedules.

 The allowed shift entity: Although the BR-SCH-03 - NCS allowed days indicates that NCS can only be
scheduled on working days, this entity would allow to easily change the system in case this requirement
changed.

55

Figure 18: IR-01 Doctor - ER Model

4. Solution designed

The model to meet IR-02 - Calendar is:

Note that the relations “Unwanted Shift” and “Wanted Shift” will allow creating month specific shift preferences
(BR-SCH-09 - Shift preferences). E.g. some doctor would like to have a regular-shift the 15th of next month.

56

Figure 19: IR-02 - Calendar - ER Model

4. Solution designed

The modelling of IR-03 - Schedule is as follows:

Note the state attribute of a Schedule represents whether it has been confirmed or not. A schedule is said to be
confirmed if the shift manager considers it valid.

4.4. REST service

The REST service will be, as mentioned before, responsible for providing access to the resources states’
representations. For this, we first have to define the Resources and the HTTP method that will allow accessing
their states. Afterwards, we will present the system’s design.

4.4.1. Service’s resources

Before starting the definition of the resources, and to better understand the communication process with the REST
service, we need to know the resources will be serialized according to the HAL specification [32].

Note: Throughout the following explanations, we will refer to “valid” representations of resources as a
representation that contains all required properties, and the values of these properties are valid. For example, if the
doctor status can only be “AVAILABLE” or “DELETED”, any other value is considered invalid. If necessary,
further explanations on valid values will be given in the properties of each resource.

57

Figure 20: IR-03 - Schedule - ER Model

4. Solution designed

Table 31: Root resource

Resource root

URI /guardians

Description This resource will not have any properties, but just links to the service’s resources. This will
allow navigating through the whole API by just knowing its URI.

Actions  GET

Responses:

◦ 200 OK

Properties -

Links  self

 doctors: This is a link to doctors resource. It has an optional query parameter email that
allows searching by email. Hence, to retrieve all doctors we have to make a GET request to
DOMAIN/guardians/doctors/ and to search by email a GET request to
DOMAIN/guardians/doctors/?email=example@example.com (Where
“example@example.com” would be the email of the desired doctor).

 doctor: A link to a doctor resource. It has a required path variable doctorId. For
example, to GET doctor with id 1, we would make a request to
DOMAIN/guardians/doctors/1. Refer to Table 33: Doctor resource to know all
supported HTTP methods.

 newDoctor: This is a link to create a new doctor resource. It has a required query parameter
startDate that represents the date in which the new doctor would have their first CS.
The date has to be represented according the ISO 8601 format. For example
“DOMAIN/guardians/doctors/?startDate=2020-06-14”. To create a
doctor, we have to send a POST request to this link, and include the desired doctor
representation in the request body.

 shiftConfigs: A link to shiftConfigs resource. Refer to Table 34: ShiftConfigs resource to
know the HTTP methods it supports.

 shiftConfig: A link to a shiftConfig resource. It has a required path variable doctorId
that represents the id of the doctor associated to this resource. For example, to GET the
shiftConfig of the doctor with id 1, we would make a request to
DOMAIN/guardians/doctors/shift-configs/1. To know all supported HTTP
methods, refer to Table 35: ShiftConfig resource.

 calendars: A link to calendars resource. Refer to Table 37: Calendars resource to know all
supported HTTP methods.

 calendar: A link to a calendar resource. It has a required path variable yearMonth
representing the month and year of the corresponding calendar. They have to be
represented according to the ISO 8601 standard. For example, we can GET the calendar of
June 2020 by making a request to DOMAIN/guardians/calendars/2020-06. To
know all supported HTTP methods, refer to Table 38: Calendar resource.

58

4. Solution designed

 schedules: A link to schedules resource. Refer to Table 39: Schedules resource to know all
supported HTTP methods.

 schedule: A link to a schedule resource. It has a required path variable yearMonth
representing the year and month of the corresponding schedule. They have to be
represented according to the ISO 8601 standard. For example, to GET the schedule of June
2020 we would make a request to DOMAIN/guardians/calendars/schedules/
2020-06. To know all supported HTTP methods, refer to Table 40: Schedule resource.

 allowedShifts: A link to allowedShifts resource. Refer to Table 36: AllowedShifts resource
to know all supported HTTP methods.

Examplevi {
 “_links”: {
 “self”: {
 “href”: “DOMAIN/guardians/”
 },
 “doctors”: {
 “href”: “DOMAIN/guardians/doctors/{?email}”,
 “templated”: true
 },
 "doctor": {
 "href": "DOMAIN/guardians/doctors/{doctorId}",
 “templated”: true
 },
 “newDoctor”: {
 “href”: “DOMAIN/guardians/doctors/startDate={?startDate}”,
 “templated”: true
 },
 “shiftConfigs”: {
 “href”: “DOMAIN/guardians/doctors/shift-configs/”
 },
 "shiftConfig": {
 "href":
 "DOMAIN/guardians/doctors/shift-configs/{doctorId}",
 “templated”: true
 },
 "shiftConfigs": {
 "href": "DOMAIN/guardians/doctors/shift-configs/"
 },
 “calendars”: {
 “href”: “DOMAIN/guardians/calendars/”
 },
 “calendar”: {
 “href”: “DOMAIN/guardians/calendars/{yearMonth}”,
 “templated”: true
 },
 “schedules”: {
 “href”: “DOMAIN/guardians/calendars/schedules”
 },
 “schedule”: {
 “href”:
 “DOMAIN/guardians/calendars/schedules/{yearMonth}”,
 “templated”: true
 },
 “allowedShifts”: {

vi Note that DOMAIN will be used in the links to refer to the domain name of the server hosting the service.

59

4. Solution designed

 “href”: “DOMAIN/guardians/allowed-shifts”
 }
 }
}

Table 32: Doctors resource

Resource doctors

URI /guardians/doctors

Description This resource will be a list of all doctor resources available in the service.

Actions  GET

Responses:

◦ 200 OK: The response body contains the list of doctors.

 POST: Used to create a new doctor. The message’s body should contain all the
mandatory properties of a doctor resource except the id (which will be assigned upon
creation). See Table 33: Doctor resource.

This request has a mandatory query parameter startDate, which will be a string
representing a date in the ISO 8601 format.

Responses:

◦ 200 OK: The response body contains the created doctor resource representation,
including the id it has been assigned.

◦ 400 BAD REQUEST: If the doctor resource is not valid, or a doctor with the same
given email already exists.

Properties  doctors: The list of doctor resources

Links  self

 root: A link to GET the root resource.

Example
{
 “__embedded”: {
 “doctors”: [
 firstDoctorResource, # See the doctor resource
 secondDoctorResource,
 ...
]
 },
 “__links”: {
 “self”: {
 “href”: “DOMAIN/guardians/doctors/{?email}”,
 “templated”: true

60

4. Solution designed

 },
 “root”: {
 “href”: “DOMAIN/guardians/”
 }
 }
}

Table 33: Doctor resource

Resource doctor

URI /guardians/doctors/{doctor-id}

Description This resource represents a single doctor in the system.

Actions  GET

Responses:

◦ 200 OK: The response body contains the doctor resource representation.

◦ 404 NOT FOUND: If given doctor-id does not exist.

 PUT: Used to update all the information related to an already existent doctor. The request
body should be the desired representation of the doctor.

Responses:

◦ 200 OK: The response body contains the updated doctor resource representation.

◦ 400 BAD REQUEST: If the given doctor is not valid or the given email is already
being used by a different doctor.

◦ 403 FORBIDDEN: If the current doctor status is “DELETED”.

◦ 404 NOT FOUND: If given doctor-id does not exist.

 DELETE: The doctor status will be changed to “DELETED”. After this request, no client
will be able to update its related information any more. And this doctor will not be
scheduled any shifts.

Note: The doctor’s information will not be deleted as it is a requirement to be able to
access all previous schedules.

Responses:

◦ 204 NO CONTENT: If the doctor was successfully marked as deleted.

◦ 404 NOT FOUND: If the given doctor-id does not exist.

Properties  id: An integer representing the unique identifier of the doctor.

61

4. Solution designed

 firstName: A string.

 lastNames: A string.

 email: A string. Two doctors cannot have the same email.

 status: A string indicating the doctor’s status. Its values can be “AVAILABLE” or
“DELETED”.

 absence: An object [Optional]. Represents a period in which the doctor will be absent.
This property can be null or not present. It has two properties:

◦ start: A string representing the first day (included) in which the doctor will be absent.
The date has to be represented according to the ISO 8601 format.

◦ end: A string representing the last day (included) in which the doctor will be absent.
The date has to be represented according to the ISO 8601 format. The end date has to
be after the start date. E.g. start=“2020-05-15” and end=“2020-05-20”.

Links  self

 doctors: This link has the same meaning and usage as the one in root resource.

 shiftConfig: The associated shift configuration to this doctor

 updateDoctor: An optional link. It will only be present if this doctor can be updated or
deleted.

Example
{
 “id”: 1,
 “firstName”: “John”,
 “lastNames”: “Smith”,
 “email”: “johnsmith@example.com”,
 “status”: “AVAILABLE”,
 “absence”: {
 “start”: “2020-06-20”,
 “end”: “2020-07-01”
 },
 “__links”: {
 “self”: {
 “href”: “DOMAIN/guardians/doctors/1”
 },
 “doctors”: {
 “href”: “DOMAIN/guardians/doctors/{?email}”,
 “templated”: true
 },
 “shiftConfig”: {
 “href”: “DOMAIN/guardians/doctors/shift-configs/1”
 },
 “updateDoctor”: {
 “href”: “DOMAIN/guardians/doctors/1”
 }
 }
}

62

4. Solution designed

Table 34: ShiftConfigs resource

Resource shiftConfigs

URI /guardians/doctors/shift-configs

Description A list of all existing shiftConfig resources.

Actions  GET

Responses:

◦ 200 OK: The list of existing shiftConfig resource representations.

 POST: Create a shiftConfig of an already existent doctor. The value sent in the request
should be the desired shiftConfig representation (and the doctorId property should be the
desired doctor’s id). See Table 35: ShiftConfig resource.

Responses:

◦ 200 OK: The response body contains the created shiftConfig resource representation.

◦ 400 BAD REQUEST: If the given shiftConfig is not valid or the associated doctor
already has a shiftConfig.

◦ 403 FORBIDDEN: If the associated doctor’s status is “DELETED”.

◦ 404 NOT FOUND: If the given doctorId does not exist.

Properties  shiftConfis: The list of shiftConfig resources.

Links  self

 root: A link to GET the root resource.

Example
{
 “__embedded”: {
 “shiftConfigs”: [
 firstShiftConfigResource, # See the shiftConfig resource
 secondShiftConfigResource,
 ...
]
 },
 “__links”: {
 “self”: {
 “href”: “DOMAIN/guardians/doctors/shift-configs”
 },
 “root”: {
 “href”: “DOMAIN/guardians/”
 }
 }
}

63

4. Solution designed

Table 35: ShiftConfig resource

Resource shiftConfig

URI /guardians/doctors/shift-configs/{doctor-id}

Description This resource represents the information related to the shift configuration of a doctor.

Actions  GET:

Responses:

◦ 200 OK: The response body contains the shiftConfig resource representation.

◦ 404 NOT FOUND: If the requested shiftConfig does not exist.

 PUT: Update an already existent shiftConfig. The body of the request should be the
desired representation of the shift configuration.

Responses:

◦ 200 OK: The response body contains the updated shiftConfig resource representation.

◦ 400 BAD REQUEST: If the given shiftConfig is not valid.

◦ 403 FORBIDDEN: If the associated doctor is marked as deleted.

◦ 404 NOT FOUND: If the doctor identified by doctorId does not exist or it does not
already have an existent shiftConfig.

Properties  doctorId: An integer. The id of the doctor associated to this shift configuration.

 maxShifts: An integer greater than or equal to zero. The maximum number of shifts the
associated doctor can have each month.

 minShifts: An integer greater than or equal to zero. The minimum number of shifts the
associated doctor has to have each month. minShifts has to be less than or equal to
maxShifts.

 numConsultations: An integer greater than or equal to zero. The number of consultations
the associated doctor should have each month.

 doesCycleShifts: A boolean. Whether the associated doctor can have CSs.

 hasShiftsOnlyWhenCycleShifts: A boolean. Whether the associated doctor must only
have NCSs the same days they have CSs.

 unwantedShifts: A list of objects.

 wantedShifts: A list of objects.

 wantedConsultations: A list of objects.

