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Extremal bounded complete trajectories for
nonautonomous reaction-diffusion equations with
discontinuous forcing term
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Abstract In this paper we establish a strong comparison principle for a nonau-
tonomous differential inclusion with a forcing term of Heaviside type. Using this
principle, we study the structure of the global attractor in both the autonomous
and nonautonomous cases. In particular, in the last case we prove that the pullback
attractor is confined between two special bounded complete trajectories, which
play the role of nonautonomous equilibria.
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1 Introduction

Comparison of solutions for reaction-diffusion equations is a powerful tool in order
to study the structure of global attractors. In particular, in the autonomous case it
allows us to establish that the global attractor is confined between two stationary
solutions, which are the maximal and minimal elements of the attractor. For a class
of autonomous reaction-diffusion equations, such result was proved in [5], [31]. It is
worth noticing that a general theory of monotone random dynamical systems was
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first studied in [1], [2], [17]. These results were extended to multivalued autonomous
dynamical systems in [11].

In nonautonomous problems the situation is more complicated because station-
ary solutions do not exist in general but only in rather particular cases, at least not
in the classical sense. For this reason, we need to replace them by a special type
of bounded complete trajectories, which play the role of “nonautonomous equilib-
ria”. The general theory of order-preserving nonautonomous dynamical systems
was studied in [16], [25]. In this sense, a result proved in [30] (see also [13], [25]
and [29]) is remarkable because a complete bounded positive non-degenerate solu-
tion was constructed for a nonautonomous reaction-diffusion equation. Using this
solution, a nonautonomous interval containing the pullback attractor is provided.
In the multivalued nonautonomous framework, similar results were established in
[12], where an ordinary nonautonomus differential inclusion was studied.

We aim to study the structure of attractors for the following nonautonomous
differential inclusion

∂u

∂t
− ∂2u

∂x2
∈ b(t)H0(u) + ω(t)u, on (0, 1)× (τ,∞),

u(0, t) = u(1, t) = 0,
u(x, τ) = uτ (x),

(1)

where H0 is a Heaviside function. Problems of this type appear when we have a
differential equation driven by a nonlinear function having a discontinuity, which
can be rewritten as a differential inclusion by means of a Heaviside function. Well
known applications like combustion in porous media [21], the conduction of elec-
trical impulses in nerve axons (see [33], [34]) or the surface temperature on Earth
(see [10], [20]) are modeled by inclusions of similar type.

The structure of the global attractor for problem (1) in the autonomous case
has been studied in detail in [4]. Nevertheless, several challenging problems still
remain open. For models concerning the climate on Earth, some results about
bifurcations of steady states were proved in [8], [9].

In the multivalued framework, that is, when more than one solution can exist
for the Cauchy problem of a differential equation, it is not possible to compare
solutions with ordered initial data in the same way as in the single-valued case.
Instead, we need to establish some sort of order relationship between the set of
solutions corresponding to the ordered initial conditions. In this sense, different
definitions have been given in the literature. A strong comparison principle was
defined and applied to ordinary differential equations with delays in [11]. A weak
comparison principle was established in [38] for reaction-diffusion equations with-
out uniqueness. Also, an intermediate comparison principle was given in [14] for
differential inclusions governed by subdifferential maps.

In this paper we firstly prove in the second section a strong comparison prin-
ciple for the solutions of problem (1). Moreover, we obtain also strong comparison
between positive solutions of (1) and its corresponding autonomous equation (that
is, for b (t) , ω (t) identically equal to constants). After that, in the third section,
we use this comparison principle and the abstract results from [11] in order to
establish that the global attractor of the autonomous problem (1) is confined be-
tween maximal and minimal stationary points. Moreover, the expressions of these
fixed points are known from [4].
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The main results of this paper, concerning the structure of the pullback at-
tractor for the nonautonomous inclusion (1), are given in the fourth section. We
prove the existence of two bounded complete trajectories that generate a time-
depending interval containing the pullback attractor. These solutions are strictly
positive (negative) for any time and any x ∈ (0, 1), that is, they are non-degenerate.
Moreover, they are the unique non-degenerate bounded complete trajectories of
the problem and play the role of nonautonomous positive equilibria.

2 Comparison of solutions

In this section we establish a strong comparison principle for the strong solutions
of a nonautonomous differential inclusion in a bounded n-dimensional domain.

Let Ω ⊂ Rn be a bounded open subset with smooth boundary. We consider
the problem 

∂u

∂t
−∆u ∈ b(t)H0(u) + ω(t)u, on Ω × (τ,∞),

u|∂Ω = 0,
u(τ, x) = uτ (x),

(2)

where b : R→ R+, ω : R→ R+ are continuous functions such that

0 < b0 ≤ b (t) ≤ b1, 0 ≤ ω0 ≤ ω (t) ≤ ω1,

and

H0(u) =


−1, if u < 0,
[−1, 1] , if u = 0,
1, if u > 0,

is the Heaviside function.
We rewrite (2) in the abstract form{

∂u

∂t
+ ∂ψ(u)−R(t, u(t)) 3 0,

u(τ) = uτ ,

where ∂ψ is the subdifferential of the proper, convex, lower semicontinuous function
ψ : L2(Ω)→ (−∞,+∞] given by

ψ (u) =

{
1
2

∫
Ω
|∇u|2 dx, if u ∈ H1

0 (Ω) ,
+∞, otherwise,

∂ψ(u) =
{
y ∈ L2(Ω) : y(x) = −∆u(x), a.e. on Ω

}
,

D (∂ψ) = H2 (Ω) ∩H1
0 (Ω) and for any t ∈ R,

R(t, u) =
{
y ∈ L2 (Ω) : y (x) ∈ b(t)H0 (u (x)) + ω(t)u (x) , a.e. on Ω

}
.

We note that in our particular case the operator ∂ψ : H2 (Ω) ∩H1
0 (Ω) → L2 (Ω)

is single-valued and linear. In the sequel, as ∂ψ is also the generator of a C0-
semigroup, for convenience we shall use the notation A = ∂ψ. Also, we observe
that D(ψ) = L2 (Ω) .
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Let us introduce some notation. Throughout this paper we denote by ‖·‖X
the norm in the Banach space X, whereas ‖·‖ , (·, ·) will be used for the norm
and scalar product in the space L2(Ω) (and with some abuse of notation also in
(L2(Ω))d, d ∈ N). Also, P (X) will be the set of all non-empty subsets of X and
2X = P (X) ∪∅. The Hausdorff semidistance from the set C to the set B is given
by

dist(C,B) = sup
y∈C

inf
z∈B
‖y − z‖ ,

whereas the Hausdorff distance is defined by

distH(C,B) = max{dist(C,B), dist(B,C)}.

