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ABSTRACT. The existence and uniqueness of mild solution of an impulsive stochastic sys-
tem driven by a Rosenblatt process is analyzed in this work by using the Banach fixed point
theorem and the theory of resolvent operator developed by R. Grimmer in [12]. Further-
more, the exponential stability in mean square for the mild solution to neutral stochastic
integro–differential equations with Rosenblatt process is obtained by establishing an inte-
gral inequality. Finally, an example is exhibited to illustrate the abstract theory.

1. Introduction. Integro-differential equations are of great importance in the modeling of
several physical phenomena. Their resolution can be done through the theory of resolvent
operators (see Grimmer [12]). However, the resolvent operator does not satisfy semigroup
properties. The study of the quantitative and qualitative properties of solutions to stochas-
tic neutral differential equations like existence, uniqueness and stability, have been widely
examined by many researchers by analyzing various mathematical models in different ar-
eas such as mechanics, electronics, control theory, engineering and economics, etc (see
[3, 5, 7, 8, 25]). There exist many works dealing with several theoretical aspects of the
Rosenblatt process. For example, Leonenko and Ahn [17] proved the rate of convergence
to the Rosenblatt process in the Non-Central Limit Theorem. Recently, Sakthivel et al.[26]
investigated a class of abstract functional second-order non autonomous stochastic evolu-
tion equations driven by Rosenblatt process with index H ∈ ( 1

2 ,1).
Several processes of evolution systems have impulsive effects at certain moments of

time. This phenomenon is observed in some fields as biology, mechanics and physics
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(see [16, 27]). The theory of impulsive stochastic integro–differential equations has been
receiving much attention recently. However, very few researchers have been interested in
the stability of the mild solutions to stochastic integro–differential equations impulsive (see
[6, 11, 13]).

In this paper, we consider the following neutral stochastic integro–differential equation
with impulses of the form

d
[

x(t)−g(t,xt ,
∫ t

0
a1(t,s,xs)ds)

]
(1)

=A
[

x(t)−g(t,xt ,
∫ t

0
a1(t,s,xs)ds)

]
dt

+
∫ t

0
ϒ(t− s)

[
x(s)−g(s,xs,

∫ s

0
a1(t,τ,xτ)dτ)

]
dsdt

+ f (t,xt ,
∫ t

0
a2(t,s,xs)ds)dt + F̃(t)dZH

Q (t), t ∈ J, t 6= ti,

∆x(ti) = Ii(x(t−i )), t = ti, i = 1,2, ..., (2)
x0(t) = φ(t),−r ≤ t ≤ 0, (3)

where J := [0,b] and A is the infinitesimal generator of a strongly continuous semigroup
(T (t))t≥0 of bounded linear operators in a Hilbert space X with domain D(A), ϒ(t) is
a family of closed linear operators on X with domain D(ϒ(t)) ⊃ D(A), ZH

Q is a frac-
tional Brownian motion, φ ∈PC := PC ([−r,0],X) = {ψ : [−r,0]→ X , ψ(·) is contin-
uous everywhere except in a finite number of points t̃ at which ψ(t̃−) and ψ(t̃+) exist
and ψ(t̃−) = ψ(t̃)}. For ψ ∈PC , ‖ψ‖PC = sups∈[−r,0] ‖ψ(s)‖ < +∞. The mappings
g, f : [0,+∞)×PC × X → X , a1 , a2 : [0,+∞)× [0,+∞)×PC → X , F̃ : [0,+∞)→
L0

Q(Y,X) are appropriate continuous functions and will be specified later. The impulsive
times ti satisfy 0 = t0 < t1 < t2 < ...,< tm → +∞, which implies that in every interval
[0,b] there exists only a finite number of t j. Ii : X → X , ∆x(ti) represents the jump in the
state x at ti determining the size of the jump, which is defined by ∆x(ti) = x(t+i )− x(t−i ),
where x(t+i ) and x(t−i ) are respectively the right and left limits of x(t) at ti. For any con-
tinuous function x and any t ∈ [0,b], we denote by xt the element of PC defined by
xt(θ) = x(t +θ),−r ≤ θ ≤ 0.

The analysis of (1)-(3) driven by fractional Brownian motion when ϒ(t) = 0, for all
t ≥ 0, was initiated in Arthi et al. [2], where the authors proved the existence and exponen-
tial stability of solutions by using an impulsive integral inequality and a strict contraction
principle. Now, in our current paper, we will investigate the existence of solutions and sta-
bility problems for the previously mentioned neutral stochastic integro–differential system
with impulses driven by a Rosenblatt process, since this problem still has not been con-
sidered in the literature. The Rosenblatt process is still of interest in practical applications
because of its selfsimilarity, stationarity of increments and long-range dependence. There-
fore, it is necessary to consider the impulsive effects for the stability of solutions of neutral
stochastic integro–differential equations driven by such a Rosenblatt process. In particular,
here we highlight that the results of [2] for fractional Brownian motion can be extended to
the case ϒ(t) 6= 0. The main contributions of this paper are summarized as follows:
In this work, a general class of impulsive neutral stochastic integrodifferential equations
driven by a Rosenblatt process is considered firstly. Then, using methods of functional
analysis, a set of sufficient conditions are proposed ensuring exponential stability or so-
lutions. The results are established with the use of the resolvent operator approach. Our
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paper expands the usefulness of stochastic integro-differential equations, since the litera-
ture shows results for existence and exponential stability for such equations in the case of
semigroup only.

The structure of this paper is organized as follows. In Section 2, we recall some basic
definitions and preliminary facts which will be used throughout this work. In Section 3,
some results on the existence and uniqueness of mild solutions are established. Section 4
is devoted to the proof of exponential stability of a mild solution in mean square, followed
by an illustrative example in Section 5.

2. Preliminaries. Let us start with some basic facts about Rosenblatt process. Also we
review some fundamentals about the resolvent operator theory which will be crucial for
our study.

2.1. Rosenblatt process. We recall in this subsection, some basic concepts about Rosen-
blatt processes as well as the Wiener integral with respect to them. Consider (χn)n∈Z a
stationary Gaussian sequence with mean zero and variance 1 such that its correlation func-
tion satisfies that R(n) := E(χ0χn) = n

2H−2
k L(n), with H ∈ ( 1

2 ,1) and L is a slowly varying
function at infinity. Let h be a function of Hermite rank k, that is, if h admits the following
expansion in Hermite polynomials

h(x) = ∑
j≥0

c jH j(x), c j =
1
j!
E(h(χ0H j(χ0))),

then k = min
{

j|c j 6= 0
}
≥ 1, where H j(x) is the Hermite polynomial of degree j given

by H j(x) = (−1) je
x2
2 d j

dx j e−
x2
2 . Then, the Non-Central Limit Theorem (see, for example,

Dobrushin & Major [10]) says 1
nH ∑

[nt]
j=1 h(ξ j) converges as n→ ∞, in the sense of finite

dimensional distributions, to the process

Zk
H(t) = c(H,k)

∫
Rk

∫ t

0

(
k

∏
j=1

(s− y j)
(− 1

2+
1−H

k )
+

)
dsdB(y1) · · ·dB(yk), (4)

where the above integral is a Wiener-Itô multiple integral of order k with respect to the
standard Brownian motion (B(y))y∈R and c(H,k) is a positive normalization constant de-
pending only on H and k. The process (Zk

H(t))t≥0 is called as the Hermite process and it is

H self-similar in the sense that for any c > 0, (Zk
H(ct)) d

= (cHZk
H(t)) and it has stationary

increments.
The fractional Brownian motion (which is obtained from (4) when k = 1) is the most

used Hermite process to study evolution equations due to its large range of applications.
When k = 2 in (4), Taqqu [29] named the process as Rosenblatt process. The stationarity
of increments, self-similarity and long range dependence (see Tindel et al. [30]) imply that
Rosenblatt processes become very important in practical applications.