All unwantedShifts, wantedShifts, and wantedConsultations are lists of objects.
These objects have to be representations of existent allowedShift resources.

64

4. Solution designed

Links  self

 doctor: A link to the associated doctor resource.

 shiftConfigs:This link has the same meaning and usage as the one in root resource.

 allowedShifts: This link has the same meaning and usage as the one in root resource.

Example
{
 "doctorId": 1,
 "maxShifts": 4,
 "minShifts": 3,
 "numConsultations": 0,
 "doesCycleShifts": true,
 "hasShiftsOnlyWhenCycleShifts": false,
 "unwantedShifts": [{“id”: 1, “shift”: “Monday”}],
 "wantedShifts": [],
 "wantedConsultations": [{“id”: 2, “shift”: “Tuesday”}],
 "_links": {
 "self": {
 "href": "DOMAIN/guardians/doctors/shift-configs/1"
 },
 "shiftConfigs": {
 "href": "DOMAIN/guardians/doctors/shift-configs/"
 },
 "doctor": {
 "href": "DOMAIN/guardians/doctors/1"
 },
 "allowedShifts": {
 "href": "DOMAIN/guardians/allowed-shifts/"
 }
 }
}

Table 36: AllowedShifts resource

Resource allowedShifts

URI /guardians/allowed-shifts

Description This resource will represent the days in which doctors can have NCSs.

Actions  GET

Responses:

◦ 200 OK: The response body contains the list of allowed shifts.

Properties  allowedShifts: The list of all allowed shifts.

Links  self

65

4. Solution designed

 root: A link to GET the root resource.

Example
{
 “__embedded”: {
 “allowedShifts”: [
 {
 “id”: 1,
 “shift”: “Monday”
 },
 {
 “id”: 2,
 “shift”: “Tuesday”
 },
 ...
]
 },
 “__links”: {
 “self”: {
 “href”: “DOMAIN/guardians/allowed-shifts”
 },
 “root”: {
 “href”: “DOMAIN/guardians/”
 }
 }
}

Table 37: Calendars resource

Resource calendars

URI /guardians/calendars

Description This resource will represent a summary of all the existent calendar resources in the
system.

Actions  GET

Responses:

◦ 200 OK: The response body contains the list of calendar resource representations.

 POST: Create a new calendar resource. The body of the request should be the desired
calendar representation. See Table 38: Calendar resource.

Responses:

◦ 200 OK: The response body contains the created calendar resource representation.

◦ 400 BAD REQUEST: If the given calendar is not valid or a calendar for the given
month and year already exists.

Properties  calendars: The list with all existent calendar resources. Note these will not be the

66

4. Solution designed

complete representations of the calendars but just a summarized representation (See the
example below).

Links  self

 root: A link to GET the root resource.

Example
{
 “__embedded”: {
 “calendars”: [
 {“year”: 2020, “month”:4, “__links”: {...}},
 {“year”: 2020, “month”:5, “__links”: {...}},
 ...
]
 },
 “__links”: {
 “self”: {
 “href”: “DOMAIN/guardians/calendars”
 },
 “root”: {
 “href”: “DOMAIN/guardians/”
 }
 }
}

Table 38: Calendar resource

Resource calendar

URI /guardians/calendars/{yyyy-mm}

Description This resource will represent the configuration for month mm and year yyyy.

Actions  GET

Responses:

◦ 200 OK: The response body contains the calendar resource representation.

◦ 404 NOT FOUND: If no calendar was found for the given month and year.

 PUT: Update an already existent calendar. The body of this request should be the
representation of the desired calendar.

Responses:

◦ 200 OK: The response body contains the updated calendar resource representation.

◦ 400 BAD REQUEST: If there given calendar is not valid.

◦ 404 NOT FOUND: If no calendar was found for the given month and year.

67

4. Solution designed

Properties  month: Integer between 1 and 12.

 year: Integer greater than or equal to 1970.

 dayConfigurations: List of objects. Each of these objects will contain the following
attributes:

◦ day: Integer between 1 and 31.

◦ isWorkingDay: Boolean.

◦ numShifts: Integer greater than or equal to zero.

◦ numConsultations: Integer greater than or equal to zero.

◦ wantedShifts: List of doctors [Optional]

◦ unwantedShifts: List of doctors [Optional]

This list has to contain exactly all days of the desired month. For example, if the month is
May, this list should contain one entry for day=1, another one for day=2, …, until day=31.

Links  self

 calendars: This link has the same meaning and usage as the one in root resource.

 schedule: A link to the associated schedule resource.

Example
{
 "month": 5,
 "year": 2020,
 "dayConfigurations": [
 {
 "day": 1,
 "isWorkingDay": true,
 "numShifts": 2,
 "numConsultations": 0,
 "unwantedShifts": [{“id”: 1}],
 "wantedShifts": []
 },
 {
 "day": 2,
 "isWorkingDay": false,
 "numShifts": 0,
 "numConsultations": 0,
 "unwantedShifts": [],
 "wantedShifts": []
 },
 ...
],
 "_links": {
 "self": {
 "href": "DOMAIN/guardians/calendars/2020-05"
 },
 "calendars": {
 "href": "DOMAIN/guardians/calendars/"
 },

68

4. Solution designed

 "schedule": {
 "href": "DOMAIN/guardians/calendars/schedules/2020-05"
 }
 }
}

Table 39: Schedules resource

Resource schedules

URI /guardians/calendars/schedules

Description This resource represents a summarized list of all existent Schedule resources.

By summarized, we understand that not all the information related to the Schedule
resources will be included in the list (See the example below).

Actions  GET

Responses:

◦ 200 OK: The response body contains the list of schedule resource representations.

Properties  A list of schedules

Links  self

 root: A link to GET the root resource.

Example
{
 “__embedded”: {
 “schedules”: [
 {
 "month": 4,
 "year": 2020,
 "status": "PENDING_CONFIRMATION",
 "_links": {…}
 },
 {
 "month": 5,
 "year": 2020,
 "status": "CONFIRMED",
 "_links": {…}
 },
 ...
]
 },
 “__links”: {
 “self”: {
 “href”: “DOMAIN/guardians/calendars/schedules”
 },
 “root”: {

69

4. Solution designed

 “href”: “DOMAIN/guardians/”
 }
 }
}

Table 40: Schedule resource

Resource schedule

URI /guardians/calendars/schedules/{yyyy-mm}

Description This resource will represent the schedule for month mm and year yyyy.

Actions  GET

Responses:

◦ 200 OK: The response body contains the schedule resource representation.

◦ 404 NOT FOUND: If the calendar of month and year does not exist. Note that, if the
calendar exists, even if the schedule is not generated yet, a schedule resource
representation will be returned. In this case, the state of the schedule will be
NOT_CREATED.

 POST: This request, with an empty body, will start the generation of the schedule. The
corresponding Calendar resource of month mm and year yyyy has to exist.

Responses:

◦ 202 ACCEPTED: The response body will be empty.

◦ 400 BAD REQUEST: If a schedule for the given month and year already exists.

◦ 404 NOT FOUND: If the associated calendar resource does not exist.

 PUT: Update the schedule. The desired representation of the schedule should be sent in the
request body. The schedule can only be updated if it has not yet been confirmed.

Responses:

◦ 200 OK: The response body will contain the updated schedule resource representation.

◦ 400 BAD REQUEST: If the given schedule representation is not valid.

◦ 404 NOT FOUND: If the given schedule resource does not exist.

◦ 409 CONFLICT: If the given schedule representation has a different status than the
current schedule, and the status transition is not allowed. For example, if the current
schedule is confirmed or being generated, it cannot be updated.

A valid transition would be from the PENDING_CONFIRMATION status to the
CONFIRMED status. Another valid transition would be from the
GENERATION_ERROR status to the PENDING_CONFIRMATION status.

70

4. Solution designed

 DELETE: Delete the schedule if it has not yet been confirmed.

Responses:

◦ 204 NO CONTENT: If the schedule was deleted correctly. Note this status code will
also be returned if the schedule is NOT_CREATED.

◦ 403 FORBIDDEN: If the schedule has been confirmed.

◦ 404 NOT FOUND: If the schedule of year -month does not exist.

Properties  month: Integer between 1 and 12.

 year: Integer greater than or equal to 1970.

 status: String. Can be “NOT_CREATED”, “BEING_GENERATED”,
“PENDING_CONFIRMATION”, “CONFIRMED” or “GENERATION_ERROR”.

 days: List of objects. Each object will have the following properties:

◦ day: Integer between 1 and 31.

◦ isWorkingDay: Boolean

◦ cycle: List of Doctors

◦ shifts: List of Doctors [if not isWorkingDay, this has to be an empty list]

◦ consultations: List of Doctors [Optional]

Links  self

 calendar: A link to the associated calendar resource.

 confirm: A PUT to this link will transition the schedule to the CONFIRMED status. This
link will only be present when this transition is allowed.

Example
{
 "month": 5,
 "year": 2020,
 "status": "PENDING_CONFIRMATION",
 "days": [
 {
 "day": 1,
 "isWorkingDay": true,
 "cycle": [doctorResource1, doctorResource2],
 "shifts": [doctorResource1, doctorResource3],
 "consultations": [doctorResource5]
 },
 {
 "day": 2,
 "isWorkingDay": false,
 "cycle": [doctorResource3, doctorResource4],
 "shifts": [],
 "consultations": []
 },

71

4. Solution designed

 ...
],
 "_links": {
 "self": {
 "href": "DOMAIN/guardians/calendars/schedules/2020-05/"
 },
 "calendar": {
 "href": "DOMAIN/guardians/calendars/2020-05"
 },
 "confirm": {
 "href":
 "DOMAIN/guardians/calendars/schedules/2020-05/confirmed"
 }
 }
}

4.4.2. Structural design

First, we will present the complete class diagram of the application:

72

4. Solution designed

As the previous diagram might only be readable by zooming in, we show one of its main controller’s relations:

73

Figure 21: REST Service - Overview class diagram

4. Solution designed

The REST service is made up of five different controllers (DoctorController, CalendarController,
ShiftConfigurationController, ScheduleController and AllowedShiftController). All of these, have a similar
structure as the one presented above: Each controller aggregates their corresponding repository (DAO), their
associated entities, and the DTOs associated to these entities.

Note that classes’ properties and methods have been hidden to summarize the diagram (they will be shown in the
following sections). Moreover, to keep the diagram simpler, HATEOAS classes and validation classes have not
been represented. However, these have been modelled just as it has been explained in 2.8.4 Spring HATEOAS
and 2.8.3 Spring Data JPA respectively.

4.4.2.1. Model classes

The model classes will contain the information related to the resources. E.g. the information related to a doctor.
They will also contain the different constraints that may apply to them. A restriction, for example, is that the
doctor’s emails have to be valid. E.g. “example@example.com” will be considered a valid email, whereas
“example.com” will not.

We will begin with a class diagram describing the Doctor, Absence, ShiftConfiguration and AllowedShift classes:

74

Figure 22: REST Service - Doctor controller overview

4. Solution designed

The restrictions that apply to these classes are:

 Doctor: The email has to be a valid email.

 Absence: The start date has to be before the end date. E.g. start=“2020-05-20”, end=“2020-06-15” would
be valid values, but start=“2020-06-20”, end=“2020-05-15” would not.

 ShiftConfiguration: minShifts has to be less than or equal to maxShifts. minShifts, maxShifts, and
numConsultations have to be greater than or equal to zero.

Now, we will introduce the class diagram describing the Calendar and DayConfiguration classes:

Note that DayConfiguration is the class being used to represent the list of days associated to a Calendar, as
described in IR-02 - Calendar. Also, note that the date of a DayConfiguration is represented as three different
fields. This has to do with JPA, as it is a simple way for DayConfiguration to share the primary key of the
Calendar.

The restrictions that apply to these classes are:

 Calendar: The days list has to contain one and exactly one DayConfiguration for each day of the month

75

Figure 24: REST Service - Model class diagram - Calendar and DayConfiguration

Figure 23: REST Service - Model class diagram - Doctor, Absence,
DoctorStatus, ShiftConfiguration and AllowedShift

4. Solution designed

and year. E.g. if month=5 and year=2020, then days has to contain the days from 1 to 31. Leap years
have to be taken into account. Moreover, month has to represent a valid month number. E.g. month=13 or
month=0 would not be valid.

 DayConfiguration: The values day, month and year have to correspond to an existing date. E.g. day=15,
month=5, year=2020 would be valid, but day=31, month=6, year=2020 would not (June has only 30
days).

