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Fluctuations of a piston on top of a fluidized
granular gas

J. Javier Brey and M. J. Ruiz Montero

Fisica Teérica, Universidad de Sevilla, Apartado de Correos 1065, E-41080. Sevilla, Spain

Abstract. A fluidized granular gas in presence of a gravitational field is considered. It is enclosed
in a box with a movable piston on the top. Molecular dynamics simulation results show that, if the
box is not too wide, the system reaches a stationary state with gradients only in the direction of
the field. Here, attention is focussed on the velocity fluctuations of the piston, that are observed
to be Gaussian. The relationship between the second moment of this distribution and the granular
temperature of the gas just below it is investigated. The ratio between the mean square velocities of
the pisto and the gas can be larger or smaller than unity depending on the parameters of the system.
A kinetic theory is formulated and its predictions compared with the simulation data.
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INTRODUCTION

Granular materials are ubiquitous in nature and fundamental to many industries, in-
cluding the chemical, pharmaceutical, metallurgical, food, agricultural, and construction
ones. They are collections of discrete macroscopic solid particles. Typically, the energy
necessary to lift one grain of sand a height equal to its diameter exceeds at least by 12
orders of magnitud the thermal energy at room temperature. Also the kinetic energy of a
grain moving with a typical velocity of 1 cm /sec is much larger than the typical thermal
energy. Consequently, thermal fluctuations in the usual sense are not enough to move
the grains and, therefore, play no role in the dynamics of these materials. Moreover, the
forces between grains are inherently dissipative, i.e. mechanical energy is not conserved
in the interactions. Because of the above reasons, the properties of granular materials are
often quite different from those of molecular gases, liquids, and solids [1]. In the last two
decades, there has been a renaissance in the interest of physicists in the study of granular
systems. This has been prompted and stimulated by the results of a series of experiments
using novel techniques and also by the realization that granular physics presents many
theoretical challenges and offers a fascinating proving ground for fluid dynamics, theory
of elasticity, nonequilibrium statistical mechanics, and many other domains of physics.
Due to the loss of energy in collisions, to maintain the grains in movement, energy has
to be continuously supplied to the system from some external sources. When the latter
are strong enough, the granular system can exhibit fluid-like behavior, although with
significant differences as compared with molecular fluids. This is the so-called fast flow
regime in which the grains can be considered to move independently between collisions
[2, 3]. The methods of kinetic theory and non-equilibrium statistical mechanics have
been extended to describe fast granular flows, often referred to as granular gases [4]. One
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of the main results obtained are generalized Navier-Stokes hydrodynamic equations. In
the case of one-component systems with no rotational friction, they are closed equations
for the number of particles density n(r,¢), the flow velocity u(r,¢), and the granular
temperature, T(r,t). This latter field is defined either in terms of the second moment of
the local velocity distribution of the gas or from the local total energy [5], without any
thermodynamic-like meaning, at least in principle.

The simplest model of a mono-disperse granular fluid is a system composed of
smooth, inelastic hard spheres (d = 3) or disks (d = 2) of mass m and diameter ©.
Besides, there is no interstitial fluid. The only difference with the corresponding model
for normal fluids is a loss of kinetic energy in each binary collision. This loss is
characterized by a constant coefficient of normal restitution ¢, defined in the interval
0 < a <1, with oo = 1 giving the elastic limit. Then, when two of these particles with
velocities v; and v; collide, their velocities change instantaneously according with
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where v;; = v; — v; is the relative velocity and & is the unit vector pointing from the
center of particle j to the center of particle i at contact. This model has proven to lead to
many of the peculiar qualitative behaviors exhibited by real granular gases [6, 7]. In the
low density limit, the system can be described by means of the inelastic Boltzmann
equation [8] for the one-particle distribution function. Assuming the existence of a
normal solution, closed hydrodynamic equations have been derived using an extension
of the Chapman-Enskog procedure [9, 10]. These are the (inelastic) Navier-Stokes
equations mentioned above. Extensions to denser systems and also to granular mixtures
have been carried out in the context of the (inelastic) Enskog equation [11].