For C ⊂ X an ε-neighborhood is the set Oε(C) = {z ∈ X : dist(z, C) < ε}.
For a multivalued map G : X → 2X we denote D(G) = {u ∈ X : G(u) ∈

P (X)}. The map G is called upper semicontinuous if for any u ∈ D(G) and any
neighborhood O of G(u) there exists δ > 0 such that G(v) ⊂ O as soon as ‖u− v‖ <
δ. it is said to be w-upper semicontinuous if for all ε > 0, u ∈ D(G), there is δ > 0
such that G(v) ⊂ Oε(G(u)) if ‖u− v‖ < δ. Any upper semicontinuous map is
w-upper semicontinous, the converse being true if G has compact values [3, p.45].

We recall the concept of strong solution for problem (2).

Definition 1 We say that the function u ∈ C([τ,+∞), L2(Ω)) is a strong solution
of (2) if:

1. u(τ) = uτ ;
2. For any δ > 0, τ + δ < T , u(·) is absolutely continuous on [τ + δ, T ] and

u (t) ∈ D (A) for a.a. t ∈ (τ, T );
3. There exists a function r : [τ,+∞) → L2(Ω) such that r(t) ∈ R(t, u(t)), r ∈

L2
(
τ, T ;L2(Ω)

)
for any T > τ , and

du

dt
+Au(t) = r(t), for a.a. t ∈ (τ,+∞), (3)

where the equality is understood in the sense of the space L2(Ω).

Lemma 1 For every strong solution of (2) the function r (·) belongs to L∞
(
τ, T ;L2(Ω)

)
for any T > τ.

Proof The statement follows readily from u ∈ C([τ,+∞), L2(Ω)), r ∈ L2
(
τ, T ;L2(Ω)

)
and the inequality

|r (t, x)| ≤ b (t) + ω (t) |u (t, x)| for a.a. (t, x) .

We denote by f : R × R → P (R) the multivalued function given by f(t, u) =
b(t)H0(u). Then f possesses nonempty, closed, bounded and convex values, and
for all t ∈ R the map f(t, ·) : R → P (R) is upper semicontinuous. Moreover, for
any t, s ∈ R+, u ∈ R,

distH(f(t, u), f(s, u)) = |b(t)− b(s)|,

and
sup

y∈f(t,u)
|y| = b(t).
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The last equality implies that, for all y ∈ L2(Ω) and for a.a. t ∈ R+,

sup
ξ∈R(t,y)

‖ξ‖ ≤ |Ω|1/2b(t).

The following result follows from Lemma 6.28 in [24].

Lemma 2 The map R satisfies the following properties:

1. R : R× L2(Ω)→ 2L
2(Ω) has nonempty, closed, bounded and convex values;

2. For any t ∈ R, the map R(t, ·) : L2(Ω)→ P (L2(Ω)) is w-upper semicontinuous;

3. For all y ∈ L2(Ω), τ ∈ R, the map R(·, y) : [τ ,+∞) → P (L2(Ω)) possesses a

measurable selection, that is, there exists a measurable function h : [τ ,+∞) →
L2(Ω) such that h(t) ∈ R(t, y) for a.a. t > τ.

Theorem 1 For any uτ ∈ L2(Ω), problem (2) has at least one strong solution.

Proof If we fix an interval [τ, T ], the existence of a strong solution follows from
Theorem 6.11 and Lemma 6.16 in [24]. Also, adapting Lemma 6.31 in [24] to the
nonautonomous case we obtain that the concatenation of two strong solutions is
again a strong solution, so every solution in an interval [τ, T ] can be extended to
a global one, that is, defined for t ∈ [τ,+∞).

Let us consider the auxiliary problem{
du

dt
+Au(t) = g(t), t ∈ (τ, T ) ,

u(τ) = uτ ,
(4)

where g ∈ L1(τ, T ;L2(Ω)).

The continuous function u : [τ, T ] → L2 (Ω) is said to be a strong solution
of (4) on [τ, T ], if u(·) is absolutely continuous on any compact subset of (τ, T ),
u(t) ∈ D(A) for a.a. t ∈ (τ, T ) and

du

dt
+Au(t) = g (t) for a.a. t ∈ (τ, T ) .

The continuous function u : [τ,+∞) → L2 (Ω) is called in general a strong
solution if it is a strong solution on every interval [τ, T ].

Proposition 1 ([7, Theorem 3.6] or [6, p.189]) For any g(·) ∈ L2(τ, T ;L2 (Ω)), uτ ∈
L2(Ω), there exists a unique strong solution of inclusion (2) on [τ, T ] satisfying

√
t
du

dt
∈ L2(τ, T ;L2 (Ω)), ψ(u(·)) ∈ L1(τ, T ). (5)

Also, the map t 7→ ψ(u(t)) is absolutely continuous on [τ + δ, T ], for all 0 < δ < T − τ .

If, moreover, uτ ∈ D (ψ) , then
du

dt
∈ L2

(
τ, T ;L2 (Ω)

)
and t 7→ ψ(u(t)) is abso-

lutely continuous on [τ, T ].
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Corollary 1 Every strong solution u (·) to problem (2) satisfies

u ∈ L2
(
τ, T ;H1

0 (Ω)
)
, (6)

√
t
du

dt
∈ L2(τ, T ;L2 (Ω)),

du

dt
∈ L2(τ, T ;H−1 (Ω)),

for all T > τ . Moreover:

1. The map t 7→ ‖u (t)‖2 is absolutely continuous on every interval [τ, T ] and

d

dt
‖u (t)‖2 = 2

(
du

dt
, u (t)

)
for a.a. t ∈ (τ, T ) . (7)

2. The map t 7→ ‖∇u (t)‖2 is absolutely continuous on every interval [τ + δ, T ] with

0 < δ < T − τ ,

d

dt
‖∇u (t)‖2 = 2

(
du

dt
,−∆u (t)

)
, for a.a. t ∈ (τ, T ) , (8)

and

u ∈ C([τ + δ,+∞), H1
0 (Ω)). (9)

3. If uτ ∈ H1
0 (Ω) , then

du

dt
∈ L2

(
τ, T ;L2 (Ω)

)
and t 7→ ‖∇u (t)‖2 is absolutely

continuous on every interval [τ, T ]. Also,

u ∈ C([τ,+∞), H1
0 (Ω)). (10)

Proof Equality (7) follows from [15, p.285] and the rest of properties, except (8)-
(10), are a consequence of Proposition 1. For the equality (8) see [6, p.189]. If uτ ∈
H1

0 (Ω), as t 7→ u (t) is weakly continuous with respect to H1
0 (Ω), t 7→ ‖u (t)‖H1

0 (Ω)

is continuous and H1
0 (Ω) is a Hilbert space, property (10) follows. The proof for

(9) is analogous.