Lastly, the class diagram describing the Schedule class is as follows:

For the same reason mentioned in the Calendar class diagram, the date of ScheduleDay is represented as three
different fields. Note the names of the relations between ScheduleDay and Doctor from the ER model have been
mapped as follows:

 CS → cycle

 Regular-shifts → shifts

 Consultations → consultations

The same restrictions that applied to Calendar and DayConfiguration apply to Schedule and ScheduleDay
respectively. There is only one difference: Schedule cannot contain any days if it’s status is NOT_CREATED,
BEING_GENERATED or GENERATION_ERROR; and has to contain all days if it’s status is
PENDING_CONFIRMATION or CONFIRMED.

Note that each model class will have the corresponding getters and setters for all of their fields.

4.4.2.2. View classes

The views of the REST service will be the classes serialized into HAL [32]. For this reason, and to remove any
serialization logic from the model classes, we will apply the DTO pattern. Specifically, as we will have two
different interfaces (The public REST interface, and the one used to communicate with the Scheduler), we will
have two types of DTOs. As both of them will be fairly similar, we will present the class diagrams that model the
public interface, and then explain the interface with the Scheduler.

The representation of a doctor is as follows:

76

Figure 25: REST Service - Model class diagram - Schedule, ScheduleStatus, ScheduleDay

4. Solution designed

We can see that the start date is not publicly exposed, as that information will be saved upon the doctor’s creation.
We can also see that the absence does not need a reference to DoctorPublicDTO.

Also note the DTOs will be responsible for converting between the model and the view classes (E.g.
DoctorPublicDTO constructor method takes a Doctor as an argument, that will be used to create the DTO. Then,
an instance of a DoctorPublicDTO can be converted back with toDoctor).

Now, these are the DTOs for the shiftConfig and allowedShift resources:

Lastly, we will show the representations of a calendar and a schedule:

Note the DayConfigurationPublicDTO and ScheduleDayPublicDTO do not need references to their
corresponding Calendar and Schedule. Moreover, these classes no longer need the month and year fields, as that

77

Figure 28: REST Service - View class diagram - calendar and schedule

Figure 27: REST Service - View class diagram - shiftConfig and allowedShift

Figure 26: REST Service - View class diagram - doctor

4. Solution designed

information is already in their corresponding CalendarPublicDTO and SchedulePublicDTO.

Currently, the only difference these classes have with the Scheduler DTOs is the serialization of the Doctor: The
Scheduler does not need the personal information of doctor (firstName, lastNames and email), just their ids, their
status and their absences. However, we will create DTOs for the rest of the model classes. The reason for this is,
their construction is different depending on the representation of the Doctor. For example, the ScheduleDay DTO
can be composed of either DoctorPublicDTOs or DoctorSchedulerDTOs.

Note this design can be improved. For example, we could define a generic type on the DTOs composed of
doctors. This generic type would represent the desired doctor DTO, and would be set depending on the context.
Then, we would provide the constructors of the DTOs with a java.util.function.Supplier [72]. This Supplier would
provide either the Public or the Scheduler representation of the Doctor depending on the context. However, this
work will be left as a future improvement of the project.

One last comment regarding the pattern applied: The DTOs are not just useful to isolate the model entity from its
serialization logic, but they also make changing the model entities very simple. For instance, let’s say we want to
add a new field to the Doctor class: homeAddress. However, this information is confidential and should only be
sent on some authorised requests. If we had not separated the serialization from the data, for every response that
contains a doctor resource, we would have to decide whether the homeAddress field is serialized or not. However,
with the DTO pattern, we would only have to create a new class like DoctorConfidentialDTO containing the
needed information. Then, on authorised requests, instead of sending the DoctorPublicDTO, we would send the
DoctorConfidentialDTO.

4.4.2.3. DAO interfaces

To isolate the persistence from the rest of the service, we will make use of the DAO pattern. For this reason, we
will define interfaces extending the org.springframework.data.jpa.repository.JpaRepository [53] interface. As all
the interfaces will be very similar, we will only show the DoctorRespository:

The DoctorRepository is the only DAO that provides the findByEmail method. The other DAOs will only provide
the findAll, findById and save methods.

These interfaces will be implemented automatically by the JPA library. As it has been explained in 2.8.3 Spring
Data JPA.

4.4.2.4. Controller classes

The controllers will be responsible for handling the requests to the REST API. This is, responding to the HTTP
GET, POST, PUT and DELETE requests.

78

Figure 29: REST Service - DAO class diagram -
DoctorRepository

4. Solution designed

79

Figure 30: REST Service - ScheduleController class diagram

4. Solution designed

As all controllers will have a fairly similar structure, we will show only the ScheduleController. The other ones
will have the same structure: They will aggregate their corresponding repository, their corresponding entity, and
the entity’s corresponding public DTO.

Note the schedule controller is also composed of a ScheduleHandler. This class will be responsible for the
communication process with the Scheduler system. Its behaviour is described in 4.4.4 Communication with the
Scheduler.

4.4.3. Behavioural design

The behaviour of all controllers will be fairly similar. For this reason, we will only represent their most relevant
operations.

Note that, on the following diagrams, validations and exceptions have not been represented to keep them simple.
For example, before creating a doctor, the DoctorController will check that there is no other doctor with the same
email. If there was another doctor with the same email, a 400 BAD REQUEST HTTP response would be sent to
the Web Application, with an error message in the body such as “Another doctor already has the email
example@example.com”.

Another feature that has not been represented is the conversion to the RepresentationModel of the DTOs. This
conversion will occur just as it has been shown in the 2.8.4 Spring HATEOAS section (with the corresponding
RepresentationModelAssemblers).

80

4. Solution designed

81

Figure 31: REST Service - DoctorController.newDoctor sequence

4. Solution designed

82

Figure 32: REST Service - DoctorController.getDoctors sequence

4. Solution designed

Another sequence of messages worth showing is the generation of a schedule. We will present the complete
diagram, and then divide it into two different figures (so that it can be read without zooming in).

The first part of the diagram (messages 1 to 11) corresponds to the Web Application’s request, and the second
part (messages 11 to 31) is the generation of the schedule. Note the schedule generation will be asynchronous, and
will not lock the web application.

83

Figure 33: REST service -
ScheduleController.generateSchedule sequence -

Overview

4. Solution designed

84

Figure 34: REST Service -
ScheduleController.generateSchedule sequence - Upper

part

4. Solution designed

85

Figure 35: REST Service - ScheduleController.generateSchedule
sequence - Bottom part

4. Solution designed

4.4.4. Communication with the Scheduler

The Scheduler does not need to be a daemon process, it will only be needed from time to time. For this reason, the
REST service will be the responsible for starting the Scheduler every time it is needed. Specifically, the process
will be started when a POST request is sent to the corresponding IR-03 - Schedule URI. This section will describe
the communication process between the REST service and the Scheduler.

To understand this communication process we need to know the information the Scheduler needs: all the Doctors
in the systemvii, their ShiftConfigurations and the Calendar of the corresponding month (The specific information
needed is shown in 4.5 Scheduler). Then, with this information, the Scheduler will execute its algorithm and will
generate the desired Schedule.

Now, the way we have decided to implement this communication is through files. Specifically, the REST service
will pass on four arguments to the Scheduler process. These will be:

• Path to a file containing the list of DoctorSchedulerDTOs as JSON.

• Path to a file containing the list of ShiftConfigurationSchedulerDTOs as JSON.

• Path to a file containing the CalendarSchedulerDTO as JSON.

• Path to a file that will contain the resulting ScheduleSchedulerDTO as JSON.

Then, the Scheduler will read the first three files to extract the information it needs. Afterwards, when its
algorithm finishes, it will write the generated schedule to the last file. If the schedule could not be generated
correctly, the ScheduleSchedulerDTO will be in the GENERATION_ERROR status. Lastly, the REST service
will try to read this file and persist the schedule.

This process might be easier to understand with a simple activity diagram:

vii Only the AVAILABLE doctors should be provided.

86

Figure 36: REST service - Communication with the
Scheduler

4. Solution designed

This communication process has three main problems:

• Concurrency: If the same file paths are used every time (as they currently do), and multiple requests to
schedule shifts are received at the same time, the behaviour of the system would not be defined. It would
depend on the order of the file reads/writes. However, this risk can be assumed for now, as we are not
expecting for multiple schedules to be generated simultaneously.

• Insecure: As the information will be written into plain text in files, any process with permissions to read
them could get this data. Still, the impact of this issue has been minimized by removing any non
necessary information from the serialized data (the doctor’s names and emails).

• Required R/W permissions: As both the scheduler and REST service need to read/write into these files,
they need to have the appropriate permissions.

Other alternatives we have also considered are exchanging the information through raw sockets, encapsulating it
on some application like HTTP, or even have the Scheduler access the database on its own. However, keeping in
mind the current goal is to present a functioning prototype of the system, these alternatives would take longer to
develop.

Still, in the future, these problems should be amended. For this reason, both the design of the REST service and
the Scheduler take this problem into account. Specifically, they aim to make changing the communication process
as simple as possible:

• REST service: The whole communication process currently takes place in the SchedulerHandler class. If
this process was to be changed, we would only need to change this class, or create a new one and inject it
to the ScheduleController. See 2.8.1.5 Dependency injection.

• Scheduler: All the scheduling logic has been separated from the communication process. This way, if it
was to be changed, only the main method would have to be modified (The main method is only
responsible for configuration and the communication process).

4.5. Scheduler

This system will be responsible for scheduling the shifts of a certain month, according to the requirementsviii. To
do this, the scheduler will only need to know the shift configuration of all doctors, the doctors’ id, start date and
status, and the calendar whose schedule is to be generated.

To begin with, we will introduce the algorithm used to calculate cyclic-shifts, and then the linear programming
problem modelling the restrictions to schedule non-cyclic-shifts. Lastly, we will show how the scheduler has been
designed.

4.5.1. Cyclic-shift scheduling algorithm

This section will explain how CSs will be calculated. To calculate the shifts a doctor will have a certain month, all
we need is a reference date and a the rate at which CSs are repeated (BR-SCH-02 - CS rate):

RefDate , FirstDayMonth , R∈ℕ

Where:

 RefDate is the number of days elapsed since the 1st of January of 1970ix until the reference date of a
doctor.

viii Note that doctor’s absences will not be taken into account in this first version of the scheduler. They will be left as future improvements to the
system.
ix Note the 1st of January of 1970 has been selected arbitrarily. The algorithm would work with any other date, as long as the same one is used to
calculate both RefDate and FirstDayMonth.

87

4. Solution designed

 FirstDayMonth is the number of days elapsed since the 1st of January of 1970 until the first day of the
month whose shifts are to be calculated.

 R is the rate at which CS take place.

With these three values, we can calculate the number of days from the FirstDayMonth until the next CS of the
doctor:

NumDays=R− [(FirstDayMonth−RefDate)ModR]

This way, the doctor will have a CS the days FirstDayMonth+NumDays, FirstDayMonth+2NumDays,
FirstDayMonth+3NumDays …

If NumDays equals R, then the doctor will also have a CS on FirstDayMonth.

By applying the previous formulas to all the doctors, we will have all the CSs of the desired month.

4.5.2. Non-cyclic-shift linear programming problem

This section describes how the restrictions to assign NCSs have been modelled as an integer programming
problem with boolean variables.

4.5.2.1. Definitions

First, we will define seven constants:

N ,M∈ℕ

N is the number of available doctors in the systemx.

M is the number of working days in the month whose shifts are to be scheduled (BR-SCH-03 -
NCS allowed days).

W wanted shift ,W unwanted shift ,W wanted consultation ,W shift ,W consultation∈{0,1,2 , ... ,100 } xi

W wanted shift: The weight given to assigning a regular-shift to a doctor who wants it.

W unwanted shift: The weight given to assigning a regular-shift to a doctor who does not want it.

W wanted consultation: The weight given to assigning a consultation to a doctor who wants it.

W shift: The weight given to assigning any regular-shift.

W consultation: The weight given to assigning any consultation.

Note: An explanation on how to choose the values for these weights is given at 4.5.3 Scheduler’s
design.

We will also define 3 x N x M constants that will represent whether a doctor has a certain shift preference:

wwanted shift ,ij∈{0 ,W wanted shift }∀ i=1,2 , .. ,N , j=1,2, ... ,M

wunwanted shift ,ij∈{0 ,W unwanted shift }∀ i=1,2 , .., N , j=1,2 , ..., M

x A doctor is available if they are not in the deleted status.
xi The weights could theoretically have any real value greater than or equal to zero. However, just to bound their values, we have chosen to
restrict them to the set {0,1,…,100}.