Let {ZH(t), t ∈ [0,T ],T > 0} be a one-dimensional Rosenblatt process with parame-
ter H ∈ ( 1

2 ,1). According to the work by Tudor [31], the Rosenblatt process with parameter
H > 1

2 can be written as

ZH(t) = d(H)
∫ t

0

∫ t

0

[∫ t

y1∨y2

∂KH ′

∂u
(u,y1)

∂KH ′

∂u
(u,y2)du

]
dB(y1)dB(y2), (5)
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where KH(t,s) is given by

KH(t,s) = cHs
1
2−H

∫ t

s
(u− s)H−3/2uH−1/2du for t > s,

with

cH =

√
H(2H−1)

β (2−2H,H− 1
2 )
,

β (., .) denotes the Beta function, KH(t,s) = 0 when t ≤ s, (B(t), t ∈ [0,T ]) is a Brownian
motion, H ′ = H+1

2 and d(H) = 1
H+1

√
H

2(2H−1) is a normalizing constant. The covariance

of the Rosenblatt process {ZH(t), t ∈ [0,T ]} satisfy

E(ZH(t)ZH(s)) =
1
2
(
s2H + t2H −|s− t|2H) .

The covariance structure of the Rosenblatt process allows to construct the Wiener integral
with respect to it. We refer to Maejima and Tudor [19] for the definition of Wiener integral
with respect to general Hermite processes and to Kruk et al. [15] for a more general context
(see also Tudor [31]).

Note that

ZH(t) =
∫ T

0

∫ T

0
I(1[0,t])(y1,y2)dB(y1)dB(y2),

where the operator I is defined on the set of functions f : [0,T ]→R, which takes its values
in the set of functions h : [0,T ]2→ R2 and is given by

I( f )(y1,y2) = d(H)
∫ T

y1∨y2

f (u)
∂KH ′

∂u
(u,y1)

∂KH ′

∂u
(u,y2)du.

Let ϕ be an element of the set E of step functions on [0,T ] of the form

ϕ =
n−1

∑
i=0

ai1(ti,ti+1], ti ∈ [0,T ].

Then, it is natural to define its Wiener integral with respect to ZH as∫ T

0
ϕ(u)dZH(u) :=

n−1

∑
i=0

ai(ZH(ti+1)−ZH(ti)) =
∫ T

0

∫ T

0
ϕ( f )(y1,y2)dB(y1)dB(y2).

Let H be the set of functions ϕ such that

‖ϕ‖2
H := 2

∫ T

0

∫ T

0
(I(ϕ)(y1,y2))

2dy1dy2 < ∞.

It follows that (see Tudor[31])

‖ϕ‖2
H = H(2H−1)

∫ T

0

∫ T

0
ϕ(u)ϕ(v)|u− v|2H−2dudv.

It has been proved in Maejima and Tudor [19] that the mapping

ϕ →
∫ T

0
ϕ(u)dZH(u)

defines an isometry from E to L2(Ω) and it can be extended continuously to an isometry
from H to L2(Ω) because E is dense in H . We call this extension as the Wiener integral
of ϕ ∈H with respect to ZH . It is noted that the space H contains not only functions but
its elements could be also distributions. Therefore it is suitable to know subspaces |H | of
H : |H | =

{
ϕ : [0,T ]→ R|

∫ T
0
∫ T

0 |ϕ(u)||ϕ(v)|u− v|2H−2dudv < ∞

}
. The space |H | is
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not complete with respect to the norm ‖.‖H but it is a Banach space with respect to the
norm

‖ϕ‖2
|H | = H(2H−1)

∫ T

0

∫ T

0
|ϕ(u)||ϕ(v)|u− v|2H−2dudv.

As a consequence, we have

L2([0,T ])⊂ L1/H([0,T ])⊂ |H | ⊂H .

For any ϕ ∈ L2([0,T ]), we have

‖ϕ‖2
|H | ≤ 2HT 2H−1

∫ T

0
|ϕ(s)|2ds

and
‖ϕ‖2

|H | ≤C(H)‖ϕ‖2
L1/H ([0,T ]), (6)

for some constant C(H) > 0. Whenever we write C(H) > 0 we mean a positive constant
depending only on H, and its value may be different in different places.

Define the linear operator K∗H from E to L2([0,T ]) by

(K∗Hϕ)(y1,y2) =
∫ T

y1∨y2

ϕ(t)
∂K

∂ t
(t,y1,y2)dt,

where K is the kernel of Rosenblatt process in representation (5)

K (t,y1,y2) = 1[0,t](y1)1[0,t](y2)
∫ t

y1∨y2

∂KH ′

∂u
(u,y1)

∂KH ′

∂u
(u,y2)du.

Note that (K∗H1[0,t])(y1,y2)=K (t,y1,y2)1[0,t](y1)1[0,t](y2). The operator K∗H is an isometry
between E to L2([0,T ]), which can be extended to the Hilbert space H . In fact, for any
s, t ∈ [0,T ] we have〈

K∗H1[0,t],K
∗
H1[0,s]

〉
L2([0,T ]) =

〈
K (t, ., .)1[0,t],K (s, ., .)1[0,s]

〉
L2([0,T ])

=
∫ t∧s

0

∫ t∧s

0
K (t,y1,y2)K (s,y1,y2)dy1dy2

= H(2H−1)
∫ t

0

∫ s

0
|u− v|2H−2dudv

=
〈
1[0,t],1[0,s]

〉
H

.

Moreover, for ϕ ∈H , we have

ZH(ϕ) =
∫ T

0

∫ T

0
(K∗Hϕ)(y1,y2)dB(y1)dB(y2).

Let {Zn(t)}n∈N be a sequence of two-sided one dimensional Rosenblatt process mutually
independent on (Ω,F ,P). We consider a K-valued stochastic process ZQ(t) given by the
following series:

ZQ(t) =
∞

∑
n=1

zn(t)Q1/2en, t ≥ 0.