Our aim is to prove the following comparison principle.

Definition 2 The strong solutions of problem (2) satisfy a strong comparison
principle if for any initial data uτ ≤ vτ there exist strong solutions u (·) , v (·) such
that u (τ) = uτ , v (τ) = vτ and

u (t) ≤ v (t) ,

u (t) ≤ v (t) , ∀t ≥ τ,

where u (·) , v (·) are arbitrary strong solutions of problem (2) such that u (τ) =
uτ , v (τ) = vτ .
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In particular, this definition implies that for every initial data there exist a
maximal and a minimal strong solution.

Let us consider the following parabolic problems
∂u

∂t
−∆u = b(t)fε(u) + ω(t)u, on Ω × (τ,+∞),

u|∂Ω = 0,
u(τ, x) = uτ (x),

(11)


∂u

∂t
−∆u = b(t)fε(u) + ω(t)u, on Ω × (τ,+∞),

u|∂Ω = 0,
u(τ, x) = uτ (x),

(12)

where fε, fε ∈ C1(R), f ′ε(u), f
′
ε ≥ 0,

∣∣f ′ε(u)
∣∣ , ∣∣∣f ′ε(u)

∣∣∣ ≤ Cε for all u, and

fε(u) =


−1, if u ≤ −ε,
−1 ≤ fε(u) ≤ 1, if − ε < u < 0,
1, if u ≥ 0,

fε(u) =


−1, if u ≤ 0,
−1 ≤ fε(u) ≤ 1, if 0 < u < ε,

1, if u ≥ ε.

It is straightforward that

fε(u) ≥ sup
y∈H0(v)

y if u ≥ v, (13)

fε(u) ≤ inf
y∈H0(v)

y if u ≤ v.

With obvious little changes, we can extend the definition of strong solutions to
problems (11)-(12). Let us show that these problems have a unique strong solution.
Let us just consider problem (11).

From now on, for v ∈ L2 (Ω), we denote by fε(v) (fε(v)) the element y ∈
L2 (Ω)) such that y (x) = fε(v(x)) (= fε(v(x))) for a.a. x. In the same way, for
h ∈ L1(τ, T ;L2(Ω)) we denote h (t) := h(t,·) ∈ L2 (Ω)) .

We know from [15, p.283] that for any uτ ∈ L2(Ω) there exists a unique
weak solution of problem (11), which means that u ∈ C([0,+∞), L2(Ω)), u ∈
L2(τ, T ;H1

0 (Ω)), for all T > τ , and

d

dt
(u (t) , v)− 〈∆u, v〉 = (fε(u(t)), v) , ∀v ∈ H1

0 (Ω),

where the equality is understood in the sense of distributions on every interval
(τ, T ) and 〈·, ·〉 is pairing between H−1(Ω) and H1

0 (Ω).

Lemma 3 For any uτ ∈ L2(Ω) there exists a unique strong solution uε (·) of problem

(11), which coincides with the unique weak solution of (11).
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Proof Let uε (·) be the unique weak solution of problem (11). If we put gε(t) =
fε(uε(t)) + ω(t)uε(t), then gε ∈ L2(τ, T ;L2(Ω)), for all T > τ , and we can consider
the linear problem 

∂z

∂t
−∆z = gε(t), on Ω × (τ,+∞),

z|∂Ω = 0,
z(τ, x) = zτ (x).

(14)

On the one hand, uε (·) is the unique weak solution of problem (14). On the other
hand, it follows from Proposition 1 that problem (14) possesses a unique strong
solution z (·). If we were able to show that z (·) is also a weak solution of (14), then
we would obtain that z = uε, so uε (·) would be a strong solution of (11). Indeed.
In view of Proposition 1 we obtain that z ∈ L2(τ, T ;H1

0 (Ω)) for all T > τ . From

the equality in (14) we infer then that
dz

dt
∈ L2(τ, T ;H−1(Ω)), which implies by

[28, Lemma 7.4] that〈
dz

dt
, v

〉
− 〈∆z, v〉 = (gε(t), v) , ∀v ∈ H1

0 (Ω).

Hence, by [32, p. 250] we have

d

dt
(z, v)− 〈∆z, v〉 = (gε(t), v) ,

so z (·) is a weak solution of (14). Thus, z = uε is a strong solution of problem
(11).

It remains to check uniqueness. Let v (·) be an arbitrary strong solution of (11).
Then, it is a strong solution of problem (14) with gε(t) = fε(v(t)) + ω(t)v(t). By
the previous argument v (·) is a weak solution of (14) and then a weak solution of
(11) as well. Therefore, v is equal to uε, the unique weak solution of (11). Thus,
v = z.

Remark 1 The function hε(t) = b(t)fε(uε (t))+ω(t)uε (t) belongs to L∞
(
τ, T ;L2(Ω)

)
for any T > τ .

Corollary 2 For any uτ ∈ L2 (Ω) the function uε ∈ C([τ,+∞), L2 (Ω)) is a strong

solution to problem (11) if and only if it is a weak solution.

It is well known [27, Chapter 7] that operator −A = ∆u : D(A) = H2 (Ω) ∩
H1

0 (Ω)→ L2 (Ω) is the generator of a strongly continuous semigroup of bounded
linear operators S (t) : L2 (Ω)→ L2 (Ω), t ≥ 0, which will be denoted in the sequel

by S (t) = e−At. Moreover, it is a semigroup of contractions, that is,
∥∥∥e−At∥∥∥ ≤ 1.

For every x ∈ D(A) the function u (t) = e−Atx is the unique classical solution (see
the definition below) to the problem{

du

dt
+Au(t) = 0, t > 0,

u (0) = x.
(15)

Also, the semigroup e−At is positive for all t ≥ 0 [13, Chapter 12].
Let us defined the concept of mild solution for the inhomogeneous problem (4).
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Definition 3 Let uτ ∈ L2 (Ω) and g ∈ L1
loc(τ,+∞;L2 (Ω)). Then the function

u ∈ C([τ,+∞), L2 (Ω)) is called a mild solution to problem (4) if

u (t) = e−A(t−τ)uτ +

∫ t

τ

e−A(t−s)g(s)ds, τ ≤ t <∞. (16)

It is called a classical solution if u (·) is continuously differentiable on (τ,+∞),
u(t) ∈ D(A) for any t ∈ (τ,+∞), u (τ) = x and the equality in (4) is satisfied for
every t ∈ (τ,∞).

For every uτ ∈ L2 (Ω) and g ∈ L1
loc(τ,+∞;L2 (Ω)) there exists a unique mild

solution to problem (4). Moreover, if uτ ∈ D (A) and g is continuously differentiable
on [τ,+∞), then the mild solution is the unique classical solution [27, p.107].

We can also define mild solutions for problems (11) and (2).