88

4. Solution designed

wwanted consultation ,ij∈{0 ,W wanted consultation}∀ i=1,2, .. ,N , j=1,2, ... ,M

These will represent the whether a doctor wants/does not want a regular-shift/consultation. Note
that it only makes sense to define these values for working days (j=1,…,M), as there cannot be
any NCSs assigned on a non working day.

For example, wwanted shift, 1,1 = 0 represents the doctor 1 does not have a request to get a shift
assigned on the first working day of the month. However, if wwanted shift, 1,2 = Wwanted shift, that
represents the doctor 1 would like to have a shift the second working day of the month.

Now, we will define two sets:

A⊂ ℕ 2

This set will contain the pair i , j with i=1,2 ,... , N , j=1,2 , ..., M if the i-th doctor has a
cyclic-shift the j-th working day of the month.

B⊂ ℕ

This set will contain the values iwith i=1,2 ,... , N if the i-th doctor can have NCS on days they
do not have a CS (BR-SCH-11 - NCS only when CS).

We will also define the values that regard the shift configuration of a doctor and the configuration of each working
day:

minS i ,maxSi , numC i∈ℕ ∀ i=1,2 , ..., N

Where minSi, maxSi and numCi represent the minimum number of regular-shifts, maximum
number of NCS and number of consultations of the i-th doctor (BR-SCH-04 - Minimum regular-
shifts per doctor, BR-SCH-05 - Maximum NCS per doctor, BR-SCH-06 – Consultations per
doctor).

numS j , numC j∈ℕ ∀ j=1,2 ,... , M

When numSi and numCi represent the minimum number of regular-shifts and consultations that
have to be scheduled the j-th working day of the month (BR-SCH-08 - Minimum number of
regular-shifts and consultations per day).

Lastly, we will define the variables of the problem:

sij∈{0 ,1 }∀ i=1,2 , .. ,N , j=1,2, ... ,M

These variables will represent whether the i-th doctor has a regular-shift on the j-th working day
of the desired month. E.g. if s1,2=1, the doctor 1 has a regular-shift the second working day of the
month.

c ij∈ {0 ,1}∀ i=1,2, .. ,N , j=1,2, ... ,M

These variables will represent whether the i-th doctor has a consultation on the j-th working day
of the desired month.

4.5.2.2. The linear programming problem

Now that the needed definitions are made, we will present the whole problem. Afterwards, we will describe each
one of its parts:

89

4. Solution designed

Max∑
i=1

N

∑
j=1

M

(wwanted shift , ij−wunwanted shift , ij−W shift)sij+(wwanted consultation ,ij+W consultation)c ij (1)

sij=1∀ i , j∈A (2)

sij+c ij⩽ 1∀ i=1,2 , ..., N , j=1,2 , ... ,M (3)

∑
j=1

M

sij⩾minS i∀ i∈B (4)

∑
j=1

M

s ij+c ij⩽ maxSi∀ i∈B (5)

∑
j=1

M

cij⩽ numC i∀ i∈B (6)

∑
i=1

N

s ij⩾minS j∀ j=1,2, ... ,M (7)

∑
i=1

N

cij⩾minC j∀ j=1,2 , ... ,M (8)

4.5.2.3. The objective function

The objective function (1) has five different contributions:

1. wwanted shift ,ij sij This contribution will try to maximize the number of regular-shifts assigned to
doctors who wanted them.

2. −wunwanted shift , ijsij This contribution will try to minimize the number of regular-shifts assigned to
doctors who did not want them.

3. −W shift sij This contribution will try to minimize the number of regular-shifts assigned overall.

4. wwanted consultation ,ijc ij This contribution will try to maximize the number of consultations assigned
to doctors who wanted them.

5. W consultation cij This contribution will try to maximize the number of consultations assigned
overall.

The importance of these five contributions are not their actual values but their relative differences. For
example, if W wanted shift−W unwanted shift<0 then, meeting unwanted regular-shift requests will have a higher
priority than meeting wanted-shift requests. This is further explained in 4.5.3 Scheduler’s design.

4.5.2.4. CS implies a NCS

The restriction (2) corresponds to the requirement BR-SCH-07 - A CS implies a regular-shift.

90

4. Solution designed

4.5.2.5. Only one shift per day

The restriction (3) will make sure a doctor cannot be assigned a regular-shift and a consultation the same day. This
is because, as mentioned in the 1.1 Description of the problem, both regular-shifts and consultations take place at
the same hour.

4.5.2.6. Maximums and minimums per doctor

The restrictions (4), (5) and (6) correspond to requirements BR-SCH-04 - Minimum regular-shifts per doctor,
BR-SCH-05 - Maximum NCS per doctor and BR-SCH-06 – Consultations per doctor respectively.

4.5.2.7. Minimums per day

The restrictions (7) and (8) correspond to requirement BR-SCH-08 - Minimum number of regular-shifts and
consultations per day.

4.5.3. Scheduler’s design

The scheduler has been divided into two functions. Each with different responsibilities:

• Main function: Responsible for the communication process with the REST service (reading and writing
to the corresponding files), and responsible for loading the configuration (reading from the configuration
file).

• Schedule function: Responsible for applying the algorithm to calculate cyclic-shifts, and responsible for
solving the linear programming problem.

We can find a simple activity diagram on how the scheduler works in Figure 36: REST service - Communication
with the Scheduler (page 86). In that diagram, we can see there are four JSON files involved: doctors.json,
shiftConfigs.json, calendar.json and schedule.json. There is also another JSON file used by the scheduler:
schedulerConfig.json. We will describe de content of these files one by one:

• doctors.json:

This file will contain the information related to all AVAILABLE doctors in the system. Specifically, the
scheduler only needs the their id, their startDate and their absence. For example:

[
 {
 "id": 1,
 "absence": null,
 "startDate": "2020-05-01"
 },
 {
 "id": 2,
 "absence": {
 “start”: “2020-07-15”,
 “end”: “2020-07-25”
 },

 "startDate": "2020-05-01"
 },
...
]

• shiftConfigs.json:

This file has to contain the shift configuration of all AVAILABLE doctors in the system. For example:

91

4. Solution designed

[
 {
 "doctorId": 1,
 "maxShifts": 0,
 "minShifts": 0,
 "numConsultations": 0,
 "doesCycleShifts": true,
 "hasShiftsOnlyWhenCycleShifts": false,
 "unwantedShifts": [],
 "wantedShifts": [
 {
 "id": 2,
 "shift": "Tuesday"
 },
 {
 "id": 3,
 "shift": "Wednesday"
 }
],
 "wantedConsultations": []
 },
 {
 "doctorId": 2,
 "maxShifts": 5,
 "minShifts": 3,
 "numConsultations": 0,
 "doesCycleShifts": true,
 "hasShiftsOnlyWhenCycleShifts": true,
 "unwantedShifts": [
 {
 "id": 3,
 "shift": "Wednesday"
 }
],
 "wantedShifts": [],
 "wantedConsultations": []
 },
...
]

• calendar.json:

This file has to contain the configuration of the month whose shifts will be scheduled. For example:

{
 "month": 5,
 "year": 2020,
 "dayConfigurations": [
 {
 "day": 1,
 "isWorkingDay": true,
 "numShifts": 2,
 "numConsultations": 0,
 "unwantedShifts": [{"id": 1}, {"id": 4}],
 "wantedShifts": []
 },
 {
 "day": 2,
 "isWorkingDay": false,

92

4. Solution designed

 "numShifts": 2,
 "numConsultations": 0,
 "unwantedShifts": [],
 "wantedShifts": [{"id": 3}]
 },
...
]

The wanted (unwanted) shifts represent a doctor who wants (does not want) to have a regular-shift that
day. E.g. the doctors with id 1 and 4 do not want to have a regular-shift the 1st of May 2020.

• schedule.json:

This will be the output file of the scheduler, and will contain the generated schedule:

{
 "month": 5,
 "year": 2020,
 "status": "PENDING_CONFIRMATION",
 "days": [
 {
 "day": 1,
 "cycle": [{"id": 1},{"id": 2}],
 "shifts": [{"id": 2},{"id": 19}],
 "consultations": [{"id": 13},{"id": 17},{"id": 20}]
 },
 {
 "day": 2,
 "cycle": [{"id": 3},{"id": 4}],
 "shifts": [], # Not a working day
 "consultations": []
 },
...
]

However, if there has been any error while trying to generate the schedule, the status will be
“GENERATION_ERROR”, and the list “days” will be empty.

• schedulerConfig.json:

This file will contain the information needed by the scheduler that has not been supplied by the REST
service. This is, the rate at which cyclic-shifts are repeated (BR-SCH-02 - CS rate), and the weights used
in the objective function:

W wanted shift ,W unwanted shift ,W wanted consultation ,W shift ,W consultation

The content of this files will be as follows:

{
 "description":

"This is the configuration file of the scheduler. The
description of each configuration is self explanatory.
However, there is one thing to take into account: the
ABSOLUTE VALUES of the weights are NOT IMPORTANT by
themselves. What actually makes the behaviour of the
scheduler change is the difference in the RELATIVE
VALUES. This is, if wantedShiftWeight=100 and
unwantedShiftWeight=100, the scheduler will give the
same priority to both of them. However, if
wantedShiftWeight=2 and unwantedShiftWeight=1, the

93

4. Solution designed

scheduler will give twice as much priority to fulfilling
a wanted shift request than an unwanted shift one",

"cycleShiftRate": {
 "value": 10,
 "description":

"This value will represent the rate at which
doctors have cycle shifts. For example, If the
value is 10, doctors will have cycle-shifts every
10 days. A value greater than zero is expected"

 },
 "wantedShiftWeight": {
 "value": 30,
 "description":

"This value represents the weight given to allowing
a doctor to take one of their wanted shifts. A
higher value means a higher priority to assign
wanted shifts to the doctors. A value greater than
or equal to zero is expected."

 },
 "unwantedShiftWeight": {
 "value": 30,
 "description":

"This value represents the weight given to allowing
a doctor to not take one of their unwanted shifts.
A higher value means a higher priority to not
assign unwanted shifts to the doctors. A value
greater than or equal to zero is expected."

},
 "wantedConsultationWeight": {
 "value": 30,
 "description":

"This value represents the weight given to allowing
a doctor to take one of their wanted consultations.
A higher value means a higher priority to assign
wanted consultations to the doctors. A value
greater than or equal to zero is expected."

},
 "allShiftWeight": {
 "value": 10,
 "description":

"This value represents the weight given to each
shift that is scheduled. The contribution of shifts
to the objective function will be negative, meaning
that a higher value of this field will make the
scheduler try to assign as few shifts as possible.
A value greater than zero is expected"

},
 "consultationWeight": {
 "value": 10,
 "description":

"This value represents the weight given to each
consultation that is scheduled. The contribution of
consultations to the objective function will be
positive, meaning that a higher value of this field
will make the scheduler try to assign as much
consultations as possible. A value greater than
zero is expected"

 }
}

94

4. Solution designed

The “description” fields contain explanations on how the values they refer to affect the scheduling
problem. This will make it easier to configure it without the need to look into the code if the requirements
were to change. For example, if we wanted to give to wanted shift requests a higher preference than to
unwanted shift requests, we would have to make “wantedShiftWeight.value” greater than
“unwantedShiftWeight.value”.

As explained in 4.4.4 Communication with the Scheduler, the paths to doctors.json, shiftConfigs.json,
calendar.json and schedule.json will be arguments of the scheduler program specified by the REST service.
However, the path to the scheduleConfig.json will be defined as constant in the program. Still, the scheduler
accepts an optional argument “--configDir=<path/to/config/directory>” that can be used to
indicate a different directory containing the scheduler’s configuration files. For example.:
“--configDir=/etc/guardians/scheduler/”.

Note the exact procedure followed by the schedule function will not be explained. It just applies the concepts
explained in the 2 State of technology chapter to solve a linear programming problem using the Google ORTools
library. However, the code can be found on its public repository [73].

4.6. Web application

The Web application will be responsible for presenting the user (A-02 – Shift manager) a simple interface to
interact with the system.

The design of this web application will be divided into two sections:

• Structural design

• Behavioural design

4.6.1. Structural design

The class diagram of the application can be found below on Figure 37: Web application - Class diagram.

Note that, the model classes will have the same attributes and relations as in 4.4 REST service. For this reason,
they are not shown in the diagram. For further detail, refer to 4.4.2.1 Model classes.