In the above works and also in many others, attention has been focussed on kinetic
equations for the one-particle distribution function and the derivation of hydrodynamic
descriptions from those equations. Also, linear hydrodynamic equations valid for gran-
ular fluids of arbitrary density have been derived by means of linear response theory
[5, 12]. On the other hand, the knowledge about correlations and fluctuations of the hy-
drodynamic fields in granular gases is much more limited. There has been some studies
using the equations of molecular fluctuating hydrodynamics [13], and incorporating the
effects of inelasticity just through the time dependence of the temperature and a new
term involving the cooling rate in the equation for the energy [14, 15]. The purpose of
these studies was to investigate the fluctuations and correlations in freely evolving gran-
ular gases under conditions such that the homogeneous cooling state (HCS) is unstable
due to a hydrodynamic long wavelength instability leading to the formation of velocity
vortices and density clustering [16, 17].

For dilute granular gases in the HCS, a general theory of fluctuations and correlations
has been formulated [18], using the so-called hierarchical method [19]. The general idea
behind this procedure is to start from the Liouville equation of the system and derive
hierarchies of equations for the distributions functions describing equal and different
time correlations. For practical applications, these hierarchies must be closed by means
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of some approximation. The nice point is that the same kind of hypothesis used to derive
the corresponding kinetic equation, e.g. the Boltzmann equation, also suffices in this
more general context [19]. In this way, both non-equilibrium averages and fluctuations
are embodied in a unique scheme, similarly to what happens in equilibrium theory.

Here, a very simple situation will be considered, in order to identify some of the
direct effects that inelasticity has over the velocity fluctuations, and the way they are
transmitted from one system to another. A vibrated granular gas in presence of gravity
is confined by means of a piston placed on top of it. As a consequence of the collisions
of the grains with the piston, the latter exhibits an oscillatory motion. Under certain
conditions, the system reaches a steady state in which the average position of the piston
does not depend on time. Also its velocity distribution becomes stationary. Moreover,
the simulation results shows that it is very accurately Gaussian. The issue addressed
here is the relationship between the second moment of these steady velocity fluctuations
of the piston and the velocity distribution of the gas generating them. For an elastic
system with no external field, the gas is at equilibrium with the same temperature as the
one defined from the velocity fluctuations of the piston. On the other hand, for vibrated
inelastic gases, the mean square velocities of the piston and the neighbor gas can be
rather different. Even more, their ratio can be larger or smaller than unity depending on
the values of the parameters defining the system.

VELOCITY FLUCTUATIONS OF A PISTON CONFINING A
FLUIDIZED GRANULAR GAS

Consider a collection of N inelastic hard spheres or disks in a box, in presence of
gravity, being g the gravitational acceleration. To maintain the system fluidized, energy
is continuously supplied by vibrating the wall located at the bottom. The results to be
presented in the following are independent of the specific way in which the wall is
vibrated, as long as the amplitude be sufficiently small and the frequency high enough.
Also, the details of the collisions between this wall and the grains are expected to be
irrelevant, at least in the case of monodisperse systems [20], which is the one considered
here

Next, the upper boundary condition will be described. The case of an open system has
been studied elsewhere [21], and it was shown that the hydrodynamic profiles predicted
by the inelastic Navier-Stokes equations are in good agreement with particle simulation
results, at least in the limit small inelasticity, i.e. for values of o close to unity. Here a
rather different physical situation will be investigated. It will be considered that there is
a movable lid or piston on top of the gas as illustrated in Fig. 1. The piston has a finite
mass M and can only move in the direction of the gravitational field, taken as z-axis.
There is no friction between the piston and the lateral walls of the vessel.

Collisions of particles with the piston are characterized by a constant coefficient of
normal restitution ap, so that when a particle with velocity v collides with the piston
having the latter a velocity Vz, their after-collision velocities are given by

M
o _
V.=V, erA/[(lJrOCP)(Vz V2), 3)
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FIGURE 1. Sketch of the setup described in the text

V= Vet — (L ap) (2= Vo), )
the vector component of the velocity of the particle parallel to the piston remaining
unchanged.