Moreover, if Q is a non-negative self-adjoint trace class operator, then this series converges
in the space K, that is, it holds that ZQ(t) ∈ L2(Ω,K). Then, we say that the above ZQ(t) is
a K-valued Q- Rosenblatt process with covariance operator Q. For instance, if {σn}n∈N is
a bounded sequence of non-negative real numbers such that Qen = σnen, by assuming that
Q is a nuclear operator in K, then the stochastic process

ZQ(t) =
∞

∑
n=1

zn(t)Q1/2en =
∞

∑
n=1

√
σnzn(t)en, t ≥ 0,
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is well-defined as a K-valued Q- Rosenblatt process.

Definition 2.1. (Tudor [31]). Let ϕ : [0,T ]→ L0
Q(Y,X) such that

∞

∑
n=1
‖K∗H(ϕQ1/2en)‖L2([0,T ];H ) < ∞.

Then, its stochastic integral with respect to the Rosenblatt process ZQ(t) is defined, for
t ≥ 0, as follows :∫ t

0
ϕ(s)dZQ(s) :=

∞

∑
n=1

∫ t

0
ϕ(s)Q1/2endzn(s) (7)

=
∞

∑
n=1

∫ t

0

∫ t

0
(K∗H(ϕQ1/2en))(y1,y2)dB(y1)dB(y2).

Lemma 1. For ψ : [0,T ]→ L0
Q(Y,X) such that ∑

∞
n=1 ‖ψQ1/2en‖L1/H ([0,T ];U) < ∞ holds, and

for any a,b ∈ [0,T ] with b > a, we have

E
∥∥∥∥∫ b

a
ψ(s)dZQ(s)

∥∥∥∥2

≤ c(H)(b−a)2H−1
∞

∑
n=1

∫ b

a
‖ψ(s)Q1/2en‖2ds.

If, in addition,

∞

∑
n=1
‖ψ(t)Q1/2en‖ is uniformly convergent for t ∈ [0,T ],

then, it holds that

E
∥∥∥∥∫ b

a
ψ(s)dZQ(s)

∥∥∥∥2

≤C(H)(b−a)2H−1
∫ b

a
‖ψ(s)‖2

L0
Q(K,H)

ds.

Proof. Let {en}n∈N be the complete orthonormal basis of K introduced above. Applying
(7) and Hölder inequality, we have

E
∥∥∥∥∫ b

a
ψ(s)dZQ(s)

∥∥∥∥2

= E

∥∥∥∥∥ ∞

∑
n=1

∫ b

a
ψ(s)Q1/2endzn(s)

∥∥∥∥∥
2

=
∞

∑
n=1

E
∥∥∥∥∫ b

a
ψ(s)Q1/2endzn(s)

∥∥∥∥2

=
∞

∑
n=1

H(2H−1)
∫ b

a

∫ b

a
‖ψ(s)Q1/2en‖‖ψ(t)Q1/2en‖|t− s|2H−2dsdt

≤C(H)
∞

∑
n=1

(∫ b

a
‖ψ(s)Q1/2en‖1/Hds

)2H

≤C(H)(b−a)2H−1
∞

∑
n=1

∫ b

a
‖ψ(s)Q1/2en‖2ds. (8)
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2.2. Partial integro-differential equations in Banach spaces. In the current section, we
recall some definitions, notations and properties needed in the sequel. In what follows, X
will denote a Banach space, A and ϒ(t) are closed linear operators on X . Y represents the
Banach space D(A), the domain of operator A, equipped with the graph norm

|y|Y := |Ay|+ |y| for y ∈ Y.

The notation C([0,+∞);Y ) stands for the space of all continuous functions from [0,+∞)
into Y . We then consider the following Cauchy problem ξ

′(t) = Aξ (t)+
∫ t

0
ϒ(t− s)ξ (s)ds for t ≥ 0,

ξ (0) = ξ0 ∈ X .
(9)

Definition 2.2. ([12]) A resolvent operator for Eq. (9) is a bounded linear operator valued
function Ψ(t) ∈ L(X) for t ≥ 0, satisfying the following properties :

(i) Ψ(0) = I and ‖Ψ(t)‖ ≤ Neβ t for some constants N and β .
(ii) For each x ∈ X, Ψ(t)x is strongly continuous for t ≥ 0.

(iii) For x ∈ Y, Ψ(·)x ∈C1([0,+∞);X)∩C([0,+∞);Y ) and

Ψ
′(t)x = AΨ(t)x+

∫ t

0
ϒ(t− s)Ψ(s)xds

= Ψ(t)Ax+
∫ t

0
Ψ(t− s)ϒ(s)xds for t ≥ 0.

In the sequel, the assumptions below are important:
(H1) A is the infinitesimal generator of a C0-semigroup (T (t))t≥0 on X .

(H2) For all t ≥ 0, ϒ(t) is a continuous linear operator from (Y, | · |Y ) into (X , | · |X ).
Moreover, there exists an integrable function c : [0,+∞)→ R+ such that for any y ∈ Y ,
y 7→ ϒ(t)y belongs to W 1,1([0,+∞),X) and∣∣∣∣ d

dt
ϒ(t)y

∣∣∣∣
X
≤ c(t)|y|Y for y ∈ Y and t ≥ 0.

We recall that W k,p(Ω) = {u ∈ Lp(Ω) : Dα u ∈ Lp(Ω), ∀|α| ≤ k}, where Dα u is the
weak α-th partial derivative of u.

Theorem 1. ([12]) Assume that hypotheses (H1) and (H2) hold. Then Eq. (9) admits a
resolvent operator (R(t))t≥0.

Theorem 2. ([18]) Assume that hypotheses (H1) and (H2) hold. Let T (t) be a compact
operator for t > 0. Then, the corresponding resolvent operator Ψ(t) of Eq. (9) is
continuous for t > 0 in the operator norm, namely, for all t0 > 0, it holds that
limh→0 ‖Ψ(t0 +h)−Ψ(t0)‖= 0.

We recall now some results on the existence of solutions for the following
integro–differential equation ξ ′(t) = Aξ (t)+

∫ t

0
ϒ(t− s)ξ (s)ds+π(t) for t ≥ 0,

ξ (0) = ξ0 ∈ X ,
(10)

where π : [0,+∞[→ X is a continuous function.
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Definition 2.3. ([12]) A continuous function ξ : [0,+∞)→ X is said to be a strict solution
of Eq. (10) if

(i) ξ ∈C1([0,+∞);X)∩C([0,+∞);Y ),
(ii) ξ satisfies Eq. (10) for t ≥ 0.

Remark 1. From this definition we deduce that ξ (t) ∈ D(A), and the function
ϒ(t− s)ξ (s) is integrable, for all t > 0 and s ∈ [0,+∞).

Theorem 3. ([12]) Assume that (H1)-(H2) hold. If v is a strict solution of Eq. (10), then
the following variation of constants formula holds

ξ (t) = Ψ(t)v0 +
∫ t

0
Ψ(t− s)π(s)ds for t ≥ 0. (11)

Accordingly, we can establish the following definition.