Also, note that the communication process with the REST service has been separated into service classes. This
way, the controllers are only responsible for parsing user input, and selecting the template to be shown to the user
(The String values returned by the controllers are the path to the templates relative to
resources/templates).

95

4. Solution designed

96

Figure 37: Web application - Class diagram

4. Solution designed

4.6.2. Behavioural design

To begin with, we will start with the basic scenario in which the user wants to see a list of all existent doctors in
the system:

97

Figure 38: Web application -
DoctorsController.getDoctors sequence

4. Solution designed

Now, let’s say the user would like to create/edit a doctor. Then, they first have to request the edit-doctor form:

As the image can only be read correctly by zooming in, we will divide into into two halves and present them
separately:

98

Figure 40: Web application - DoctorsContrller.newDoctorForm sequence - left part

Figure 39: Web application - DoctorsController.newDoctorForm sequence

4. Solution designed

99

Figure 41: Web application - DoctorsController.newDoctorForm sequence - right part

4. Solution designed

After the edit-doctor template is sent, and the user submits the form, the following sequence of messages will
occur (We will also show them separately, as the image below is only readable by zooming in):

100

Figure 42: Web application - DoctorsController.newDoctor sequence

4. Solution designed

The controller creates a Doctor and a ShiftConfiguration instance using the sent information:

Then, the DoctorsController requests the DoctorService to persist the Doctor:

101

Figure 44: Web application - DoctorsController.newDoctor sequence - Persist doctor

Figure 43: Web application - DoctorsController.newDoctor sequence - Submit form

4. Solution designed

Then, the ShiftConfiguration has to be persisted as well:

Lastly, the user is presented with the doctor template:

The sequences of messages exchanged by the ScheduleController to get a list of all schedules, the information of
a specific schedule or the form to generate a schedule are fairly similar to the previous diagrams. For this reason,
these diagrams will not be shown.

102

Figure 46: Web application - DoctorsController.newDoctor sequence - Response

Figure 45: Web application - DoctorsController.newDoctor sequence - Persist shift configuration

4. Solution designed

Now, we will present the sequence of messages exchanged to generate a new schedule:

First of all, the ScheduleController creates a Calendar with the information sent in the POST request:

103

Figure 48: Web application - ScheduleController.newSchedule sequence - User submits form

Figure 47: Web application - ScheduleController.newSchedule sequence

4. Solution designed

Then, the ScheduleController requests the ScheduleService to generate a Schedule:

Lastly, the user is redirected to get the schedule information:

104

Figure 49: Web application - ScheduleController.newSchedule sequence - Request schedule generation

Figure 50: Web application - ScheduleController.newSchedule sequence - Redirect user

5. CONCLUSIONS AND FUTURE WORK

Looking back at the project objectives, we can say we have successfully completed them:

The first objective of the project was to automate and reduce the amount of time needed to schedule the doctor’s
shifts. With the developed application, in the simplest scenario, we can have a schedule generated in less than a
minute. The simplest scenario would be not wanting to change the doctor’s shift configurations nor the default
generation parameters (working days, minimum number of regular-shifts per day…).

Another project’s objective was having the system store the scheduling configuration, and allowing changing it.
This is what we have defined as the doctor’s shift configuration. Hence, we can say we have also achieved this
goal.

Being able to retrieve previous schedules was also one of this project’s purposes. This is the responsibility of the
web application’s “Schedules” page: it allows the end user to query the REST service for a specific schedule and
displays it in a readable format. Therefore, we can say we have completed this objective.

We have also tried to make the architecture flexible enough so that new features and changes will be developed
with more ease. For example, let’s say we developed a new system that allows doctors to change shifts. Then, to
integrate it with the current application, it would just have to consume the REST API (we may also need to add
new resources that would allow keeping track of shift changes).

Lastly, and most importantly, the main goal of this project was to develop a first functioning prototype that will
allow us to validate the system. This is, we can now show system to the end user, get feedback on the features
that have to be improved, and suggestions on the functionality that is yet to be added.

All in all, we could argue this project has been a success.

5.1. Future work

As the current system is just a prototype, there are many requirements that are yet to be met. For this reason, this
section will describe future lines of work to improve and complete this application. Moreover, as there are three
different problems to be solved (Scheduling problem, Pager assignment and Management problem), we will
describe possible lines of work on each of them.

105

5.1.1. Scheduling problem

Regarding the scheduling problem, the current requirements have been met. However, there are additional
features that can be added to improve it (some of which, we have already started to develop). These will be
explained in the following sections.

5.1.1.1. Edit a schedule

A use case that will have to be implemented before the management problem can be solved is allowing the user to
edit a schedule. This is, after a schedule is generated, the shift manager (Table 2: A-02 – Shift manager) might
want to change it.

From Figure 11: Desired scheduling procedure, the edit schedule use case would correspond to:

Note that, although sending an email to the doctors would already be part of the management problem, the system
has to register the schedule has been confirmed. This is to not let the schedule be updated manually any more after
it has been sent to the doctors.

Although it was not in the scope of this project, we have started implementing this use case. In this section, we
will describe the approach we have decided and how its development can be continued:

106

Figure 51: Desired scheduling procedure - Edit schedule

5. Conclusions and future work

The current shift manager (Table 2: A-02 – Shift manager) wills to keep using Excel to edit schedules. This is, the
shift manager would provide the application an Excel file, and the application would have to extract the edited
schedule from it. However, Excel has nothing to do with the current application. Therefore, to reduce its usage
throughout the system, we will give the responsibility of handling Excel files to the Web Application. This way,
the REST service does not need to be aware of the existence of Excel files.

On 1.2 Current situation we showed a sample of one of the Excel files used to schedule doctor’s shifts:

Figure 52: Excel file example

However, we did not explain the meaning of the colour scheme. Now, to be able to understand how to parse an
Excel file into the representation of a schedule (Table 40: Schedule resource), we do have to know how this file is
created and the meaning of the different colours:

• Each row represents the shifts of a certain day. The day number is indicated by the first column. E.g. on
the image above, the first row corresponds to the shifts that took place the 16th of a certain month.

• Each non-empty cell of a given row represents a shift on a certain day. E.g. on day 17 there were four
shifts scheduled, and on day 21 there were only two.

• Doctors are identified in the Excel by their surnames. This is, A, B, C, D… would be the surnames of the
corresponding doctors.

• Non working days are represented on blue (The whole row has to be coloured). The cells of a non
working day represent the CSs that took place that day. E.g. days 21 and 22 were non working days.
Doctors P and Q had a CS the 21st and doctors F and R had a CS the 22nd.

• Working days are not coloured in blue. Specifically, CS are represented with light grey, regular shift with
orange (light and dark), and consultations with salmon.

• On NCSs, the sign ‘#’ is added after the doctors surname. E.g. if doctor ‘A’ has a non cycle shift, we
would write “A #” in the corresponding cell.

• Regular shifts should be coloured on light orange if the corresponding doctor does not have a CS that
day, or coloured in dark orange if the doctor does have CS.

• On working days, the order on which shifts are represented is always the same: first, CS; then, regular
shifts; and lastly, consultations.

Now, we will explain how this use case will be implemented:

To isolate the handling of Excel files from the rest of the web application, we have created a new service class:

107

5. Conclusions and future work

Note the ScheduleController now has two new methods: One to handle request to convert a Schedule to an Excel
file, and another one to update a Schedule given an Excel file. The behaviour of the system on both of these cases
will be as shown in the following diagrams.

Note that, to read and create Excel files, we will be using Apache POI [74]. We can find a simple tutorial on how
to use this library at [75].

The development on the edit schedule feature has already been started. Specifically, the user can already
download the Excel representing a specific schedule, and can upload an Excel file to the web application.
However, the ScheduleService.updateSchedule and Schedule2ExcelService.fromExcel methods still have to be
developed. The ScheduleController.updateSchedule already uses the previous methods, but they do not do
anything yet.

108

Figure 53: Schedule2ExcelService class

5. Conclusions and future work

109

Figure 54: ScheduleController.downloadExcelFor

5. Conclusions and future work

110

Figure 55: ScheduleController.updateSchedule

5. Conclusions and future work

5.1.1.2. Doctor’s absences

A doctor’s absence is a period of time in which the doctor will not be working. This time could be due to holidays
or to a different reason such as time off sick.

The REST service currently takes into account absences. This is, a doctor resource (Table 33: Doctor resource)
can have an absence associated to it. However, doctors may have several absence periods within one month, and
the current model does not take that into account.

Moreover, the neither the web application nor the scheduler take absences into account. This is, the web
application should allow the user to add or delete doctor’s absences. Then, the scheduler algorithm should also
take into account that a doctor cannot have any shift during an absence period.

Furthermore, if a doctor is absent, another doctor should do their shifts. This, again, is not currently taken into
account by the system and is left as a future improvement.

5.1.1.3. Mandatory / Unavailable shifts

Another feature that can be added to make the system more flexible would be creating a new type of shift
preference (Table 14: BR-SCH-09 - Shift preferences). Mandatory and unavailable shifts would be similar to the
current wanted or unwanted shifts, however, they would have a different meaning: A mandatory shift would
represent the corresponding doctor has to have a regular-shift the specified day, whereas an unavailable shift
would represent the doctor must not have a regular-shift the given day.

This new feature would make the system more flexible by allowing the user to choose certain shifts that have to
(or must not) be done by certain doctors.

5.1.1.4. Consultation preferences

Currently, by the examples we have been given on shift preferences, we have only implemented wanted
consultations. However, we could also add unwanted, mandatory or unavailable consultations. This would give
the user more control on how consultations are scheduled.

5.1.2. Pager assignment problem

The pager assignment problem can be solved after the scheduler has finished scheduling shifts. The scheduler
could assign the pagers based on the generated schedule: we can already identify the doctors that can have the
pager (Table 19: BR-PG-03 – Pager allowed doctors), and on which days it has to be assigned (Table 17: BR-PG-
01 – Pager allowed days). To know which doctors should be assigned the pager twice (Table 22: BR-PG-06 -
Second pager assignment order), we could keep track of the last time each doctor had the it assigned twice (for
example, by adding a new property to the doctor’s shift configuration). Lastly, the REST service could update the
dates on which doctors had to have the pager assigned twice (based on the assigned pagers).

Note this is just a suggestion, and it would have to be thought thoroughly before implementing it. For example, we
might also want to add pager preferences similar to Table 14: BR-SCH-09 - Shift preferences.

5.1.3. Management problem

The management problem, we could divide it into two separate parts:

• Notifying the doctors of their schedule

• Allowing shift changes

111

5. Conclusions and future work

5.1.3.1. Notifying doctors of their schedule

Notifying doctors of their schedule consists on both, sending them an email whenever the schedule of a month is
confirmed, and allowing them to have the most updated version of each schedule (after shift changes have been
applied).

For the first part, sending the doctors an email, we could have an email server to send it. Its services would be
requested after a schedule is confirmed, as shown on Figure 51: Desired scheduling procedure - Edit schedule.
Another idea would be using the services of an email provider. For example, Google has an available REST API
that allows sending mails from a gmail account. See [76].

Regarding the second part, we could make use of a CalDAV [77] server to provide access to the schedules. Then,
the doctors would need a CalDAV client. This way, to allow the doctors to have the most updated version of the
schedule, we would only have to update the CalDAV server whenever a schedule changes.

For example, while we were studying this project, one of the alternatives we came up with was the Open Source
Baikal CalDAV project. Its home page can be found at [78]. However, as finding a reliable CalDAV client or
implementing one could be a costly or lengthy task. Another alternative would be using a calendar provider. For
example, Google Calendar has a REST API that allows managing calendars. See [79]. They also provide libraries
for different languages such a Python or Java to consume their API (they can be found on the previous reference).

5.1.3.2. Allowing shift changes

Allowing shift changes is a whole new addition to the application, as it introduces a new actor into the system:
Table 1: A-01 - Doctor.

One of the solutions we came up with, and that can be explored when designing a solution to this problem, would
be using a chatbot. The doctors would talk to this chatbot to request a shift change. For example, they could send
the bot a command such as: “change regular-shift 2020-06-15”xii. Then, the bot could notify the other doctors
there is a person willing to change one of their shifts. Afterwards, if a doctor is willing to change the proposed
shift, they could send the bot a command such as “accept-change regular-shift 2020-06-15”. Finally, the bot
would have to communicate with the main application to report the change.