The behavior of the above system has been investigated by means of molecular
dynamics (MD) simulations. In the following results for inelastic hard disks (d = 2)
will be reported. To avoid undesired boundary effects, periodic boundary conditions are
used in the direction parallel to the piston, substituting the lateral walls. If the width
W is not too large, the system reaches a macroscopic stationary state without mass
flow and with gradients of the fields in the fluid only in the direction of the external
field. As an example, in Fig. 2 the steady temperature and density profiles obtained in a
system with o = 0.96, M/m = 60, and op = 1 are plotted. The wall at the bottom was
vibrated with a sawtooth velocity profile [22]. The steady hydrodynamic profiles only
depend on W through the ratio N6 /W. The vertical dotted line in the figure indicates the
average position of the piston. The plotted hydrodynamic profiles extend to values of z
that are appreciably larger than this average position due to the rather large fluctuations
of the piston. This behavior is exemplified in Fig. 3, where the time evolution of the
height z of the piston once in the steady state is plotted for an arbitrary MD simulation
trajectory. The system is the same as in Fig. 2 and steady average position of the piston
is now indicated by the horizontal dashed line. The fluid temperature profile seems to
monotonically decrease towards a constant value, although it actually exhibits a weak
minimum [21, 23]. On the other hand, the density profile presents a maximum.

The hydrodynamic profiles measured in the simulations are in good agreement with
theoretical predictions based on the hydrodynamic Navier-Stokes equations for a dilute
gas of inelastic hard particles and the appropriate boundary conditions [23]. This issue
will not be discussed here, but it is worth to point out that both the apparent plateau in
the temperature profile and the decay of the density profile after its maximum lie well
inside the hydrodynamic region, and not into the kinetic boundary layers. Moreover, the
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FIGURE 2. Temperature (solid line) and density (dashed line) profiles of a vibrated system with
oo =096, op =1, M = 60m, and No/W = 6. The temperature is scaled with an arbitrary reference
value T}, in order to fit it into the same scale as the density profile. The wall at the bottom moves in a
sawtooth way with a velocity vy = 4./g0, very high frequency and vanishing amplitude.

Zls

160

/ “‘ bt I H

1407 l“‘ ‘I’IL |“n“\ | LJ““.] | |
| L

(A Lt

120

1 OO I I I
0 1000 2000 3000 4000

T

FIGURE 3. Time evolution of the position of the piston for the same system as in Fig. 2. Time is
measured in accumulated number of collisions per particle.

density maximum is not associated to any clustering instability.

As mentioned above, the fluctuations of the piston around its average position in the
steady state are quite large. Attention will be restricted here to its velocity fluctuations.
Analysis of the simulation data shows that they are very well fitted by a Gaussian within
the statistical uncertainties for all the cases investigated (o > 0.9) [24]. Therefore, the
velocity fluctuations of the piston can be characterized by means of the second moment
of its probability distribution or, equivalently, by a temperature parameter 7p defined
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FIGURE 4. Temperature parameter of the piston 7p relative to the granular temperature of the gas in its
vicinity T, as a function of the restitution coefficient of the gas o. The lines are just guides for the eye.
The values of the mass M in the legend are given in units of m.

as M < V? >= Tp, where the angular brackets denote average over the steady velocity
distribution of the piston. Note that the Boltzmann constant factor kg does not appear in
the definition of 7p, as it is customary in the context of granular systems, to emphasize
its lack of any thermodynamical meaning. It is interesting to compare the parameter
Tp with the granular temperature of the gas in the vicinity of the piston, 7, given by
m < v* >= 2T;. Now the average is taken over the velocity distribution of the gas in
a narrow layer below the piston. Although there are several sensible choices to identify
this layer, all of them lead to practically the same value of 75 [23].