Definition 4 Let uτ ∈ L2 (Ω). Then the function uε ∈ C([τ,+∞), L2 (Ω)) is called
a mild solution to problem (11) if

uε (t) = e−A(t−τ)uτ +

∫ t

τ

e−A(t−s)(b(t)fε(uε (t)) + ω(t)uε (t))ds, τ ≤ t <∞.

We note that for any uε ∈ C([τ,∞), L2 (Ω)) the map fε(uε (t, ·)) belongs to
L∞loc

(
0,+∞;L2 (Ω)

)
⊂ L2

loc

(
0,+∞;L2 (Ω)

)
.

Definition 5 Let uτ ∈ L2 (Ω). Then the function u ∈ C([τ,+∞), L2 (Ω)) is called
a mild solution to problem (2) if there exists h such that h ∈ L2

loc

(
0,+∞;L2 (Ω)

)
,

for any T > τ, h (t, x) ∈ H0 (u (t, x)) , for a.a. (t, x), and

u (t) = e−A(t−τ)uτ +

∫ t

τ

e−A(t−s)(b(t)h(t) + ω(t)u (t))ds, τ ≤ t <∞.

Lemma 4 For any uτ ∈ L2 (Ω) and g ∈ L2
loc

(
0,+∞;L2 (Ω)

)
the function u ∈

C([τ,+∞), L2 (Ω)) is a strong solution to problem (4) if and only if it is a mild solu-

tion.

Proof The proof follows the same lines of [39, Lemma 2], but we provide it in detail
for the sake of completeness.

Let u (·) be a strong solution. We take sequences unτ ∈ D (A), gn (·) ∈ C1
(
[τ,+∞), L2 (Ω)

)
such that

unτ → uτ in L2 (Ω) ,

gn → g in L2
(
τ, T ;L2 (Ω)

)
∀T > τ.

Denote by un (·) the unique classical solution to the problem{
dun

dt
= Aun(t) + gn (t) , t > τ,

un (τ) = unτ .

Let T > τ and 0 < ε < T − τ be arbitrary. We note that wn is the unique strong
solution to problem (4) with g̃ (t) = gn (t)− g (t) and w (τ) = unτ −uτ , so by (7) we
have

2

(
d

dt
(un − u) , un − u

)
=

d

dt

∥∥un (t)− u (t)
∥∥2 for a.a. t ∈ (τ + ε, T ) .
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Hence, the difference wn = un − u satisfies

1

2

d

dt

∥∥wn∥∥2 +
∥∥wn (t)

∥∥2
H1

0
≤ 1

2

∥∥gn (t)− g (t)
∥∥2 +

1

2

∥∥wn (t)
∥∥2 for a.a. t ∈ (τ + ε, T ) .

By means of the Gronwall lemma we obtain easily that

un → u in C
(

[τ + ε, T ], L2 (Ω)
)
.

Since un is a mild solution, we get

un (t) = e−A(t−τ−ε)un (τ + ε) +

∫ t

τ+ε

e−A(t−s)gn (s) ds for any τ + ε ≤ t ≤ T.

By continuity of the maps e−At : L2 (Ω) → L2 (Ω) and Lebesgue’s theorem, we
have

e−A(t−τ−ε)un (τ + ε)→ e−A(t−τ−ε)u (τ + ε) ,∫ t

τ+ε

e−A(t−s)gn (s) ds→
∫ t

τ+ε

e−A(t−s)g (s) ds, as n→∞,

which implies

u (t) = e−A(t−τ−ε)u (τ + ε) +

∫ t

τ+ε

e−A(t−s)g (s) ds for any τ + ε ≤ t ≤ T.

Finally, passing to the limit as ε→ 0 and taking into account that e−A(t−τ−ε)u (τ + ε)→
e−A(t−τ)u (τ), we obtain that u is a mild solution.

By uniqueness of the mild solution of (4) the converse statement follows im-
mediately.

Corollary 3 For any uτ ∈ L2 (Ω) the function uε ∈ C([τ,+∞), L2 (Ω)) is a strong

solution to problem (11) if and only if it is a mild solution.

Proof Let uε be a strong (mild) solution to problem (11). We define the func-
tion g (t) = b(t)fε(uε (t)) + ω(t)uε (t), which belongs to L∞loc

(
τ,+∞;L2 (Ω)

)
⊂

L2
loc

(
τ,+∞;L2 (Ω)

)
. Since uε is also the unique strong (mild) solution to problem

(4), Lemma 4 implies that it is a mild (strong) solution to problem (11).

Corollary 4 For any uτ ∈ L2 (Ω) the function u ∈ C([τ,+∞), L2 (Ω)) is a strong

solution to problem (2) if and only if it is a mild solution.

Proof Let u be a strong solution to problem (2). As u is the unique strong solution
to problem (4) with g (t) = r(t), Lemma 4 implies that it is a mild solution to
problem (2) with h (t) = (r (t)− ω (t)u (t))/b(t).

Conversely, let u be a mild solution to problem (2). As u is the unique mild
solution to problem (4) with g (t) = b(t)h (t) + ω (t)u (t), Lemma 4 implies that it
is a strong solution to problem (2) with r (t) = g (t).
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Now we are ready to prove the comparison principle.

Theorem 2 The strong solutions of problem (2) satisfy the strong comparison princi-

ple.

Proof We define the set

V = {u ∈ C([τ, τ + t0], L2(Ω)) : u(τ) = uτ , ‖u(t)− uτ‖ ≤ 1, ∀t ∈ [τ, τ + t0]},

where t0 > 0 satisfies∥∥∥e−A(t−τ)uτ − uτ
∥∥∥ ≤ 1

2
,

t0 (b1 + ω1 ‖uτ‖+ ω1) ≤ 1

2
,

t0(b1Cε + ω1) < 1, for all t ∈ [τ, τ + t0], (17)

where Cε is the constant for which
∣∣f ′ε(u)

∣∣ , ∣∣∣f ′ε(u)
∣∣∣ ≤ Cε. The map F : V →

C([τ, τ + t0], L2(Ω)) is defined by

F(u)(t) = e−A(t−τ)uτ +

∫ t

τ

e−A(t−s) (b (s) fε(u(s)) + ω(s)u(s)) ds. (18)

For any u ∈ V and t ∈ [τ, τ + t0] we have

‖F(u)(t)− uτ‖ ≤
∥∥∥e−A(t−τ)uτ − uτ

∥∥∥+

∫ t

τ

(b (s) ‖fε(u(s))‖+ ω(s) ‖u(s)‖)ds

≤ 1

2
+ t0 (b1 + ω1 ‖uτ‖+ ω1) ≤ 1.