For example, an option we considered was using the API to develop bots [80] provided by Telegram [81].
Moreover, there are different libraries that already provide a simple wrapper around this API. For example,
python-telegram-bot [82] is a simple-to-use Python module that supports the main operations of the Telegram’s
Bots API.

xii In these illustrative examples, we will assume the communication between the doctors and the chatbot would be through commands. We
could also allow the doctors to use natural language but then, we would have to use Natural Language Processing (NLP) techniques. On this
simple discussion, we will assume the communication will be through commands, but NLP would have to be considered as an option if this
feature was to be implemented.

112

REFERENCES

[1] Bradley, S.; Hax, A; and Magnanti, T. 1992. Applied Mathematical Programming. Reading, Mass: Addison-
Wesley. Chapters 1 and 9
[2] I. Restrepo, María; Rousseau, Louis-Martin; Vallée, Jonathan. 2019. Home healthcare integrated staffing and
scheduling. Omega
[3] Ceric, Arnela. 2015. Bringing together evaluation and management of ICT value: A systems theory approach.
Electronic Journal of IS Evaluation. 18.
[4] Omg.org. 2020. About The Unified Modeling Language Specification Version 2.5. [online] Available at:

<https://www.omg.org/spec/UML/2.5/About-UML/> [Accessed 27 May 2020].
[5] Sommerville, I. 2002. Ingeniería de software ([2a ed. en español]). Méxic. Pearson Educación.
[6] Docs.spring.io. 2020. 17. Web MVC Framework. [online] Available at:

<https://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/mvc.html> [Accessed 3 June
2020].

[7] Baeldung. 2020. The DAO Pattern In Java | Baeldung. [online] Available at:
<https://www.baeldung.com/java-dao-pattern> [Accessed 3 June 2020].

[8] Martinfowler.com. 2020. P Of EAA: Data Transfer Object. [online] Available at:
<https://martinfowler.com/eaaCatalog/dataTransferObject.html> [Accessed 3 June 2020].

[9] Wiki.python.org. 2020. Beginnersguide/Overview - Python Wiki. [online] Available at:
<https://wiki.python.org/moin/BeginnersGuide/Overview> [Accessed 22 May 2020].

[10] Docs.python.org. 2020. 3.7.7 Documentation. [online] Available at:
<https://docs.python.org/3.7/> [Accessed 23 May 2020].

[11] Docs.python.org. 2020. 3. An Informal Introduction To Python — Python 3.8.3 Documentation. [online]
Available at:

<https://docs.python.org/3/tutorial/introduction.html#lists> [Accessed 11 June 2020].
[12] Docs.python.org. 2020. 5. Data Structures — Python 3.8.3 Documentation. [online] Available at:

<https://docs.python.org/3/tutorial/datastructures.html#dictionaries> [Accessed 11 June 2020].
[13] Docs.python.org. 2020. What’S New In Python 2.0 — Python 3.8.3 Documentation. [online] Available at:

<https://docs.python.org/3/whatsnew/2.0.html#list-comprehensions> [Accessed 11 June 2020].
[14] Python.org. 2020. PEP 274 -- Dict Comprehensions. [online] Available at:

<https://www.python.org/dev/peps/pep-0274/> [Accessed 11 June 2020].
[15] Docs.python.org. 2020. Json — JSON Encoder And Decoder — Python 3.8.3 Documentation. [online]
Available at:

<https://docs.python.org/3/library/json.html> [Accessed 11 June 2020].
[16] T. Bray. The JavaScript Object Notation (JSON) Data Interchange Format. RFC 7159. [online] Available at:

<https://tools.ietf.org/html/rfc7159> [Accessed 28 May 2020].
[17] Google Developers. 2020. OR-Tools | Google Developers. [online] Available at:

<https://developers.google.com/optimization> [Accessed 23 May 2020].
[18] Google Developers. 2020. Python Reference: CP-SAT | OR-Tools | Google Developers. [online] Available
at:

<https://developers.google.com/optimization/reference/python/sat/python/cp_model> [Accessed 11 June
2020].

[19] Docs.python.org. 2020. What’S New In Python 3.6 — Python 3.8.3 Documentation. [online] Available at:
<https://docs.python.org/3/whatsnew/3.6.html#pep-498-formatted-string-literals> [Accessed 11 June
2020].

https://docs.python.org/3/whatsnew/3.6.html#pep-498-formatted-string-literals
https://developers.google.com/optimization/reference/python/sat/python/cp_model
https://developers.google.com/optimization
https://tools.ietf.org/html/rfc7159
https://docs.python.org/3/library/json.html
https://www.python.org/dev/peps/pep-0274/
https://docs.python.org/3/whatsnew/2.0.html#list-comprehensions
https://docs.python.org/3/tutorial/datastructures.html#dictionaries
https://docs.python.org/3/tutorial/introduction.html#lists
https://docs.python.org/3.7/
https://wiki.python.org/moin/BeginnersGuide/Overview
https://martinfowler.com/eaaCatalog/dataTransferObject.html
https://www.baeldung.com/java-dao-pattern
https://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/mvc.html
https://www.omg.org/spec/UML/2.5/About-UML/

References

[20] GitHub. 2020. Google/Or-Tools. [online] Available at:
<https://github.com/google/or-tools/blob/master/examples/python/shift_scheduling_sat.py> [Accessed 11
June 2020].

[21] W3schools.com. 2020. Introduction To Java. [online] Available at:
<https://www.w3schools.com/java/java_intro.asp> [Accessed 23 May 2020].

[22] Docs.oracle.com. 2020. Java Platform SE 8. [online] Available at:
<https://docs.oracle.com/javase/8/docs/api/> [Accessed 23 May 2020].

[23] Docs.oracle.com. 2020. Anonymous Classes (The Java™ Tutorials > Learning The Java Language > Classes
And Objects). [online] Available at:

<https://docs.oracle.com/javase/tutorial/java/javaOO/anonymousclasses.html> [Accessed 25 June 2020].
[24] Docs.oracle.com. 2020. Lambda Expressions (The Java™ Tutorials > Learning The Java Language >
Classes And Objects). [online] Available at:

<https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html> [Accessed 25 June 2020].
[25] Cgi.csc.liv.ac.uk. 2020. 2Cs24 Declarative. [online] Available at:

<https://cgi.csc.liv.ac.uk/~frans/OldLectures/2CS24/declarative.html> [Accessed 11 June 2020].
[26] Docs.oracle.com. 2020. Java.Util.Stream (Java Platform SE 8). [online] Available at:

<https://docs.oracle.com/javase/8/docs/api/java/util/stream/package-summary.html> [Accessed 25 June
2020].

[27] Web.mit.edu. 2020. Reading 25: Map, Filter, Reduce. [online] Available at:
<https://web.mit.edu/6.005/www/fa15/classes/25-map-filter-reduce/> [Accessed 11 June 2020].

[28] Docs.oracle.com. 2020. Lesson: Annotations (The Java™ Tutorials > Learning The Java Language). [online]
Available at:

<https://docs.oracle.com/javase/tutorial/java/annotations/> [Accessed 23 June 2020].
[29] Fielding, R. Architectural Styles and the Design of Network-based Software Architectures. Doctoral
Dissertation. University of California, Irvine. September 2000. Chapter 5. [online] Available at:
 <http://roy.gbiv.com/pubs/dissertatio.n/top.htm> [Accessed 22 May 2020]
[30] Fielding, R.; J. Reschke; Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content. RFC 7231.
[online] Available at:

<https://tools.ietf.org/html/rfc7231 > [Accessed 22 May 2020].
[31] W3.org. 2020. W3C XML Schema Definition Language (XSD) 1.1 Part 1: Structures. [online] Available at:

<https://www.w3.org/TR/xmlschema11-1/> [Accessed 23 June 2020].
[32] M. Kelly, JSON Hypertext Application Language. Draft-kelly-json-hal-08. [online] Available at:

<https://tools.ietf.org/html/draft-kelly-json-hal-08 > [Accessed 28 May 2020].
[33] Spring. 2020. Spring Makes Java Simple. [online] Available at:

<https://spring.io/> [Accessed 23 May 2020].
[34] Spring Initializr. 2020. Spring Initializr. [online] Available at:

<https://start.spring.io/> [Accessed 2 June 2020].
[35] Porter, B., Zyl, J. and Lamy, O., 2020. Maven – Welcome To Apache Maven. [online] Maven.apache.org.
Available at:

<https://maven.apache.org/> [Accessed 12 June 2020].
[36] Spring.io. 2020. Building REST Services With Spring. [online] Available at:

<https://spring.io/guides/tutorials/bookmarks/> [Accessed 17 June 2020].
[37] Youtube. REST Beyond the Obvious – API Design for Ever-Evolving SystemsI. [online] Available at:

<https://www.youtube.com/watch?v=WDBUlu_lYas > [Accessed 17 June 2020].
[38] Spring.io. 2020. Accessing Data With Mysql. [online] Available at:

<https://spring.io/guides/gs/accessing-data-mysql/> [Accessed 17 June 2020].
[39] Baeldung. 2020. How To Do @Async In Spring | Baeldung. [online] Available at:

<https://www.baeldung.com/spring-async> [Accessed 18 June 2020].
[40] Baeldung. 2020. Guide To Internationalization In Spring Boot | Baeldung. [online] Available at:

<https://www.baeldung.com/spring-boot-internationalization> [Accessed 18 June 2020].
[41] Baeldung. 2020. Spring Boot: Customize Whitelabel Error Page | Baeldung. [online] Available at:

<https://www.baeldung.com/spring-boot-custom-error-page> [Accessed 18 June 2020].
[42] Docs.spring.io. 2020. Web On Servlet Stack. [online] Available at:

<https://docs.spring.io/spring/docs/current/spring-framework-reference/web.html> [Accessed 12 June

https://docs.spring.io/spring/docs/current/spring-framework-reference/web.html
https://www.baeldung.com/spring-boot-custom-error-page
https://www.baeldung.com/spring-boot-internationalization
https://www.baeldung.com/spring-async
https://spring.io/guides/gs/accessing-data-mysql/
https://www.youtube.com/watch?v=WDBUlu_lYas
https://spring.io/guides/tutorials/bookmarks/
https://maven.apache.org/
https://start.spring.io/
https://spring.io/
https://tools.ietf.org/html/draft-kelly-json-hal-08
https://www.w3.org/TR/xmlschema11-1/
https://tools.ietf.org/html/rfc7231
http://roy.gbiv.com/pubs/dissertation/top.htm
https://docs.oracle.com/javase/tutorial/java/annotations/
https://web.mit.edu/6.005/www/fa15/classes/25-map-filter-reduce/
https://docs.oracle.com/javase/8/docs/api/java/util/stream/package-summary.html
https://cgi.csc.liv.ac.uk/~frans/OldLectures/2CS24/declarative.html
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
https://docs.oracle.com/javase/tutorial/java/javaOO/anonymousclasses.html
https://docs.oracle.com/javase/8/docs/api/
https://www.w3schools.com/java/java_intro.asp
https://github.com/google/or-tools/blob/master/examples/python/shift_scheduling_sat.py

References

2020].
[43] Stackify. 2020. How Spring MVC Really Works. [online] Available at:

<https://stackify.com/spring-mvc/> [Accessed 12 June 2020].
[44] Project, A., 2020. Apache Tomcat® - Welcome!. [online] Tomcat.apache.org. Available at:

<https://tomcat.apache.org/index.html> [Accessed 12 June 2020].
[45] Spring.io. 2020. Spring Boot. [online] Available at:

<https://spring.io/projects/spring-boot> [Accessed 12 June 2020].
[46] Mit.edu. 2020. Curl Man Page. [online] Available at:

<https://www.mit.edu/afs.new/sipb/user/ssen/src/curl-7.11.1/docs/curl.html> [Accessed 12 June 2020].
[47] Baeldung. 2020. Spring Dependency Injection | Baeldung. [online] Available at:

<https://www.baeldung.com/spring-dependency-injection> [Accessed 12 June 2020].
[48] Docs.spring.io. 2020. Core Technologies. [online] Available at:

<https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#beans-factory-
collaborators> [Accessed 12 June 2020].

[49] Projectlombok.org. 2020. Project Lombok. [online] Available at:
<https://projectlombok.org/> [Accessed 12 June 2020].

[50] Slf4j.org. 2020. Logger (SLF4J 2.0.0-Alpha0 API). [online] Available at:
<http://www.slf4j.org/apidocs/org/slf4j/Logger.html> [Accessed 12 June 2020].

[51] Spring.io. 2020. Spring Data JPA. [online] Available at:
<https://spring.io/projects/spring-data-jpa> [Accessed 2 June 2020].