In Fig. 4, the values of the ratio 7p/T obtained from MD simulations are plotted
as a function of the coefficient of restitution of the gas ¢ in the interval 0.9 < a < 1.
Three series of data are reported, corresponding to different values of the coefficient
of restitution for grain-piston collisions and/or the mass of the piston, namely (op =
1,M=4%m), (op = 1, M = 14m), and (op = 0.9, M = 49m), respectively. The results in
the elastic limit &« = op = 1 have been obtained by keeping the bottom wall at rest and,
therefore, refer to an equilibrium system in presence of gravity.

Several conclusions follow from inspection of Fig. 4. The first one is that both
temperature parameters can be rather different, discrepancies larger than 50% being
observed for the largest disparity of masses analyzed. A second conclusion is that the
dependence of the temperature ratio on the several parameters of the system is quite
involved. Monotonic behavior is not observed in any of them. Moreover, 7p/Tg is
smaller than unity near the elastic gas limit, exhibiting a minimum roughly around
o ~ 0.98. When the coefficient of restitution o decreases further, the ratio of the
temperature parameters 7p/ T grows quite fast. It is also observed that the mass of the
piston influences the temperature ratio much more than the inelasticity of the collisions
between the particles and the piston. Actually, the curves corresponding to op = 1 and
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op = 0.9, both with M/m = 49 are almost undistinguishable on the scale of the figure.
It must be noticed that ap = 0.9 is already considered as a value characterizing rather
inelastic collisions.

If 7p and 75 are interpreted as (non-equilibrium) temperatures of the gas and the pis-
ton, respectively, the results in Fig. 4 can be seen at first as a violation of the energy
equipartition occurring in equilibrium systems. It is well known that the partial gran-
ular temperatures of each of the components of a mixture of grains are not the same
[25, 26, 27, 28, 29]. This feature is quite well captured by the kinetic theory description
of granular gas mixtures, the theoretical predictions being in good quantitative agree-
ment with MD simulations. To put this into a proper conceptual context, it is important
to stress that the granular temperatures of the components of the granular mixture are
assumed to play no role in the macroscopic description of the mixture. The hydrody-
namic equations governing the macroscopic evolution of the system only involve one
temperature field, defined in the usual way from the average of the total local kinetic
energy [26].

The situation being considered here is quite different. The temperature parameters 7
and 7p refer to two well differentiated macroscopic systems, namely the granular gas
and the piston, occupying at every time different space regions. Both, 7p and 75, can be
easily measured from the respective velocity distributions. The “violation” of equipar-
tition in this context must be understood as the difference in temperature parameters
between two bodies which are at contact in a steady state. Of course, this difference
is not at all surprising, since there is no reason to extend equilibrium properties to far
from equilibrium situations. Nevertheless, what is somehow surprising is the very com-
plicated relationship between 7p and 7, as illustrated in Fig. 4. In particular, it does
not seem easy to explain why in some parameter region, 7p is larger than 7. If both
quantities were associated when the usual concept of temperature, it would follow that
a system (the gas) is heating another system (the piston) to a larger temperature than its
own one. In a rough way, it could be said that the energy seems to flow in the “wrong”
direction.

KINETIC THEORY

To determine the statistical properties of the velocity of the piston, its dynamics must
be modeled. Consider the probability density P(z,V;,¢) of finding the piston at a height
z with a velocity V7 at time ¢. If pre-collisional correlations between the velocity of the
piston and those of the particles colliding with it are assumed to be negligible, the time
evolution of P(z,V;,¢) is described by the Boltzmann-Lorentz equation [30]

d d d
<E+V2£_ga—VZ>J[Z7VZ7Z|P7f]7 (5)

with the collision term J given by

TEVat|Pf] — W/dv|vz— Vil [op20(Ve—v2) flz,v" 1) P(z. V7 1)
—0(v, = V) f(z,v,t)P(z,V;,1)]. 6)
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Here, f(z,v,t) is the one-particle distribution of the gas. It is given by the solution of
the nonlinear inelastic Boltzmann equation, the piston playing the role of a boundary
condition [31]. For the sake of simplicity, attention is being restricted to states of the
gas with gradients only in the direction of the external fields, so that f only depends on
position through the z coordinate. This includes, in particular, the steady state discussed
in the previous section. Moreover, 0 is the Heaviside step function, and v* and v} are the
so-called restituting velocities, i.e. the initial values of the velocities leading to v and V;
following the collision. By using Eqgs. (3) and (4) they are seen to be given by