Also, F(u)(τ) = uτ . Thus, F (u) ∈ V and then F : V → V .
We check further that F is a contraction mapping. Indeed,

‖F(u)(t)−F(v)(t)‖ ≤
∫ t

τ

(b (s) ‖fε(u(s))− fε(v(s))‖+ ω(s) ‖u(s)− v(s)‖)ds

≤
∫ t

τ

(b (s)Cε ‖u(s)− v(s)‖+ ω(s) ‖u(s)− v(s)‖)ds

≤ t0(b1Cε + ω1) ‖u− v‖C([τ,τ+t0],L2(Ω))

= β0 ‖u− v‖C([τ,τ+t0],L2(Ω)) , ∀t ∈ [τ, τ + t0],

where 0 < β0 < 1.
Therefore, the contraction fixed point theorem implies that F possesses a

unique fixed point u∗ ∈ V , which is a mild solution and coincides with the unique
strong solution uε to problem (11), as by Lemma 4 u∗ is also a strong solution.

In view of Definition 1 for any strong solution v (·) of (2) there exists a function
h satisfying h ∈ L∞

(
τ, T ;L2(Ω)

)
, for any T > τ , h(s, x) ∈ H0(v(s, x)) for a.a. (s, x),

and such that v (·) is the unique strong solution to the following problem
∂v

∂t
−∆v = b(t)h(t) + ω(t)v, on Ω × (τ,∞),

v|∂Ω = 0,
v(τ, x) = vτ (x).

(19)
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In view of Corollary 4, v is a mild solution to (2) as well, so it satisfies the variation
of constants formula:

v (t) = e−A(t−τ)vτ +

∫ t

τ

e−A(t−s)(b(t)h(t) + ω(t)v (t))ds. (20)

We define the set

V1 = {v ∈ C([τ, τ + t0], L2(Ω)) : v(τ) = vτ , ‖v(t)− vτ‖ ≤ 1, ∀t ∈ [τ, τ + t0]},

where t0 > 0 satisfies (17) and also∥∥∥e−A(t−τ)vτ − vτ
∥∥∥ ≤ 1

2
,

t0 (b1 + ω1 ‖vτ‖+ ω1) ≤ 1

2
, for all t ∈ [τ, τ + t0].

Arguing as before, v (·) is the unique fixed point of the map F1 : V1 → V1 given by

F1(u)(t) = e−A(t−τ)vτ +

∫ t

τ

e−A(t−s) (b (s)h(s) + ω(s)u(s)) ds. (21)

Assume that uτ ≥ vτ . Let us define the set

V̂ = {u ∈ V : u(t) ≥ v (t) , ∀t ∈ [τ, τ + t0]}.

This set is non-empty since u(t) = v(t) + uτ − vτ belongs to it.
For any u ∈ V̂ using (13) and e−At ≥ 0 we have

F(u)(t)− v (t) = e−A(t−τ)(uτ − vτ )

+

∫ t

τ

e−A(t−s) (b(s)(fε(u(s))− h(s)) + ω(s)(u(s)− v(s))) ds

≥ 0, for any t ∈ [τ, τ + t0].

Therefore, F(V̂ ) ⊂ V̂ . Since F is a contraction in V , so does it in V̂ . We deduce
that F possesses a unique fixed point u∗ ∈ V̂ , which is equal to the solution uε to
problem (11). It follows that

uε(t) ≥ v (t) for any t ∈ [τ, τ + t0].

Using a standard continuation argument it is proved that

uε(t) ≥ v (t) for any t ≥ τ. (22)

The last property is true for every strong solution v (·) to problem (2) such that
uτ ≥ v(τ) = vτ .

Further, we will pass to the limit as ε→ 0.
Mutiplying the equation in (11) by uε we obtain easily that

1

2

d

dt
‖uε‖2 + ‖∇uε‖2 ≤ C1 + C2 ‖uε‖2 ,

for some constants C1, C2 > 0. By Gronwall’s lemma for any T > τ there exists
D1 = D1 (T, ‖uετ‖) such that

‖uε (t)‖2 ≤ D1 for all t ∈ [τ, T ]. (23)
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Hence, there exists D2 = D2 (T, ‖uετ‖) such that∫ t

τ

‖∇uε (s)‖2 ds ≤ D2 for all t ∈ [τ, T ]. (24)

Let 0 < δ < T − τ be arbitrary. Since uε ∈ L2 (τ + δ, T ;D (A)) and
duε
dt
∈

L2
(
τ + δ, T ;L2 (Ω)

)
, by Corollary 1 we obtain that uε ∈ C([τ + δ, T ], H1

0 (Ω)) and

d

dt
‖∇uε‖2 = 2

(
Auε,

duε
dt

)
for a.a. t ∈ (τ + δ, T ) . (25)

Multiplying now the equation in (11) by
duε
dt

we have∥∥∥∥duεdt
∥∥∥∥2 +

1

2

d

dt
‖∇uε‖2 ≤ C3 +

1

2

∥∥∥∥duεdt
∥∥∥∥2 + C4 ‖uε‖2 .

Using (23) and integrating over (s, t) with t > s > τ we deduce the existence of
D3 = D3 (T, ‖uετ‖) such that

‖∇uε (t)‖2 ≤ ‖∇uε (s)‖2 +D3.

Integrating with respect to the variable s over (τ, t) and using (24) we obtain

‖∇uε (t)‖2 ≤ D2

t− τ +D3, for any τ < t ≤ T . (26)

For any 0 < δ < T − τ we then have∫ T

τ+δ

∥∥∥∥duεdt
∥∥∥∥2 dt ≤ ‖∇uε (τ + δ)‖2 +D3

≤ D2

δ
+ 2D3. (27)

Thanks to these estimates, there is a subsequence uεn and a function u such
that

uεn → u weakly in L2
(
τ, T ;L2 (Ω)

)
and weakly star in L∞

(
τ, T ;L2 (Ω)

)
,

duεn
dt
→ du

dt
weakly in L2

(
τ + δ, T ;L2 (Ω)

)
for any 0 < δ < T − τ.

Hence, for any N > 0 such that 1
N < T −τ we deduce that the maps uεn : [ 1

N , T ]→
L2 (Ω) are equicontinuous, so (26), the compact embedding H1

0 (Ω) ⊂ L2 (Ω) and
Ascoli-Arzelà theorem imply that

uεn → u in C

([
1

N
,T

]
, L2 (Ω)

)
.

By a diagonal argument this is true for any interval
[

1
N , T

]
.

We can also see that the functions fεn(uεn(t)), gεn (t) = b(t)fεn(uεn(t)) +
ω(t)uεn (t) are bounded in L∞(τ, T ;L2 (Ω)) and then up to a subsequence

fεn(uεn)→ h,

gεn → g, weakly star in L∞
(
τ, T ;L2 (Ω)

)
,
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where h ∈ L∞(τ, T ;L2 (Ω)) and g (t) = b (t)h (t)+ω (t)u (t). Therefore, the function
u satisfies the equality

du

dt
+Au(t) = b(t)h (t) + ω(t)u (t) , a.e. on (τ, T ) .