Definition 2.4. ([12]) A function ξ : [0,+∞)→ X is called a mild solution of (10), for
ξ0 ∈ X, if v satisfies the variation of constants formula (11).

Next theorem provides sufficient conditions ensuring the regularity of solutions of Eq.
(10).

Theorem 4. ([12]) Let π ∈C1([0,+∞);X) and let ξ be defined by (11). If ξ0 ∈ D(A),
then ξ is a strict solution of Eq. (10).

The following integral inequality is a key tool in proving the exponential stability of mild
solution of the neutral system with impulsive moments, which is stated by Lemma 3.1 in
[33].

Lemma 2. For any ω > 0, assume that there exist some positive constants α j( j = 1,2,3)
and βi(i = 1,2, · · · ,m) and a function Λ : [−r,+∞)→ [0,+∞) such that

Λ(t)≤ α1e−ωt , for t ∈ [−r,0],

and

Λ(t) ≤ α1e−ωt +α2 sup
θ∈[−r,0]

Λ(t +θ)+α3

∫ t

0
e−ω(t−s) sup

θ∈[−r,0]
Λ(s+θ)ds

+∑
ti<t

βie−ω(t−ti)Λ(t−i ),

for each t ≥ 0. If α2 +
α3
ω
+∑

m
i=1 βi < 1, then Λ(t)≤Me−µt for t ≥−r, where µ > 0 is

the unique solution to the equation: α2eµr + α3
(ω−µ)eµr +∑

m
i=1 βi = 1 and

M0 = max{α1,
α1(ω−µ)

α3eµr }> 0.

Remark 2. If βi = 0 (i = 1,2, ...) in Lemma 2, then we obtain the results proved in
Lemma 3.1 in [5]. Furthermore, if α2 = 0, then Lemma 2 turns out to be Lemma 3.1 in [6].

3. Existence and Uniqueness. Before stating and proving the existence and uniqueness
of solutions, we will describe now the following conditions on the data of system (1)-(3)
which will be imposed in our subsequent results.
(H3) There exists a positive constant M, such that for all t ≥ 0, ‖Ψ(t)‖≤M.
(H4) There exists a positive constant Ma1 , such that for all t ∈ J,κ1,κ2 ∈PC ,∥∥∥∥∫ t

0
[a1(t,s,κ1)−a1(t,s,κ2)]ds

∥∥∥∥≤Ma1‖κ1−κ2‖.

Also M̃a1 = bsup0≤s≤t≤b ‖a1(t,s,0)‖.
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(H5) There exists a positive constant Mg such that g is X−valued and for all t ∈ J,
κ j,φ j ∈PC , j = 1,2,

‖g(t,κ1,φ1)−g(t,κ2,φ2)‖ ≤Mg[‖κ1−κ2‖+‖φ1−φ2‖].
Also M̃g = supt∈J ‖g(t,0,0)‖ and k = Mg(1+Ma1)< 1.

(H6) There exists a positive constant Ma2 , such that for all t ∈ J,κ1,κ2 ∈PC ,∥∥∥∥∫ t

0
[a2(t,s,κ1)−a2(t,s,κ2)]ds

∥∥∥∥≤Ma2‖κ1−κ2‖.

Also M̃a2 = bsup0≤s≤t≤b ‖a2(t,s,0)‖.
(H7) There exists a positive constant M f such that f is X−valued and for all t ∈ J,

κ j,φ j ∈PC , j = 1,2,

‖ f (t,κ1,φ1)− f (t,κ2,φ2)‖ ≤M f [‖κ1−κ2‖+‖φ1−φ2‖].
Also M̃ f = supt∈J ‖ f (t,0,0)‖ and M̃ = M f (1+Ma2).

(H8) The function g is continuous on its time variable, i.e., for all κ,φ ∈PC ,

lim
t→s
‖g(t,κ,φ)−g(s,κ,φ)‖2 = 0.

(H9) The function F̃ : [0,+∞)→ L0
Q(Y,X) satisfies∫ t

0
‖F̃(s)‖2

L0
Q

ds < ∞,∀t ∈ [0,b].

For a complete orthonormal basis {an}n∈N in Y , we have
(C.1) ∑

∞
n=1 ‖F̃Q1/2an‖L2([0,b];X) < ∞.

(C.2) ∑
∞
n=1 |F̃(t)Q1/2an|X is uniformly convergent for all t ∈ [0,b].

(H10) The impulsive functions Ii(i = 1,2, ...) satisfy the following condition: there exist
some positive numbers di(i = 1,2, ...) such that

‖Ii(κ1)− Ii(κ2)‖ ≤ di‖κ1−κ2‖and ‖Ii(0)‖= 0,

for all κ1,κ2 ∈PC and ∑
+∞

i=1 di < ∞.
We present now the definition of mild solution for the stochastic system (1)-(3).

Definition 3.1. An X-valued stochastic process {x(t), t ∈ [−r,b]} is called a mild solution
of the abstract Cauchy problem (1)-(3) if

(1) x(·) ∈PC ([−r,b],L2(Ω,X));
(2) For t ∈ [−r,0], x(t) = φ(t);
(3) For t ∈ J, x(t) satisfies the following integral equation:

x(t) = Ψ(t)[φ(0)−g(0,φ ,0)]+g(t,xt ,
∫ t

0
a1(t,s,xs)ds)

+
∫ t

0
Ψ(t− s) f (s,xs,

∫ s

0
a2(s,τ,xτ)dτ)ds

+ ∑
0<ti<t

Ψ(t− ti)Ii(x(t−i ))+
∫ t

0
Ψ(t− s)F̃(s)dZH

Q (s) P−a.s.

Theorem 5. If hypotheses (H1)-(H10) hold for every φ ∈PC ,b > 0, then system (1)-(3)
has a unique mild solution on [−r,b] provided that

θ = 3M2
(+∞

∑
i=1

di

)2
< (1− k)2 (12)

where k = Mg(1+Ma1)< 1.
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Proof. First, let us introduce the set PC b := PC ([−r,b],L2(Ω,X)), which is the Banach
space of all piecewise continuous functions from [−r,b] into L2(Ω,X), equipped with the
norm ‖ζ‖2

PC b
= sups∈[−r,b](E‖ζ (s)‖2).