[52] Docs.oracle.com. 2020. Javax.Persistence (Java(TM) EE 7 Specification Apis). [online] Available at:
<https://docs.oracle.com/javaee/7/api/javax/persistence/package-summary.html> [Accessed 17 June
2020].

[53] Docs.spring.io. 2020. Jparepository (Spring Data JPA 2.3.1.RELEASE API). [online] Available at:
<https://docs.spring.io/spring-data/jpa/docs/current/api/org/springframework/data/jpa/repository/
JpaRepository.html> [Accessed 17 June 2020].

[54] Docs.oracle.com. 2020. Validator (Java(TM) EE 7 Specification Apis). [online] Available at:
<https://docs.oracle.com/javaee/7/api/javax/validation/Validator.html> [Accessed 17 June 2020].

[55] Hardy Ferentschik, G., 2020. Hibernate Validator 6.1.5.Final - Jakarta Bean Validation Reference
Implementation: Reference Guide. [online] Docs.jboss.org. Available at:

<https://docs.jboss.org/hibernate/stable/validator/reference/en-US/html_single/?v=6.1#section-validating-
bean-constraints> [Accessed 17 June 2020].

[56] Docs.oracle.com. 2020. Valid (Java(TM) EE 7 Specification Apis). [online] Available at:
<https://docs.oracle.com/javaee/7/api/javax/validation/Valid.html> [Accessed 17 June 2020].

[57] Javaee.github.io. 2020. Javax.Validation.Constraints (Java(TM) EE 8 Specification Apis). [online] Available
at:

<https://javaee.github.io/javaee-spec/javadocs/javax/validation/constraints/package-frame.html>
[Accessed 17 June 2020].

[58] Hardy Ferentschik, G., 2020. Hibernate Validator 6.1.5.Final - Jakarta Bean Validation Reference
Implementation: Reference Guide. [online] Docs.jboss.org. Available at:

<https://docs.jboss.org/hibernate/stable/validator/reference/en-US/html_single/?v=6.1#validator-
customconstraints-simple> [Accessed 17 June 2020].

[59] Docs.jboss.org. 2020. Chapter 2. Mapping Entities. [online] Available at:
<https://docs.jboss.org/hibernate/annotations/3.5/reference/en/html/entity.html> [Accessed 17 June
2020].

[60] Balasubramaniam, V., 2020. Composite Primary Keys In JPA | Baeldung. [online] Baeldung. Available at:
<https://www.baeldung.com/jpa-composite-primary-keys> [Accessed 17 June 2020].

[61] Spring.io. 2020. Spring HATEOAS. [online] Available at:
<https://spring.io/projects/spring-hateoas> [Accessed 2 June 2020].

[62] Mode, D., 2020. HATEOAS Driven REST Apis – REST API Tutorial. [online] Restfulapi.net. Available at:
<https://restfulapi.net/hateoas/> [Accessed 18 June 2020].

[63] Docs.spring.io. 2020. Entitymodel (Spring HATEOAS 1.1.0.RELEASE API). [online] Available at:
<https://docs.spring.io/spring-hateoas/docs/current/api/org/springframework/hateoas/EntityModel.html>
[Accessed 18 June 2020].

https://docs.spring.io/spring-hateoas/docs/current/api/org/springframework/hateoas/EntityModel.html
https://restfulapi.net/hateoas/
https://spring.io/projects/spring-hateoas
https://www.baeldung.com/jpa-composite-primary-keys
https://docs.jboss.org/hibernate/annotations/3.5/reference/en/html/entity.html
https://docs.jboss.org/hibernate/stable/validator/reference/en-US/html_single/?v=6.1#validator-customconstraints-simple
https://docs.jboss.org/hibernate/stable/validator/reference/en-US/html_single/?v=6.1#validator-customconstraints-simple
https://javaee.github.io/javaee-spec/javadocs/javax/validation/constraints/package-frame.html
https://docs.oracle.com/javaee/7/api/javax/validation/Valid.html
https://docs.jboss.org/hibernate/stable/validator/reference/en-US/html_single/?v=6.1#section-validating-bean-constraints
https://docs.jboss.org/hibernate/stable/validator/reference/en-US/html_single/?v=6.1#section-validating-bean-constraints
https://docs.oracle.com/javaee/7/api/javax/validation/Validator.html
https://docs.spring.io/spring-data/jpa/docs/current/api/org/springframework/data/jpa/repository/JpaRepository.html
https://docs.spring.io/spring-data/jpa/docs/current/api/org/springframework/data/jpa/repository/JpaRepository.html
https://docs.oracle.com/javaee/7/api/javax/persistence/package-summary.html
https://spring.io/projects/spring-data-jpa
http://www.slf4j.org/apidocs/org/slf4j/Logger.html
https://projectlombok.org/
https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#beans-factory-collaborators
https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#beans-factory-collaborators
https://www.baeldung.com/spring-dependency-injection
https://www.mit.edu/afs.new/sipb/user/ssen/src/curl-7.11.1/docs/curl.html
https://spring.io/projects/spring-boot
https://tomcat.apache.org/index.html
https://stackify.com/spring-mvc/

References

[64] Docs.spring.io. 2020. Collectionmodel (Spring HATEOAS 1.1.0.RELEASE API). [online] Available at:
<https://docs.spring.io/spring-hateoas/docs/current/api/org/springframework/hateoas/
CollectionModel.html> [Accessed 18 June 2020].

[65] Docs.spring.io. 2020. Representationmodelassembler (Spring HATEOAS 1.1.0.RELEASE API). [online]
Available at:

<https://docs.spring.io/spring-hateoas/docs/current/api/org/springframework/hateoas/server/
RepresentationModelAssembler.html> [Accessed 18 June 2020].

[66] Docs.spring.io. 2020. Traverson (Spring HATEOAS 1.1.0.RELEASE API). [online] Available at:
<https://docs.spring.io/spring-hateoas/docs/current/api/org/springframework/hateoas/client/
Traverson.html> [Accessed 18 June 2020].

[67] Oliver Gierke, J., 2020. Spring HATEOAS - Reference Documentation. [online] Docs.spring.io. Available
at:

<https://docs.spring.io/spring-hateoas/docs/current/reference/html/> [Accessed 18 June 2020].
[68] Docs.spring.io. 2020. Resttemplate (Spring Framework 5.2.7.RELEASE API). [online] Available at:

<https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/client/
RestTemplate.html> [Accessed 18 June 2020].

[69] Baeldung. 2020. A Guide To The Resttemplate | Baeldung. [online] Available at:
<https://www.baeldung.com/rest-template> [Accessed 18 June 2020].

[70] Thymeleaf.org. 2020. Tutorial: Using Thymeleaf. [online] Available at:
<https://www.thymeleaf.org/doc/tutorials/2.1/usingthymeleaf.html> [Accessed 18 June 2020].

[71] Mysql.com. 2020. Mysql. [online] Available at:
<https://www.mysql.com/> [Accessed 3 June 2020].

[72] Docs.oracle.com. 2020. Supplier (Java Platform SE 8). [online] Available at:
<https://docs.oracle.com/javase/8/docs/api/java/util/function/Supplier.html> [Accessed 17 June 2020].

[73] GitHub. 2020. Miggoncan/Guardiansscheduler. [online] Available at:
<https://github.com/miggoncan/guardiansScheduler> [Accessed 10 June 2020].

[74] Poi.apache.org. 2020. Apache POI - The Java API For Microsoft Documents. [online] Available at:
<https://poi.apache.org/> [Accessed 4 July 2020].

[75] Baeldung. 2020. Working With Microsoft Excel In Java | Baeldung. [online] Available at:
<https://www.baeldung.com/java-microsoft-excel#apache-poi> [Accessed 4 July 2020].

[76] Google Developers. 2020. Gmail API | Google Developers. [online] Available at:
<https://developers.google.com/gmail/api> [Accessed 4 July 2020].

[77] C. Daboo. Calendaring Extensions to WebDAV (CalDAV). RFC 4791. [online] Available at:
<https://tools.ietf.org/html/rfc 4791 > [Accessed 4 July 2020].

[78] Sabre.io. 2020. Baïkal - Baikal. [online] Available at:
<https://sabre.io/baikal/> [Accessed 4 July 2020].

[79] Google Developers. 2020. Calendar API | Google Developers. [online] Available at:
<https://developers.google.com/calendar> [Accessed 4 July 2020].

[80] Core.telegram.org. 2020. Bots: An Introduction For Developers. [online] Available at:
<https://core.telegram.org/bots> [Accessed 4 July 2020].

[81] Telegram. 2020. Telegram – A New Era Of Messaging. [online] Available at:
<https://telegram.org/> [Accessed 4 July 2020].

[82] Python-telegram-bot.org. 2020. Python-Telegram-Bot. [online] Available at:
<https://python-telegram-bot.org/> [Accessed 4 July 2020].

https://python-telegram-bot.org/
https://telegram.org/
https://core.telegram.org/bots
https://developers.google.com/calendar
https://sabre.io/baikal/
https://tools.ietf.org/html/rfc4791
https://tools.ietf.org/html/rfc4791
https://developers.google.com/gmail/api
https://www.baeldung.com/java-microsoft-excel#apache-poi
https://poi.apache.org/
https://github.com/miggoncan/guardiansScheduler
https://docs.oracle.com/javase/8/docs/api/java/util/function/Supplier.html
https://www.mysql.com/
https://www.thymeleaf.org/doc/tutorials/2.1/usingthymeleaf.html
https://www.baeldung.com/rest-template
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/client/RestTemplate.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/client/RestTemplate.html
https://docs.spring.io/spring-hateoas/docs/current/reference/html/
https://docs.spring.io/spring-hateoas/docs/current/api/org/springframework/hateoas/client/Traverson.html
https://docs.spring.io/spring-hateoas/docs/current/api/org/springframework/hateoas/client/Traverson.html
https://docs.spring.io/spring-hateoas/docs/current/api/org/springframework/hateoas/server/RepresentationModelAssembler.html
https://docs.spring.io/spring-hateoas/docs/current/api/org/springframework/hateoas/server/RepresentationModelAssembler.html
https://docs.spring.io/spring-hateoas/docs/current/api/org/springframework/hateoas/CollectionModel.html
https://docs.spring.io/spring-hateoas/docs/current/api/org/springframework/hateoas/CollectionModel.html

APPENDIX A – CODE

All of the code developed in this project can be found on these three GitHub repositories:

• RESTful service:

https://github.com/miggoncan/guardiansRESTinterface [Accessed 10 June 2020]

• Scheduler:

https://github.com/miggoncan/guardiansScheduler [Accessed 10 June 2020]

• Web application:

https://github.com/miggoncan/guardiansWebapp [Accessed 10 June 2020]

• Deployment scripts and instructions:

https://github.com/miggoncan/guardiansDeployment [Accessed 1 July 2020]

Note: The README.md file on the RESTful service repository contains a guide to set up the project for
development. It also contains links to the JavaDocs of the project.

1

https://github.com/miggoncan/guardiansDeployment
https://github.com/miggoncan/guardiansWebapp
https://github.com/miggoncan/guardiansScheduler
https://github.com/miggoncan/guardiansRESTinterface

APPENDIX B – WEB APPLICATION USAGE

Note: As this project is being developed in English but the web application’s users speak Spanish, the
application’s language can be easily changed at runtime between these two languages. See the “Language”
drop-down button at the top right of the following image. Still, as this document is being written in
English, this usage guide will be in the same language (A usage guide in Spanish will also be developed,
but will not be included as part of this project).