Let us prove that h (t, x) ∈ H0 (u (t, x)) for a.a. (t, x) ∈ (τ, T ) × Ω. Let A0 =
{(t, x) : u (t, x) = 0}. It is obvious that

fεn (uεn (t, x)) ∈ [−1, 1] = H0 (u (t, x)) for (t, x) ∈ A0.

If (t, x) ∈ A− = {(t, x) : u (t, x) < 0}, then

dist (fεn (uεn (t, x)) , H0 (u (t, x))) = |fεn (uεn (t, x)) + 1| → 0, as n→∞,

as for any t ∈ (τ, T ] it is true that uεn (t, x) → u (t, x) , for a.a. x, and by the
definition of fε we can see that fεn (uεn (t, x)) = −1 for all n ≥ n0 (t, x). In the
same way, if (t, x) ∈ A+ = {(t, x) : u (t, x) > 0}, then

dist (fεn (uεn (t, x)) , H0 (u (t, x))) = |fεn (uεn (t, x))− 1| → 0, as n→∞.

Hence, for any t ∈ (τ, T ] we have

dist (fεn (uεn (t, x)) , H0 (u (t, x)))→ 0 for a.a. x. (28)

Denote hn (·) = fεn (uεn (·)) : [τ, T ] → L2 (Ω). By Proposition 1.1 in [35] we
have

h (t) ∈ ∩n≥0co ∪k≥n hk (t) for a.a. t.

Hence, if we fix t, there exists a sequence gn (t) =
∑M
i=1 λihki (t), where

∑M
i=1 λi =

1 and ki ≥ n, such that gn (t)→ h (t) strongly in L2 (Ω). In view of (28),

dist (gn (t, x) , H0 (u (t, x)))

≤
M∑
i=1

dist (hki (t, x) , H0 (u (t, x)))→ 0 for a.a. x.

But passing to a subsequence gn (t, x)→ h (t, x) for a.a. x. Thus, h (t, x) ∈ H0 (u (t, x)) .
Then equality (3) holds and the second condition in Definition 1 is clearly

satisfied. In order to prove that u (·) is a strong solution to (2) it remains to check
that u ∈ C([τ,+∞), L2(Ω)) and u (τ) = uτ .

Let z be the unique strong solution of problem
∂z

∂t
−∆z = ω(t)z, on Ω × (τ,∞),

z|∂Ω = 0,
z(x, τ) = uτ (x).

We put wn (t) = uεn (t)− z (t). It is easy to obtain that

d

dt
‖wn‖2 ≤ ω (t) ‖wn (t)‖2 + b (t) ‖hn (t)‖ ‖uεn (t)‖

≤ R1 +R2 ‖wn (t)‖2 +R3 ‖uεn (t)‖2

≤ R4.
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Since wn (τ) = 0, we get
‖wn (t)‖2 ≤ R4t,

so for any t > τ,

‖u (t)− z (t)‖ = lim
n→∞

‖wn (t)‖2 ≤ R4t.

Therefore,
‖u (t)− uτ‖ ≤ R4t+ ‖z (t)− uτ‖ → 0 as t→ 0+.

Finally, uεn (t)→ u (t) , for any t > 0, and (22) imply that

u (t) ≥ v (t) for any t ≥ τ.

In conclusion, we have established that u (t) ≥ v (t) for all t ≥ τ , where v (·) is
any strong solution v (·) to problem (29) such that v(τ) = vτ ≤ uτ .

For the second part, we define the map F2 : V → C([τ, τ + t0], L2(Ω)) by

F2(u)(t) = e−A(t−τ)uτ +

∫ t

τ

e−A(t−s) (b (s) fε(u(s)) + ω(s)u(s)
)
ds,

which satisfies F1 (V ) ⊂ V and is contractive. Then the unique strong solution uε
to problem (12) is the unique fixed point of F2 in V.

Any strong solution v (·) of (2) with initial condition vτ is the unique fixed
point of the map F1 : V1 → V1.

Let uτ ≤ vτ and define the set V̂1 = {u ∈ V : u(t) ≤ v (t)}. This set is non-empty
because u(t) = v(t) + uτ − vτ belongs to it.

For any u ∈ V̂1, (13) and e−At ≥ 0 imply

F(u)(t)− v (t) = e−A(t−τ)(uτ − vτ )

+

∫ t

τ

e−A(t−s) (b(s)(fε(u(s))− h(s)) + ω(s)(u(s)− v(s))
)
ds

≤ 0, for any t ∈ [τ, τ + t0].

It follows that F2(V̂1) ⊂ V̂1 and F2 is a contraction in V̂1. Thus, F2 possesses a
unique fixed point u∗ ∈ V̂1, which is equal to the solution uε to problem (12). It
follows that

uε(t) ≤ v (t) for any t ≥ τ.

The last property is true for every strong solution v (·) to problem (2) such that
uτ ≤ v(τ) = vτ .

Passing to the limit as ε→ 0 we obtain the existence of a strong solution u to
problem (2) such that u(t) ≤ v (t) for all t ≥ τ , where v (·) is any strong solution
to problem (2) such that uτ ≤ v(τ) = vτ .

It follows that the solutions to problem (2) satisfy the strong comparison prin-
ciple.

Corollary 5 If uτ ≥ 0, there exists at least one strong solution u (·) to problem (2)

such that u (t) ≥ 0 for all t ≥ τ.

Proof It follows from the strong comparison principle and the fact that v (t) ≡ 0
is a strong solution for vτ = 0.
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We now study a comparison principle between the solutions in the nonautono-
mus and autonomous cases.

Let us consider the problem
∂u

∂t
−∆u ∈ bH0(u) + ωu, on Ω × (τ,∞),

u|∂Ω = 0,
u(τ, x) = uτ (x),

(29)

where 0 < b, 0 ≤ ω. Let us denote a strong solution to problem (29) by ub,ω (·)
(and we do not take into account in this notation the initial time τ as the solution
is the same whatever the value of τ).

Theorem 3 For any initial datum uτ ≥ 0 there exists a non-negative solution ub1,ω1
(·)

to problem (29) with u (τ) = uτ , b = b1, ω = ω1 such that

v (t) ≤ ub1,ω1
(t) , ∀t ≥ τ, (30)

where v (·) is an arbitrary strong non-negative solution to (2) with u (τ) = uτ .

On the other hand, there exist a non-negative solution u (·) to (2) with u (τ) = uτ
such that

u (t) ≥ ub0,ω0
(t) , ∀t ≥ τ, (31)

where ub0,ω0
(·) is an arbitrary strong non-negative solution to (29) with u (τ) =

uτ , b = b0, ω = ω0.