Let P̂C b be the closed subset of PC b defined as P̂C b = {x ∈PC b : x(τ) = φ(τ), for
τ ∈ [−r,0]} with the norm ‖ · ‖PC b . We consider the operator L : P̂C b→ P̂C b defined
by

(Lx)(t) = Ψ(t)[φ(0)−g(0,φ ,0)]+g(t,xt ,
∫ t

0
a1(t,s,xs)ds)

+
∫ t

0
Ψ(t− s) f (s,xs,

∫ s

0
a2(s,τ,xτ)dτ)ds

+
∫ t

0
Ψ(t− s)F̃(s)dZH

Q (s)+ ∑
0<ti<t

Ψ(t− ti)Ii(x(t−i )), t ∈ J, (13)

and (Lx)(t) = ϕ(t) for t ∈ [−r,0].
In the following parts, we show that the operator L has a fixed point in P̂C b . For
convenience, we split the proof into two steps.
Step 1: The map L is well defined, i.e., for x ∈ P̂C b, the function (Lx)(·) is continuous
on the interval J.
Let x ∈ P̂C b, t ∈ J and |ρ| be enough small, then

E‖(Lx)(t +ρ)− (Lx)(t)‖2 ≤ 5{E‖(Ψ(t +ρ)−Ψ(t)[ϕ(0)−g(0,ϕ,0)]‖2}

+5
4

∑
j=1

E‖Fj(t +ρ)−Fj(t)‖2. (14)

From hypothesis (H3), we derive

‖(Ψ(t +ρ)−Ψ(t))[ϕ(0)−g(0,ϕ,0)]‖2 ≤ 2M2‖ϕ(0)−g(0,ϕ,0)‖2.

Then by the norm continuity of Ψ(t) combined with Lebesgue dominated theorem it
follows immediately that

lim
ρ→0

E‖(Ψ(t +ρ)−Ψ(t))[ϕ(0)−g(0,ϕ,0)]‖2 = 0.

By condition (H8), we conclude that

E‖F1(t +ρ)−F1(t)‖2→ 0 as |ρ| → 0.

Furthermore, by virtue of (H3),(H4),(H6) and (H7), we have

E‖F2(t +ρ)−F2(t)‖2

≤ 2E
∥∥∥∥∫ t

0
[Ψ(t +ρ− s)−Ψ(t− s)] f (s,xs,

∫ s

0
a2(s,τ,xτ)dτ)ds

∥∥∥∥2

+2E
∥∥∥∥∫ t+ρ

t
Ψ(t +ρ− s) f (s,xs,

∫ s

0
a2(s,τ,xτ)dτ)ds

∥∥∥∥2

(15)

By estimating the terms on the right side of the above inequality, we obtain∥∥∥∥(Ψ(t +ρ− s)−Ψ(t− s)) f (s,xs,
∫ s

0
a2(s,τ,xτ)dτ)

∥∥∥∥2

≤ 2M2[M f (1+Ma2)‖xs‖2 +M f M̃a2 + M̃a2 ].
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and∥∥∥∥Ψ(t +ρ− s) f (s,xs,
∫ s

0
a2(s,τ,xτ)dτ)

∥∥∥∥2

≤M2[M f (1+Ma2)‖xs‖2 +M f M̃a2 + M̃a2 ],

Thanks to Lebesgue’s dominated theorem and the above inequalities along with the norm
continuity of Ψ(t) we deduce

E‖F2(t +ρ)−F2(t)‖2→ 0 as |ρ| → 0.

Now, using (H3) and (H10),

E‖F4(t +ρ)−F4(t)‖2 ≤ 2E

∥∥∥∥∥ ∑
0<ti<t

(Ψ(t +ρ− ti)−Ψ(t− ti))Ii(x(t−i ))

∥∥∥∥∥
2

+2E

∥∥∥∥∥ ∑
t≤ti<t+ρ

Ψ(t +ρ− ti)Ii(x(t−i ))

∥∥∥∥∥
2

,

and evaluating the terms on the right hand side,

‖(Ψ(t +ρ− ti)−Ψ(t− ti))Ii(x(t−i ))‖2 ≤ ‖Ψ(t +ρ− ti)−Ψ(t− ti)‖2[di‖x(t−i )‖2]

≤ 2M2[di‖x(t−i )‖2]

and
‖Ψ(t +ρ− ti)Ii(x(t−i ))‖2≤M2[di‖x(t−i )‖2].

Thus we obtain

E‖F4(t +ρ)−F4(t)‖2→ 0 as |ρ| → 0.
Furthermore

E‖F3(t +ρ)−F3(t)‖2 ≤ 2E
∥∥∥∥∫ t

0
[(Ψ(t +ρ− s)−Ψ(t− s))]F̃(s)dZH

Q (s)
∥∥∥∥2

+2E
∥∥∥∥∫ t+ρ

t
Ψ(t +ρ− s)F̃(s)dZH

Q (s)
∥∥∥∥2

:= N1 +N2.

In view of Lemma 1 and (H3),

N1 ≤ 2c(H)t2H−1
∫ t

0
‖[(Ψ(t +ρ− s)−Ψ(t− s))]F̃(s)‖2

L0
Q

ds

≤ 2c(H)t2H−1M2
∫ t

0
‖F̃(s)‖2

L0
Q

ds→ 0as |ρ| → 0,

since, for every fixed s,

‖(Ψ(t +ρ− s)−Ψ(t− s))F̃(s)‖2
L0

Q
≤ 2M2‖F̃(s)‖2

L0
Q
.

Next, using again Lemma 1, we have

N2 ≤ 2c(H)ρ2H−1M2
∫ t+ρ

t
‖F̃(s)‖2

L0
Q

ds→ 0 as |ρ| → 0.

Further, we have
lim
ρ→0

E‖F5(t +ρ)−F5(t)‖2 = 0.

Therefore, we can conclude that

lim
ρ→0

E‖(Lx)(t +ρ)− (Lx)(t)‖2 = 0.
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That is to say, the function t→ (Lx)(t) is continuous on the interval J and, consequently,
L is well defined.
Step 2: In this part we show that L is a contraction mapping.
For x,y ∈ P̂C b, we have

‖(Lx)(t)− (Ly)(t)‖2

≤ 1
k

∥∥∥∥(g(t,xt ,
∫ t

0
a1(t,s,xs)ds)−g(t,yt ,

∫ t

0
a1(t,s,ys)ds)

)∥∥∥∥2

(16)

+
3

1− k

{∥∥∥∥∫ t

0
Ψ(t− s)

[
f (s,xs,

∫ s

0
a2(s,τ,xτ)dτ)− f (s,ys,

∫ s

0
a2(s,τ,yτ)dτ)

]
ds
∥∥∥∥2

+

∥∥∥∥∥ ∑
0<ti<t

Ψ(t− ti)[Ii(x(t−i ))− Ii(y(t−i ))]

∥∥∥∥∥
2


≤ 1
k

∥∥∥∥(g(t,xt ,
∫ t

0
a1(t,s,xs)ds)−g(t,yt ,

∫ t

0
a1(t,s,ys)ds)

)∥∥∥∥2

+
3

1− k

∥∥∥∥∫ t

0
Ψ(t− s)

[
f (s,xs,

∫ s

0
a2(s,τ,xτ)dτ)− f (s,ys,

∫ s

0
a2(s,τ,yτ)dτ)

]
ds
∥∥∥∥2

+
3

1− k

∥∥∥∥∥ ∑
0<ti<t

Ψ(t− ti)[Ii(x(t−i ))− Ii(y(t−i ))]

∥∥∥∥∥
2

.