M 1+4op

V;:VZ_er—M op (VZ_VZ>7 (7)
m l4op

v ), ®)

the other components of v* being the same as those of v. The difference between the
formal expressions for the post-collisional velocities, Egs. (3) and (4), and those for the
restituting ones, Egs. (7) and (8), is a direct consequence of the inelasticity of collisions.

Now, it will be assumed that on the appropriate time and length scales, Eq. (5)
as well as the Boltzmann equation for the gas have “normal” solutions, characterized
because all the space and time dependence of the distribution functions occurs through
the hydrodynamic fields of the gas, n(r,¢), u(r,t), T'(r,t), and, in the case of P(z,V,,t),
the number density of the piston ./, defined by

N (2.1) = / AV, P(2,Vi1). )
Also, in the spirit of the Chapman-Enskog algorithm [30, 32], it will be assumed that the
normal solutions can be generated by expressing them as series expansions in powers of
a formal non-uniformity parameter € [31],

P(z,V;.t) = POz, V,,0) + PO (21,0 + 2P (2, V.0 + . . (10)

T =10y, +ef Vv, +e@ @z v, 0+ . (11)
where each factor of € means an implicit gradient of a macroscopic field. The above
expansions imply a corresponding expansion of the formal expressions of the pressure
tensor, the heat flux, and the cooling rates. In addition, the time derivatives of the fields
are also expanded in powers of &,

9 =09 red® 1 e29@ ¢ (12)
by means of the balance equations [30]. Thus to lowest order it is found

% =% =" =0, (13)

o0 — _¢cOr, (14)
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with ©) being the lowest order in the gradients of the cooling rate of the gas [9]. The
leading order of Eq. (5) reads

{072 PO e ¥ PO, 7O, (15)

where the zeroth order in & distribution function of the gas f(o) is that of a local
homogeneous cooling state, having the scaling form [8§, 9]

1O v, =mwile <i> : (16)

vr

where 12
yr(z,t) = {#} (17)

is a local thermal velocity and ¢ an isotropic function of the peculiar velocity ¢(z,¢) =
v —u(z,t). Then, dimensional analysis requires that

POz, 1) = N vply <Q> 7 (18)
T

being also x an isotropic function of its argument, C;(z,¢) = V; —u,(z,¢). As a conse-
quence, Eq. (15) is equivalent to

o 9
2 9C;

(CZP(O)> = J[z, Ve, t|P©, £ (19)

Multiplication of this equation by MC? and integration over ¥, yields

(O (z,0) = (z,0) (20)
where 0 u -
0 _ 2 (0) A0)
b (1) = _JV(Z_7_Z)T_P(Z_7_Z)/wdCZCZJ 2 7tlP. ) @l

is the cooling rate for the temperature parameter of the piston 7p as defined in the
previous section. Upon deriven Eq. (20) it has been taken into account that in the
Chapman-Enskog procedure it is

[ar.crevan = [arn.croey., (22)
as required by the solubility conditions of the equations generated by the expansion in
powers of € of Eq. (5) [33].