Proof Let F : V → C([τ, τ + t0], L2(Ω)) be defined by

F(u)(t) = e−A(t−τ)uτ +

∫ t

τ

e−A(t−s) (b1fε(u(s)) + ω1u(s)) ds, (32)

where

V = {u ∈ C([τ, τ+t0], L2(Ω)) : u(τ) = uτ , u (t) ≥ 0, ‖u(t)− uτ‖ ≤ 1, ∀t ∈ [τ, τ+t0]},

and t0 > 0 satisfies (17). Let z0 ∈ L2 (Ω) be such that z0 (x) = 1 for a.a. x.
Since fε(u(s)) = z0, for any u ∈ V , and e−At ≥ 0, we have that F(u)(t) ≥ 0. Then,
arguing in the same way as in Theorem 2 we obtain that F : V → V is a contracting
map, so F possesses a unique fixed point u ∈ V , which is a mild solution and,
by Lemma 4, coincides with the unique strong solution uε to problem (11) with
b (t) = b1, ω (t) = ω1.

Let v (·) be a non-negative strong solution of (2) such that v (τ) = uτ . Then
there exists h such that h ∈ L∞

(
τ, T ;L2(Ω)

)
, for any T > τ , h(s, x) ∈ H0(v(s, x))

for a.a. (s, x), and v (·) is the unique strong solution to problem (19). Moreover, v (·)
satisfies (20) and it is the unique fixed point of the contractive map F1 : V1 → V1
given by

F1(u)(t) = e−A(t−τ)uτ +

∫ t

τ

e−A(t−s) (b (s)h(s) + ω(s)u(s)) ds,

where

V1 = {u ∈ C([τ, τ + t0], L2(Ω)) : u(τ) = uτ , ‖u(t)− uτ‖ ≤ 1, ∀t ∈ [τ, τ + t0]}.
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Let us define the set V̂ = {u ∈ V : u(t) ≥ v (t)}, which is obviously non-empty
as v ∈ V̂ .

For any u ∈ V̂ , since fε(u(·, s)) = z0 and u (s) ≥ v (s) ≥ 0, we have

b1fε(u(s))− b (s)h(s) = b1z0 − b (s)h(s) ≥ (b1 − b (s)) z0 ≥ 0,

ω1u(s)− ω (s) v(s) ≥ 0.

Then, by e−At ≥ 0, we obtain

F(u)(t)− v (t) =

∫ t

τ

e−A(t−s) (b1fε(u(s))− b (s)h(s) + ω1u(s)− ω (s) v(s)) ds

≥ 0, for any t ∈ [τ, τ + t0].

Therefore, F(V̂ ) ⊂ V̂ . Since F is a contraction in V , it is a contraction in V̂ as
well. We deduce that F possesses a unique fixed point u ∈ V̂ , which is equal to the
solution uε to problem (11) with b (t) = b1, ω (t) = ω1. As before, by a standard
continuation argument, it follows that

uε(t) ≥ v (t) for any t ≥ τ.

Passing to the limit in exactly the same way as in Theorem 2 we obtain the
existence of a solution ub1,ω1

(·) to problem (29) such that (30) holds.

Let F2 : V → C([τ, τ + t0], L2(Ω)) be defined by

F2(u)(t) = e−A(t−τ)uτ +

∫ t

τ

e−A(t−s) (b (s) fε(u(s)) + ω (s)u(s)) ds. (33)

Let z0 ∈ L2 (Ω) be such that z0 (x) = 1 for a.a. x. Since fε(u(s)) = z0, for any
u ∈ V , and e−At ≥ 0, we have F(u)(t) ≥ 0. Then, arguing in the same way as in
Theorem 2 we obtain that F2 : V → V is a contracting map, so F2 possesses a
unique fixed point u ∈ V , which is a mild solution and, by Lemma 4, coincides
with the unique strong solution uε to problem (11).

Let ub0,ω0
(·) be a non-negative strong solution of (29) such that ub0,ω0

(τ) = uτ ,
b = b0, ω = ω0. Then there exists h such that h ∈ L∞

(
τ, T ;L2(Ω)

)
, for any T > τ ,

h(s, x) ∈ H0(ub0,ω0
(s, x)) for a.a. (s, x), and ub0,ω0

(·) is the unique strong solution
to problem (19) with b (t) = b0, ω (t) = ω0. Moreover, ub0,ω0

(·) satisfies (20) and
it is the unique fixed point of the contractive map F3 : V1 → V1 given by

F3(u)(t) = e−A(t−τ)uτ +

∫ t

τ

e−A(t−s) (b0h(s) + ω0u(s)) ds.

We define the set V̂1 = {u ∈ V : u(t) ≥ ub0,ω0
(t)}, which is non-empty as

ub0,ω0
∈ V̂ .

As before, for any u ∈ V̂1 we have

b (s) fε(u(s))− b0h(s) = b (s) z0 − b0h(s) ≥ (b (s)− b0) z0 ≥ 0,

ω (s)u(s)− ω0ub0,ω0
(s) ≥ 0,
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and

F2(u)(t)− ub0,ω0
(t) =

∫ t

τ

e−A(t−s) (b (s) fε(u(s))− b0h(s) + ω (s)u(s)− ω0ub0,ω0
(s)
)
ds

≥ 0, for any t ∈ [τ, τ + t0].

Thus, F2(V̂ ) ⊂ V̂ . Since F2 is a contraction in V , it is a contraction in V̂ as well,
so F2 possesses a unique fixed point u∗ ∈ V̂ , which is equal to the solution uε to
problem (11). As before, by a standard continuation argument, it follows that

uε(t) ≥ ub0,ω0
(t) for any t ≥ τ.

Again, passing to the limit we obtain the existence of a solution u (·) to problem
(29) such that (31) holds.

3 Characterization of the global attractor in the autonomous case

In this section we will study the autonomous differential inclusion (2) in the scalar
case and will deduce from the strong comparison principle some properties con-
cerning the structure of the global attractor.

Hence, we consider the autonomous problem
∂u

∂t
− ∂2u

∂x2
∈ bH0(u) + ωu, on (0, 1)× (τ,∞),

u|∂Ω = 0,
u(0, x) = u0(x),

(34)

where 0 < b, 0 ≤ ω. We assume also throughout this section that

0 ≤ ω < π2,

where π2 is the first eigenvalue of the operator − ∂2

∂x2
in H1

0 (0, 1) . This restriction

is necessary in order to guarantee the existence of a global attractor.
Let D(u0) denote the set of all strong solutions of (34) for u0 ∈ L2(Ω) and

τ = 0. We define the multivalued family of operators G : R+×L2(Ω)→ P (L2(Ω)),
where P (X) stands for the set of all non-empty subsets of the space X, by

G(t, u0) = {u(t) : u(·) ∈ D(u0)}.