Applying Hölder’s inequality, and using the Lipschitz property of g, f and
Ii, i = 1,2, · · · ,m, we find

E‖(Lx)(t)− (Ly)(t)‖2 ≤ kE‖xt − yt‖2+
3

1− k
tM2M̃2

∫ t

0
E‖xs− ys‖2ds

+
3

1− k
M2

(
+∞

∑
i=1

di

)2

.

Therefore,

sup
s∈[−r,t]

E‖(Lx)(s)− (Ly)(s)‖2 ≤ ω(t) sup
s∈[−r,t]

E‖x(s)− y(s)‖2,

where

ω(t) = k+
3M2M̃2

1− k
t2 +

3M2

1− k

(
+∞

∑
i=1

di

)2

.

Then, using inequality (12), we obtain

ω (0) = k+
3M2

1− k

(
+∞

∑
i=1

di

)2

< 1.

Therefore it follows that there exists a sufficiently small b1 > 0 such that 0 < b1 ≤ b and
0 < ω(b1)< 1. This implies that L is a contraction mapping. Then, the fixed point
theorem implies that system (1)-(3) possesses a unique solution in P̂C b1 . This procedure
can be repeated in order to extend the solution to the entire interval [−r,b] in finitely many
steps. This completes the proof.
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Remark 3. Notice that we can extend the solution for t ≥ b. Indeed, if we assume that the
constants Ma1 ,Ma2 ,M f and Mg which appear in assumptions (H4)–(H7) are independent
of b > 0, then the mild solution is defined for all t ∈ [−r,b], for each b > 0. This will play a
crucial role in our analysis of stability. Therefore, in the next section we will assume that
the solutions are defined globally in time (for instance, under the previous assumptions).

4. Mean square exponential stability. Now we will analyze the exponential stability in
the mean square moment for the mild solution to system (1)-(3). We need to impose some
additional assumptions:

(H11) The resolvent operator (Ψ(t))t≥0 satisfies the further condition:
There exist a constant M > 0 and a real number µ > 0 such that

‖Ψ(t)‖ ≤Me−µt ,∀t ≥ 0. In other words, the resolvent operator (Ψ(t))t≥0 is
exponentially stable.

(H12) There exist non-negative real numbers Q1,Q2 ≥ 0 and a continuous function
ζ1 : [0,+∞)→ R+ such that∥∥∥∥∫ t

0
a1(t,s,κ)ds

∥∥∥∥2

≤ Q1‖κ‖2, ‖g(t,κ,φ)‖2 ≤ Q2[‖κ‖2 +‖φ‖2]+ζ1(t),

for all t ≥ 0 and κ,φ ∈PC .
(H13) There exist non-negative real numbers R1,R2 ≥ 0 and a continuous function

ζ2 : [0,+∞)→ R+ such that∥∥∥∥∫ t

0
a2(t,s,κ)ds

∥∥∥∥2

≤ R1‖κ‖2, ‖ f (t,κ,ϕ)‖2 = R2[‖κ‖2 +‖ϕ‖2]+ζ
2(t),

for all t ≥ 0 and κ,ϕ ∈PC .
(H14) There exist non-negative real numbers S1,S2 ≥ 0 such that

ζ j(t)≤ S je−µt ,∀t ≥ 0, j = 1,2.

(H15) In addition to assumptions (C.1) and (C.2), the function F̃ : [0,+∞)→ L0
Q(Y,X)

satisfies ∫ +∞

0
eµs‖F̃(s)‖2

L0
Q

ds < ∞.

To facilitate the computations we set Q̃ = Q2[1+Q1] and R̃ = R2[1+R1]. Now we can
establish the exponential stability of system (1)-(3).

Theorem 6. Assume that conditions (H10)-(H15) and the following inequality

4M2R̃/µ2 +4M2
(
∑
+∞

i=1 di
)2

(1− k)2 < 1(17)

hold, where k := Q̃
1
2 < 1. Then the mild solution of system (1)-(3) is exponentially stable

in mean square.

Proof. Thanks to inequality (17) we can find a suitable number ε > 0, small enough, such
that

k+
4M2R̃

µ(µ− ε)(1− k)
+

4M2
(
∑
+∞

i=1 di
)2

1− k
< 1.
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Let x(t) be the solution of the impulsive stochastic system (1)-(3) and η = µ− ε .
Therefore, from Eq. (12),

E‖x(t)‖2 ≤ 1
k
E
∥∥∥∥g(t,xt ,

∫ t

0
a1(t,s,xs)ds)

∥∥∥∥2

+
4

1− k
E
{
‖Ψ(t)[φ(0)−g(0,φ ,0)]‖2

+

∥∥∥∥∫ t

0
Ψ(t− s)F̃(s)dZH

Q (s)
∥∥∥∥2

+

∥∥∥∥∫ t

0
Ψ(t− s) f (s,xs,

∫ s

0
a2(s,τ,xτ)dτ)ds

∥∥∥∥2

+

∥∥∥∥∥ ∑
0<ti<t

Ψ(t− ti)Ii(x(t−i ))

∥∥∥∥∥
2}

≤
5

∑
j=1

G j(t). (18)

Now, we compute the terms on the right-hand side of the above inequality. From
hypotheses (H12) and (H14), we have

G1(t) =
1
k
E‖g(t,xt ,

∫ t

0
a1(t,s,xs)ds)‖2

≤ 1
k

{
Q̃E‖xt‖2 +ζ1(t)

}
≤ kE‖xt‖2 +E1e−ηt ,

where E1 =
S1
k .

From the hypotheses (H11), (H12) and (H13), we obtain that

G2(t) ≤ 8
1− k

E‖Ψ(t)φ(0)‖2 +
8M2

1− k
e−2µtE

{
Q̃E‖φ‖2 +ζ1(t)

}
≤ E2e−ηt , (19)

where E2 =
8

1− k

[
E‖φ(0)‖2 +

{
Q̃E‖φ‖2 +S1

}]
.

From hypotheses (H11), (H12), (H14) and Hölder inequality, we have the following
estimate

G3 ≤ 4
1− k

E
(∫ t

0
Me−µ(t−s)

∥∥∥∥ f (s,xs,
∫ s

0
a2(s,τ,xτ)dτ)

∥∥∥∥ds
)2

≤ 4M2R̃
µ(1− k)

∫ t

0
e−µ(t−s)E‖xs‖2ds+E4e−ηt , (20)

where E4 =
4M2

µ(1− k)
S2

µ−η
.