The evaluation of the cooling rates ©) and C}()O) requires to solve the equation for
ﬂo) (z,v,t) and, afterwards, Eq. (19). This can be done in a systematic way by expanding
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f(o) and P\ in terms of an ensemble of orthogonal polynomials [26]. Here we will
consider a leading order approximation that is expected to give quite accurate results, at
least for not very strong inelasticity. The zeroth order distributions are approximated by
Gaussians,

)

1Oty (o) e, 3
1/2

P(O)(Z7I/;7Z)JV<27ZL/ITP> oMV /21>, (24)

Note that the latter expression is consistent with the condition given by Eq. (22) if 7p is
identified with the actual temperature parameter of the piston as defined in the previous
section and measured by means of MD simulations. Employing Eqs. (23) and (24), it is
straightforward to calculate the cooling rates. The technical details are similar to those
discussed, for instance, in [26] and [34] and will be not reproduced here. The result is

L Y AW 12 149
CP = I’lVTI;d71 - ﬂ1/26d71 (1+¢> / 1_]17 ’ (25)

(O g2

* = _ 2 2
¢ wrod=l  T(d/2)d o), (26)
where T,
_ mip
= Vo 27
and (11 ap)
_m ap
h= —2(m+M)' (28)
Substitution of Egs. (25) and (26) into Eq. (20) gives
h(1+¢)1/2<1—h%> — B, 29)
with 2\ d /2 ~d—1
l—a”)n?/“c%
p= =) (30)

220 (d/2yWd

The solution of this equation provides the expression for the temperature ratio or, more
precisely for the ratio of the squares of the thermal velocities. There is a unique real
solution for all allowed values of / and B. In the elastic limit, oc = op = 1, one gets
¢ = m/M as required by energy equipartition. Note that all the dependence on the mass
ratio and the coefficient of inelasticity for the collisions between the particles and the
piston, op takes place through the parameter 4. Equations similar to (29) have been
obtained for granular systems in different contexts [34, 35, 36, 37].

The generality of Eq. (29) must be stressed. As derived, it applies not only for the
steady state of the system, but for any state with gradients only in the z direction. The
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0.15

FIGURE 5. Ratio of the mean square velocities ¢ as a function of the dimensionless parameter ¢
defined in the main text. In all cases, W = 700 and o = 0.98 (B = 3.142 x 10~*). The solid line is the
theoretical prediction and the symbols are from MD simulations.

existence of a relationship like this is a direct consequence of the existence of normal
solutions of the kinetic equations and, more precisely, of the assumption that they involve
only one temperature parameter [31].

A quantitative comparison between the theoretical prediction given by Eq. (29) and
the MD simulation results for the steady state is presented in Figs. 5 and 6. According
with Eq. (29), for a given value of 3, the value of ¢ is a function of only the parameter /.
Then the comparison will be presented by considering a series of simulations in which
the value of the coefficient of restitution of the gas particles a, the ratio /o, and,
therefore, the parameter 3 is kept constant, while the mass ratio M/m, the restitution
coefficient op, and, therefore, /1 are changed. In fig. 5 data corresponding to W = 70¢
and o = 0.98 (B = 3.142~%) are presented. A quite good agreement between theory
and simulation is observed. A similar plot is shown in Fig. 6, but now for W = 70¢
and @ = 0.9 (B = 1.57 x 1073). In this case, a clear discrepancy between theory and
simulation is identified. Moreover, it increases as /4 increases, i.e as the mass ratio M/m
decreases. Specially relevant is the discrepancy between theory and simulation when the
value of ap is changed. Upon increasing op and, therefore, 7, the ratio ¢ is observed to
decrease in a region in which Eq. (29) predicts an increasing behavior.

The curve corresponding to the theoretical prediction in Fig. 6 exhibits a very sharp
minimum close to the origin. The same behavior occurs in the curve in Fig. 5, although
it can not be seen on the scale of the figure. Actually, inspection of Eq. (29) shows
that when & goes to zero, ¢ must tend to infinity if B is finite. An interesting behavior
is obtained when % goes to zero, but B’ = /A remains finite. A second order phase
transition occurs for §/ =1 [37]. While for B’ < 1 it is ¢ = 0 at & = 0 as for elastic
fluids, for B’ > 1, an extreme breakdown of equipartition occurs with a stationary state
with ¢ # 0 occurring for A = 0.
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FIGURE 6. Ratio of the mean square velocities ¢ as a function of the dimensionless parameter /2 defined
in the main text. In all cases W = 700 and ot = 0.9 (8 = 1.507 x 10~3). The solid line is the theoretical
prediction and the symbols are from MD simulations. The points aligned as an increasing function of /
correspond to ap = 1 and different values of M/m. Those data deviating from the straight line have been
obtained by varying op.