1. Create a new doctor

1. From the homepage, click on ‘Doctors’:

1

Appendix B – Web application usage

2. Click on ‘New Doctor’ on the top right corner:

3. Fill in the general fields:

2

Appendix B – Web application usage

4. Select the first cyclic-shift of the doctor (if the doctor does not do cyclic-shifts, select the current
date):

5. Select the shift preferences of the doctor and click the submit button:

3

Appendix B – Web application usage

2. Edit a doctor

1. Click on ‘Doctors’ from the homepage:

2. Search for the doctor to be edited and click on it:

4

Appendix B – Web application usage

3. Click on ‘Edit’:

4. Edit the desired fields and submit the changes (E.g. let’s add some wanted and unwanted shifts):

5

Appendix B – Web application usage

3. Generate a new schedule

1. From the home page, click on ‘Schedules’:

2. Click on ‘New Schedule’:

6

Appendix B – Web application usage

3. Select the month whose schedule is to be generated (for example, August 2020) and click on
‘Continue’:

4. The following screen will appear:

7

Appendix B – Web application usage

5. We can set a day to be a non-working-day by clicking on it (E.g. 14th of August):

6. We can change the configuration of a particular day by right clicking on it (E.g. let’s say doctor
John Smith wants a shift the 17th of August):

1. Right click on the desired day:

8

Appendix B – Web application usage

2. Click on the wanted shifts field:

3. Search for the desired doctor and click on it:

9

Appendix B – Web application usage

4. Click on confirm:

If no configuration is applied, the default configuration is:

• Min. Regular-shifts: 2

• Min. Consultations: 0

• No wanted shifts

• No unwanted shifts

7. After applying the desired configuration (if any), we can generate the schedule by clicking on
‘Submit’:

10

Appendix B – Web application usage

8. The generated schedule will be displayed after generation has finished (if may take a while):

9. We can change how the schedule is displayed by clicking on the top right buttons:

11

Appendix B – Web application usage

12

APPENDIX C – DEPLOYMENT

This section will describe the deployment that will be made. As mentioned in 4Solution designed, the four
components of the application (Web server, REST service, Scheduler and DBMS) will be deployed into a
single machine.

To make the deployment easier, it has been automated. The scripts and instructions needed to deploy it
can be found at the deployment repository. See Appendix A – Code.

Now, we will explain the procedure followed by these scripts. Note the deployment has been tested on
Ubuntu 18.04 LTS

First of all, we need to know the different files that will have to be deployed for each of the services:

• REST service: As mentioned in 2.8 Spring, using Maven, we can build the whole Spring
application into a single self-contained jar file. This way, for the REST service to be deployed,
we only need three different files:

◦ The service’s jar file

◦ The application.properties file, to configure the service.

◦ The public-private key, for TLS encryption.

• Web server: As the web server is just another Spring application built with Maven, it only needs
three different files:

◦ The server’s jar file, configure the server.

◦ The application.properties file, to configure the server

◦ The public-private key, for TLS encryption.

• Scheduler: The scheduler is divided in two different directories:

◦ Configuration directory: Contains the scheduler configuration file mentioned at 4.5.3
Scheduler’s design, and a file to configure logging.

1

Appendix C – Deployment

◦ Source directory: Contains the main script and the script responsible for scheduling the shifts.

Now, we need to know the project’s dependencies:

• Python 3.7

• OpenJDK-1.8

• MySQL server

For the automated deployment, we also need:

• Git

• MySQL command line client

Now, deployment consists basically on four steps:

1. Modifying the application’s configuration files

2. Moving the different files to their corresponding locations

3. Configuring the database

4. Configuring permissions on the application’s files

These four steps will be explained in the following sections.

1. Modifying the application’s configuration files

First of all, we have to clone the desired version of each of the services (Web server, REST service and
Scheduler). Their repositories can be found at Appendix A – Code.

Afterwards, we need to generate four different passwords. One for the REST service to authenticate to the
database, another one for the web server to authenticate to the REST service, and two more for the web
server and the REST service to decrypt their private-public key (as they will be stored in a PKCS12
keystore). This is the responsibility of the generatePassword.py script. It takes a single argument
(the desired password length), and prints the generated password to its standard output stream.

Then, we can generate the self-signed certificates used by the REST service and the Web server using
keytool, a command line tool included in the JRE to generate certificates. This is the responsibility of
the generatePkcs12Key.sh script. It takes one positional argument and two optional arguments.
The positional argument is the password used to encrypt the generated key. The optional arguments are:

• --alias=<value>: Where value is the alias of the generated key. It defaults to guardians.

• --file=<value>: Where value is the path where the generated PKCS12 file will be
located. It defaults to ./guardians.p12.

Lastly, we have to insert the generated passwords into their respective application.properties file. For
example, the password used by the Web server to authenticate to the REST service will the value of the
property auth.rest.password.

2

Appendix C – Deployment

To make this process simpler, we have changed the values of these properties to a known token. For
example:

auth.rest.password = REST_SERVICE_PASSWORD

Then, using the replace.py script, we can easily look for these tokens and substitute them by their
corresponding values. For example, if the generated password was abcdefghijk, we would call the script
as:

python3 replace.py path/to/application.properties \
 REST_SERVICE_PASSWORD=abcdefghijk \
 SOME_OTHER_TOKEN=someValue \
 ...

Note that some other values, besides the passwords, will also have to be updated on the configuration
files. However, we will not discuss them in this section to keep it brief. Refer to the mentioned repository
to find all of these values. Still, to give an example, the ExecStart option of the Systemd service files have
to call the correct version of the jar file and at the desired installation path. E.g from the REST
service .service file:

 ExecStart=/usr/lib/jvm/java-8-openjdk-amd64/bin/java -jar \
 PATH_TO_GUARDIANS_JAR

Where PATH_TO_GUARDIANS_JAR has to be the path to the REST service’s jar file. E.g.:
/usr/bin/guardians/guardians-v1.0.0.jar.

2. Moving the different files to their corresponding locations

As moving a file from a location to a different one can be as simple a using the mv command, this section
will show the default locations of each of the application’s files (note they can be changed on the
config.sh file):

/etc/
 |- guardians/ # The REST service’s configuration directory
 | |- application.properties
 | |- keystore/
 | | |- guardiansRest.p12
 | |- scheduler/ # The Scheduler’s configuration directory
 | | |- scheduler.json
 | | |- logging.json
 |- guardiansWebapp/ # The Web server’s configuration directory
 | |- application.properties
 | |- keystore/
 | | |- guardiansWebapp.p12
 |- systemd/system/
 | |- guardians.service # Systemd service files for both
 | |- guardiansWebapp.service # the REST service and Web server
/var/log/
 |- guardians/ # The REST service’s and scheduler’s logging dir
 | |- guardians.log
 | |- scheduler.log
 |- guardiansWebapp/ # The Web server’s logging directory
 | |- guardiansWebapp.log
/usr/lib/
 |- guardians/

3

Appendix C – Deployment

 | |- guardians-vXXX.jar # The REST service’s jar file
 | |- scheduler/ # The scheduler’s source directory
 | | |- main.py
 | | |- scheduler.py
 |- guardiansWebapp/
 | |- guardiansWebapp-vXXX.jar # The Web server’s jar file

3. Configuring the database

This section will show the SQL statement that will be used to configure and populate the database with
initial data. Note all of these statements can be found at the ‘sql’ directory in the release branch of the
REST service repository.

First of all, we have to create database used by the REST service (the following commands should be run
on a mysql prompt):

> CREATE DATABASE db_guardians;

Then, we have to create the application’s user:

> CREATE USER ‘guardiansUser’@‘%’
 IDENTIFIED BY ‘GENERATED_PASSWORD’;

Now, we grant only the required privileges on this user:

> GRANT SELECT, INSERT, DELETE, UPDATE ON db_guardians.*
 TO ‘guardiansUser’;

Lastly, we have to create the tables needed by our application. For example, the doctor table will be
created a

> CREATE TABLE doctor
 (
 id BIGINT NOT NULL,
 email VARCHAR(255) NOT NULL,
 first_name VARCHAR(255) NOT NULL,
 last_names VARCHAR(255) NOT NULL,
 start_date date NOT NULL,
 status INTEGER NOT NULL,
 PRIMARY KEY (id)
)
 engine=InnoDB;

Note the create statements have been automatically generated with JPA. To do this, we just need to add
the following into the application.properties (and then, execute the build and execute the application):

spring.jpa.properties.javax.persistence.schema-generation \
 .scripts.action = create # Only genereate the ‘create’

statements
spring.jpa.properties.javax.persistence.schema-generation \
 .scripts.create-target = create.sql # Name of the generated file
spring.jpa.properties.javax.persistence.schema-generation \
 .scripts.create-source = metadata # Generate SQL from @Entity

Then, we will also preload the allowed shifts. For example:

> INSERT INTO allowed_shift VALUES (1, 'Monday');

4

Appendix C – Deployment

Lastly, the configure.sh has an option (PRELOAD_DOCTORS_AND_SHIFT_CONFIGS=1) that

allows choosing whether initial doctors and their shift configurations should be preloaded. This initial data
has been provided by the current shift manager at HUVM. For example:

> INSERT INTO doctor
 (id, first_name, last_names, email, start_date, status)
 VALUES (1, '1', '1', '1@guardians.com', '2020-05-01', 0);

> INSERT INTO shift_configuration
 (doctor_id, min_shifts, max_shifts, num_consultations,
 does_cycle_shifts, has_shifts_only_when_cycle_shifts)
 VALUES (1, 0, 0, 0, TRUE, FALSE);

4. Configuring permissions on the application’s files

This section will explain the permissions that will be granted on the application’s files. Note that we will
also create two new users in the system guardiansUser and guardiansWebappUser that will own their
respective files.

The configuration directories will just need permissions to read and list files. For example:

chmod 550 /etc/guardians

Then, the configuration files will just need read permissions:

chmod 440 /etc/guardians/application.properties

The log directories will need permissions to read, list (both for the log rotation) and create files (to create
the logs). For example:

chmod 770 /var/log/guardians

The directories containing the jar files and the python scripts need permissions to read, list and create (the
jars will generate files like .classpath, and the python interpreter will generate the __pycache__
directory). For example:

chmod 770 /usr/lib/guardians

Lastly, the python scripts and the jar files will only need read privileges. For example:

chmod 440 /usr/lib/guardians/scheduler/main.py

5

	References
	Acknowledgements
	Abstract
	Resumen
	Index
	List of Tables
	List of Figures
	List of code snippets
	Notation
	1. Introduction
	1.1. Description of the problem
	1.1.1. The scheduling problem
	1.1.2. The pager assignment problem
	1.1.3. The management problem

	1.2. Current situation
	1.3. Scope of the project
	1.4. Description of next chapters

	2. State of technology
	2.1. Linear programming
	2.2. UML
	2.3. Design pattern
	2.4. Python
	2.5. Java
	2.5.1. Lambda expressions
	2.5.2. Streams API
	2.5.3. Annotations

	2.6. REST
	2.7. HAL
	2.7.1. Templated links

	2.8. Spring
	2.8.1. Spring Web
	2.8.1.1. Simple GET example
	2.8.1.2. POST example
	2.8.1.3. Path parameter and ResponseEntity example
	2.8.1.4. Exception handling example
	2.8.1.5. Dependency injection

	2.8.2. Lombok
	2.8.3. Spring Data JPA
	2.8.4. Spring HATEOAS
	2.8.4.1. Server side
	2.8.4.2. Client side

	2.8.5. Thymeleaf

	3. Requirements
	3.1. Actors
	3.2. Use cases
	3.2.1. Current situation
	3.2.2. Desired situation

	3.3. Behavioural requirements
	3.3.1. Scheduling problem
	3.3.2. Pager assignment
	3.3.3. Management problem

	3.4. Information requirements

	4. Solution designed
	4.1. Designed procedure
	4.2. Division in subsystems
	4.3. Entity-Relation model
	4.4. REST service
	4.4.1. Service’s resources
	4.4.2. Structural design
	4.4.2.1. Model classes
	4.4.2.2. View classes
	4.4.2.3. DAO interfaces
	4.4.2.4. Controller classes

	4.4.3. Behavioural design
	4.4.4. Communication with the Scheduler

	4.5. Scheduler
	4.5.1. Cyclic-shift scheduling algorithm
	4.5.2. Non-cyclic-shift linear programming problem
	4.5.2.1. Definitions
	4.5.2.2. The linear programming problem
	4.5.2.3. The objective function
	4.5.2.4. CS implies a NCS
	4.5.2.5. Only one shift per day
	4.5.2.6. Maximums and minimums per doctor
	4.5.2.7. Minimums per day

	4.5.3. Scheduler’s design

	4.6. Web application
	4.6.1. Structural design
	4.6.2. Behavioural design

	5. Conclusions and future work
	5.1. Future work
	5.1.1. Scheduling problem
	5.1.1.1. Edit a schedule
	5.1.1.2. Doctor’s absences
	5.1.1.3. Mandatory / Unavailable shifts
	5.1.1.4. Consultation preferences

	5.1.2. Pager assignment problem
	5.1.3. Management problem
	5.1.3.1. Notifying doctors of their schedule
	5.1.3.2. Allowing shift changes

	Appendix A – Code
	Appendix B – Web application usage
	1. Create a new doctor
	2. Edit a doctor
	3. Generate a new schedule

	Appendix C – Deployment
	1. Modifying the application’s configuration files
	2. Moving the different files to their corresponding locations
	3. Configuring the database
	4. Configuring permissions on the application’s files