Using Lemma 1 and hypotheses (H11), we derive

G4(t) ≤ 4
1− k

M2c(H)t2H−1
∫ t

0
e−2µ(t−s)‖F̃(s)‖2

L0
Q

ds

≤ e−ηt 4M2

(1− k)
c(H)t2H−1e−εt

∫ t

0
eµs‖F̃(s)‖2

L0
Q

ds. (21)

Noting that condition (H15) guarantees the existence of a constant E5 > 0 such that, for
all t ≥ 0,

4M2

(1− k)
c(H)t2H−1e−εt

∫ t

0
eµs‖F̃(s)‖2

L0
Q

ds≤ E5,
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we deduce
G4(t)≤ E5e−ηt . (22)

As for the last term, hypothesis (H10) implies

G5(t) ≤ 4M2

(1− k)

(
∑

0<ti<t
di

)2

e−2µ(t−ti)E‖x(t−i )‖2

≤ 4M2

(1− k)

(
∑

0<ti<t
di

)
∑

0<ti<t
die−µ(t−ti)E‖x(t−i )‖2. (23)

Connecting the inequalities (19)− (23) along with (18) and using Lemma 2 we conclude

E‖x(t)‖2 ≤ ωe−ηt , for t ∈ [−r,0]

and

E‖x(t)‖2 ≤ ωe−ηt + k sup
−r≤θ≤0

E‖x(t +θ)‖2 + k̂
∫ t

0
e−η(t−s) sup

−r≤θ≤0
E‖x(s+θ)‖2ds

+
+∞

∑
i=1

die−η(t−ti)E‖x(t−i )‖2, for each t ≥ 0.

Here

ω = max

(
4

∑
j=1

E j, sup
−r≤θ≤0

E‖φ(θ)‖2

)
and

k̂ =
4M2R̃

µ(1− k)

We observe that k+ k̂
η
+∑

+∞

i=1 di < 1. Using Lemma 2.6, we have the existence of positive
constants E and θ such that E‖x(t)‖2 ≤ Ee−θ t , for any t ≥−r. Hence we conclude that
the mild solution of system (1)-(3) is exponentially stable in mean square and the proof is
completed.

Remark 4. In the absence of impulsive effects, system (1)-(3) becomes the following one

d
[

x(t)−g(t,xt ,
∫ t

0
a1(t,s,xs)ds)

]
(24)

=A
[

x(t)−g(t,xt ,
∫ t

0
a1(t,s,xs)ds)

]
dt (25)

+
∫ t

0
B(t− s)

[
x(s)−g(t,xs,

∫ s

0
a1(t,τ,xτ)dτ)

]
dsdt (26)

+ f (t,xt ,
∫ t

0
a2(t,s,xs)ds)dt + F̃(t)dZH

Q (t), t ∈ [0,b], t 6= ti, (27)

x0(t) = φ(t) ∈ C ,−r ≤ t ≤ 0, (28)

and the mild solution of system (24)-(28) is exponentially stable in mean square provided

4M2R̃/µ2

(1− k)2 < 1, (29)

which can be obtained by using the same technique used in Theorem 6.
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5. Example. In this section we make use of our previous results to study the existence,
uniqueness and exponential stability of mild solution to a concrete neutral stochastic
partial integro–differential equations with finite delays.
Consider the neutral stochastic partial integro–differential equations with impulses of the
form

d
[

z(t,τ)−σ1

(
t,z(t−ζ ,τ),

∫ t

0
σ2(t,s,z(s−ζ ,τ))ds

)]
=

∂ 2

∂ξ 2

[
z(t,τ)−σ1

(
t,z(t−ζ ,τ),

∫ t

0
σ2(t,s,z(s−ζ ,τ))ds

)]
dt

+
∫ t

0
γ(t− s)

[
z(s,τ)−σ1

(
s,z(s−ζ ,τ),

∫ s

0
σ2(t, l,z(l−ζ ,τ))dl

)]
dt

+

[
σ3

(
t,z(t−ζ ,τ),

∫ t

0
σ4(t,s,z(s−ζ ,τ))ds

)]
dt + F̃(t)dZH

Q (t),

(30)

0≤ τ ≤ π, t 6= ti, t ∈ [0,+∞), subject to the initial conditions

z(t,0) = z(t,π) = 0, 0≤ t <+∞,

∆z(ti, .)(τ) =
l
i2

z(t−i ,τ), t = ti, i = 1,2, ...,

z(t, ·) = φ(t, ·),−r ≤ t ≤ 0,

where φ(·, ·) ∈PC ([−r,0],L2[0,π]), σ j(·), j = 1,2,3,4, are functions defined below, and
l is a positive constant, and F̃ : R+→ R is a continuous function such that F̃ satisfies
assumption (H13), ZH denotes a Rosenblatt process. Let Y = L2([0,π]) and

en :=
√

2
π

sin(nx), (n = 1,2,3, · · ·). Then (en)n∈N is a complete orthonormal basis in Y .
In order to define the operator Q : Y → Y , we choose a sequence {λn}n≥1 ⊂ R+ and set
Qen = λnen, and assume that tr(Q) = ∑

∞
n=1
√

λn < ∞. Define the process ZH by

ZH(t) =
∞

∑
n=1

√
λnγ

H
n (t)en,

where H ∈ ( 1
2 ,1) and {γH

n }n∈N is a sequence of two-sided one-dimensional Rosenblatt

process mutually independent. Define A : D(A)⊂H→H by A = ∂ 2

∂ z2 , with domain
D(A) = H2([0,π])∩H1

0 ([0,π]). Then, A is the infinitesimal generator of a strongly
continuous semigroup {T (t)}t≥0 on X , which is given by
T (t)φ = ∑

∞
n=1 e−n2t < φ ,en > en, φ ∈ D(A).

Let Γ : D(A)⊂ X → X be the operator defined by

Γ(t)(z) = γ(t)Az for t ≥ 0 and z ∈ D(A),

and let the functions σ1(t,x,y), σ2(t,z,z
′
), σ3(t,x,y), σ4(t,z,z

′
) be defined as follows:

σ1 : R+×R×R−→ R
σ2 : R+×R+×R−→ R
σ3 : R+×R×R−→ R
σ4 : R+×R+×R−→ R.

Moreover, let the following assumptions hold a.s.:
(A1) The functions σi, i = 1,2, are continuous in the sense that

lim
t→s
| σi(t,x,y)−σi(s,x,y)|2 = 0, for x,y ∈ R.
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(A2) There exist non-negative real number q1 such that

|
∫ t

0
σ2(t,x,y)ds|2 ≤ q1|y|2, for x,y ∈ R.

(A3) There exist non-negative real number r1 such that

|
∫ t

0
σ4(t,x,y)ds|2 ≤ r1|y|2, for x,y ∈ R.

(A4) There exist non-negative real numbers q1,q2 ≥ 0 and a continuous function
ζ1 : [0,+∞)→ R+ such that

|σ1(t,x,y)|2 ≤ q2[|x|2 + |y|2]+ζ1(t),

for all t ≥ 0 and x,y ∈ R.
(A5) There exist non-negative real numbers r1,r2 ≥ 0 and a continuous function

ζ2 : [0,+∞)→ R+ such that

|σ3(t,x,y)|2 = r2[|x|2 + |y|2]+ζ2(t,)

for all t ≥ 0 and x,y ∈ R.
(A6) There exist non-negative real numbers S1,S2 ≥ 0 such that

ζ j(t)≤ S je−µt ,∀t ≥ 0, j = 1,2.