SUMMARY AND CONCLUSIONS

An example of the very peculiar behavior exhibited by granular systems has been pre-
sented. The steady state of a fluidized granular gas confined by a piston has been in-
vestigated by means of MD simulations. Attention has been focussed on the velocity
fluctuations of the piston and of the particles in its vicinity. The results show that the
temperature parameters, defined from the second moments of the velocity distributions,
of the two macroscopic systems at contact may be quite different. Moreover, the rela-
tionship between them is very involved, and apparently depends on all the microscopic
parameters defining the system. Although, of course, there is no conceptual paradox,
since the situation considered corresponds to a far from equilibrium state, these results
exemplify the difficulties when trying to define a temperature, reminiscent of the equi-
librium one, for non-equilibrium systems.

A kinetic theory has been developed trying to explain the observed behavior. It
is based on the Boltzmann equation for the granular gas and the Boltzmann-Lorentz
equation for the motion of the piston. Assuming that the macroscopic state corresponds
to “normal solutions” of those equations and that they can be generated by the Chapman-
Enskog algorithm, an implicit equation for the ratio of the temperature parameter of the
piston to that of the gas next to it has been derived. The solution of this equation is
in good agreement with the MD simulation results for quite small inelasticity of the
collisions between particles, i.e. o close to unity. Nevertheless, when the value of «
decreases, the discrepancies between theory and simulations become rather strong, as it
can be seen in Fig. 6.
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FIGURE 7. Marginal velocity distributions of the gas next to the piston in the direction perpendicular to
it for several values of the coefficient of restitution op, as indicated. The values of the other parameters are
o0 =0.9,M=49m, N = 420, W = 700, and vy = 11,/g6. The velocity is measured in the dimensionless
units, ¢; = v;/vr.

In the theory formulated in the previous section, all the influence of the gas on the
motion of the piston comes through the velocity distribution of the former just below
the piston. Equation (29) was obtained by using as an approximation Gaussian velocity
distributions for both the piston and the gas. As already mentioned, the simulation results
show that the velocity distribution of the piston is actually Gaussian with a very high
accuracy over several orders of magnitude. Then, trying to identify the origin of the
failure of the theory when the inelasticity is not small, the velocity distribution of the
gas next to the piston has been also measured. For o0 = 0.98, the marginal velocity
distribution in the direction of the gravitational field, i.e. perpendicular to the piston,
turns out to be very well fitted by a Gaussian. Nevertheless, for oo = 0.9, relevant
deviations from a Gaussian are observed, as shown in Fig. 7. The distribution becomes
strongly asymmetric, exhibiting an exponential tail for positive velocities (towards the
piston). This tail is already present well inside the region of thermal velocities, so that it

affects the low moments of the distribution and, in particular the cooling rate { }()0).

Therefore, in order to improve the accuracy of the theoretical prediction for large
inelasticity, it seems clear that a much more elaborated kinetic theory calculation is
needed. The nonlinear Boltzmann kinetic equation for the gas has to be solved to get
a more realistic velocity distribution for it next to the piston. Moreover, given that the
MD data indicate the presence of an exponential tail for thermal velocities, an expansion
in polynomials like the Sonine ones, usually employed in the context of the Chapman-
Enskog expansion, may not be an appropriate strategy. This issue deserves much more
attention and work.

Finally, it is worth to point out that the behavior of the piston described above opens
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some interesting questions, at a level both conceptual and applied. For instance, one
could think of an experiment in which a molecular, elastic gas were placed on top of
the piston. This gas could be confined by a higher fixed elastic wall. The question is
whether the elastic gas would reach an equilibrium state with a temperature higher than
the granular temperature of the gas just below the piston. The results discussed here
suggest that this is the case.
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