Let

a1(t,s,φ)(τ) = σ2(t,s,φ(θ ,τ)),

g(t,φ ,
∫ t

0
a1(t,s,φ)ds)(τ) = σ1(t,φ(θ ,τ),

∫ t

0
σ2(t,s,φ(θ ,τ))ds),

=
∫ 0

−r
ν1(θ)φ(θ)(ξ )dθ +

∫ t

0

∫ 0

−r
b2(t)b3(l)φ(l,ξ )dlds,

a2(t,s,φ)(τ) = σ4(t,s,φ(θ ,τ)),

f (t,φ ,
∫ t

0
a2(t,s,φ)ds)(τ) = σ3(t,φ(θ ,τ),

∫ t

0
σ4(t,s,φ(θ ,τ))ds),

=
∫ 0

−r
b̃1(t,s,τ,φ(s,τ))ds (31)

+
∫ t

0

∫ 0

−r
b̃2(s)b̃3(s, l,τ,φ(l,τ))dlds,

where,

(1) the function ν1(θ)≥ 0 is continuous in (−r,0] satisfying∫ 0

−r
ν

2
1 (θ)dθ < ∞, γ

1
g

(∫ 0

−r
ν

2
1 (θ)dθ

) 1
2

< ∞.

(2) b2,b3 : R→ R are continuous, and

γ
2
g

(∫ 0

−r
(b3(s))2ds

) 1
2

< ∞.

(3) The function b̃2 : R→ R is continuous and b̃i : R→ R, i = 1,3 are continuous and
there exist continuous functions r j : R→ R, j = 1,2,3,4 such that

|b̃1(t,s,x,y)| ≤ r1(t)r2(s)|y|; (t,s,x,y) ∈ R4,

|b̃3(t,s,x,y)| ≤ r3(t)r4(s)|y|; (t,s,x,y) ∈ R4,
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with L̃b
1 =

(∫ 0
−r(r2(s))2ds

) 1
2
< ∞, L̃b

2 =
(∫ 0
−r(r4(s))2ds

) 1
2
< ∞.

Notice that the function g is continuous with respect to variable t.
If we put

{
x(t) := x(t)(τ) = z(t,τ) for t ≥ 0 and τ ∈ [0,π]

φ(t)(τ) = z0(t,τ) for t ∈ [−r,0] and τ ∈ [0,π],

then equation (30) takes the following abstract form

d
[

x(t)−g(t,xt ,
∫ t

0
a1(t,s,xs)ds)

]
=A
[

x(t)−g(t,xt ,
∫ t

0
a1(t,s,xs)ds)

]
dt

+
∫ t

0
B(t− s)

[
x(s)−g(s,xs,

∫ s

0
a1(t,τ,xτ)dτ)

]
dsdt

+ f (t,xt ,
∫ t

0
a2(t,s,xs)ds)dt + F̃(t)dZH

Q (t), t ∈ [0,+∞), t 6= ti, (32)

∆x(ti) = Ii(x(t−i )), t = ti, i = 1,2, ...,

x0(t) = φ(t), −r ≤ t ≤ 0,

Moreover, if γ is bounded and a C1 function such that is derivative γ ′ is bounded and
uniformly continuous, then (H1) and (H2) are satisfied and hence, by Theorem 2.2, Eq.
(9) has a resolvent operator (Ψ(t))t≥0 on X .
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Moreover for φ j ∈PC , j = 1,2∥∥∥g
(

t,φ1,
∫ t

0
a1 (t,s,φ1)ds

)
−g
(

t,φ2,
∫ t

0
a2 (t,s,φ2)ds

)∥∥∥
L2[0,π]

=

[∫
π

0

(∫ 0

−r
v1 (θ) [φ1 (θ)(ρ)−φ2 (θ)(ρ)]dθ

+
∫ t

0

∫ 0

−r
b2(s)b3(l) [φ1 (l,ρ)−φ2 (l,ρ)]dlds

)2

dρ

]1/2

≤
√

2

[∫
π

0

(∫ 0

−r
v1 (θ) [φ1 (θ)(ρ)−φ2 (θ)(ρ)]dθ

)2

dρ

]1/2

+
√

2

[∫
π

0

(∫ t

0

∫ 0

−r
b2(s)b3(l) [φ1 (l,ρ)−φ2 (l,ρ)]dlds

)2

dρ

]1/2

≤
√

2

[∫
π

0

(∫ 0

−r
v1 (θ)dθ

)2

dρ

]1/2

‖φ1−φ2‖

+b
√

2

[∫
π

0

(∫ t

0
b2

2(s)ds
)(∫ 0

−r
b3(l) [φ1 (l,ρ)−φ1 (l,ρ)]dl

)2

dρ

]1/2

≤
√

2π

[(∫ 0

−r
v1 (θ)dθ

)2
]1/2

‖φ1−φ2‖

+b
√

2
√

π

(∫ t

0
b2

2(s)ds
)1/2

×
(∫ 0

−r
b2

3(l)dl
)1/2

‖φ1−φ2‖

≤ k2‖φ1−φ2‖

where k2 = γ1
g +b‖b2‖∞γ2

g . In the same way we obtain∥∥∥ f
(

t,φ1,
∫ t

0
a2 (t,s,φ1)ds

)
− f

(
t,φ2,

∫ t

0
a2 (t,s,φ2)ds

)∥∥∥
L2[0,π]

≤ l2‖φ1−φ2‖
where l2 = ‖b2‖∞L̃b

1 +‖b̃2‖∞‖r3‖L1 L̃b
2. Therefore, we may easily verify all the

assumptions of Theorem 5 and hence, there exists a mild solution for (30).
We assume moreover that there exists β > a > 1 and b(t)< 1

a e−β t for all t ≥ 0. Thanks to
Lemma 5.2 in [9], we have the following estimates ‖Ψ(t)‖≤ e−λ t where λ = 1− 1

a .
Consequently, all the hypotheses of Theorem 6 are fulfilled. Therefore, Eq. (30) possesses
a unique mild solution which is exponentially stable provided that√

q2(1+q1))+

4(r2(1+r1))
λ 2 +4(∑∞

i=1
l
i2 )

2

(1−
√

q2(1+q1))2
< 1.

6. Conclusion. The interest of this work is the study of neutral impulsive stochastic
integro–differential equations driven by a Rosenblatt process in a real separable Hilbert
space. The existence, uniqueness and exponential stability were obtained by using the
fixed point theorem and the resolvent operators theory. Finally, an example is analyzed to
illustrate the effectiveness of the main results. It should be emphasized that system (1)-(3)
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considered in this paper is more general than those in the existing literature. There are two
direct issues that require further study. First, we will investigate the existence and
exponential stability of mild solutions to functional non autonomous stochastic
integro-differential equations driven by Rosenblatt process with index H ∈ ( 1

2 ,1). Second,
we will study the solvability and stability for neutral stochastic integro-differential
equations driven by Rosenblatt process with impulses.

Acknowledgements. We thank the referees for the helpful suggestions and remarks which
allowed us to improve the presentation of our paper.
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