It is well-known [36] that G is a strict multivalued semiflow, i.e., G(t + s, u0) =
G(t, G(s, u0)), for all t, s ≥ 0, u0 ∈ L2(Ω), possessing a global compact invariant
attractor A. This means that:

– A = G(t,A) for all t ≥ 0 (strict invariance);
– dist(G(t, B),A)→ 0 as t→ +∞ for any bounded set B (attracting property).

Moreover, the attractor A is connected [37] and bounded in H1
0 (Ω) [36]. Also,

G has compact values and the operator u0 7→ G(t, u0) is upper semicontinuous for
any t ≥ 0 (see [36] again).

We recall the concept of order-preserving multivalued semiflow, which was
introduced in [11].
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Definition 6 The multivalued semiflow G is called order-preserving if for any u0 ≤
v0 and t ≥ 0 we have:

1. There exists y∈ G(t, u0) such that

y ≤ y for all y ∈ G(t, v0).

2. There exists y ∈ G(t, v0) such that

y ≤ y for all y ∈ G(t, u0).

Theorem 2 implies that the semiflow G generated by the solutions of (2) is
order-preserving.

We recall that x is called a fixed point (or equilibrium) of the multivalued
semiflow G if x ∈ G(t, x) for all t ≥ 0.

The set of strong solutions R = ∪u0∈L2(Ω)D(u0) satisfies the following proper-
ties [18]:

(H1) For any x ∈ L2(Ω) there exists ϕ ∈ R such that ϕ (0) = x.

(H2) ϕτ (·) = ϕ (·+ τ) ∈ R for any τ ≥ 0, ϕ (·) ∈ R (translation property).
(H3) Let ϕ1, ϕ2 ∈ R be such that ϕ2(0) = ϕ1(s), where s > 0. Then the function

ϕ (·) , defined by

ϕ(t) =

{
ϕ1 (t) if 0 ≤ t ≤ s,
ϕ2 (t− s) if s ≤ t,

belongs to R (concatenation property).
(H4) For any sequence ϕn (·) ∈ R such that ϕn (0) → ϕ0 in L2(Ω), there exists a

subsequence ϕnk and ϕ ∈ R such that

ϕnk (t)→ ϕ (t) , ∀t ≥ 0.

The element x is called a fixed point (or equilibrium) of R if ϕ (t) ≡ x ∈ R.
Since (H1)− (H4) hold, it is well-known that x is a fixed point of G if and only if
it is a fixed point of R [23, Lemma 7].

Applying Theorem 2 in [11] we obtain the following result.

Theorem 4 There exist two equilibria x∗, y
∗ ∈ A such that:

1. x∗ ≤ z ≤ y∗ for all z ∈ A.
2. If the solutions corresponding to the initial conditions x∗, y

∗ are unique, then

dist(G(t, u0), x∗)→ 0, as t→ +∞, for any u0 ≤ x∗, (35)

dist(G(t, u0), y∗)→ 0, as t→ +∞, for any u0 ≥ y∗. (36)

We observe that in [11] the following additional assumption concerning the
order relation ’≤’ was assumed: for any bounded set B there exists a, d such that

a ≤ y ≤ d for all y ∈ B,

which means that B is contained in an interval [a, d]. Though this assumption is
not true in the space L2(Ω), in the proof of Theorem 2 in [11] it is only necessary
to use this property for the global attractor A, and not for an arbitrary bounded
set B. Since A is bounded in H1

0 (Ω), which is continuously embedded in C([0, 1]),
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the global attactor is in fact contained in an interval [a, d], so Theorem 2 in [11] is
applicable.

The fixed points of G were described explicitly in [4]. There exists an infinite but
countable number of fixed points, denoted by v0 = 0, v+1 (x), v−1 (x), ..., v+n (x), v−n (x), ...,
where v±j (x) possess exactly j + 1 zeroes in [0, 1] and v+j (x) = −v−j (x). The exact

expression for the point v+1 is given by

v+1 (x) =
b0
ω0

cos (
√
ω0x) +

b0 (1− cos (
√
ω0))

ω0 sin (
√
ω0)

sin (
√
ω0x)− b0

ω0
,

which is the unique solution of the boundary-value problem

u′′ + ω0u = −b0, u (0) = u (1) = 0.

From the analysis in [4] we infer that

v−1 (x) ≤ v±j (x) ≤ v+1 (x) for all j ≥ 1,

and then x∗ = v−1 , y∗ = v+1 so Theorem 4 implies that

v−1 ≤ z ≤ v
+
1 for all z ∈ A.

Also, since the points v±1 are stable [4, Theorem 6.3], the solutions corresponding
to the initial conditions v±1 are unique. Hence, the convergences (35), (36) hold
true.

Finally, we remark that in [4, Theorem 6.3] the structure of the global attractor
was studied.

We recall that a map φ : R→ L2(Ω) is a complete trajectory if

φ(·+ h)|[0,∞) ∈ R, for all h ∈ R.

The global attractor A consists of all bounded complete trajectories and it consists
if fact of the fixed points and all complete bounded trajectories ψ (·) connecting
two fixed points, that is,

ψ(t)→ z1 as t→ +∞, (37)

ψ(t)→ z2 as t→ −∞,

where zj are fixed points. Partial results related to how the fixed points are con-
nected were given in [4, Theorem 6.3]: if v  z means that there is a connection
from v to z, then:

1. v0  v±j , ∀j ≥ 1;

2. v+j  v±j−1, v−j  v±j−1, ∀j ≥ 2;

3. v+j  v±1 , v
−
j  e±1 , ∀j ≥ 2;

4. If v±k  v±j (k, j 6= 0), then

v±kn  v±jn, ∀n ≥ 1;

5. If 1 ≤ k ≤ j, then v±k  v±j , v±k  v0 are forbidden.

Now we have completed this description by showing that all these bounded
complete trajectories lie inside the interval [v−1 , v

+
1 ].
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4 Characterization of the pullback attractor in the nonautonomous case

In this section we will treat the nonautonomous differential inclusion (2) in the
scalar case, that is, we consider the nonautonomous problem

∂u

∂t
− ∂2u

∂x2
∈ b(t)H0(u) + ω(t)u, on (0, 1)× (τ,∞),

u|∂Ω = 0,
u(τ, x) = u0(x),

(38)

where b (t) , ω (t) , H0(u) are as in Section 2. Additionally, we assume in the sequel
that

ω1 < π2.

We start by defining a multivalued process associated with the strong solutions
of problem (38) and showing that it possesses a pullback attractor. After that we
will give a characterization of this attractor in a similar manner as in Theorem 4
for the autonomous case. In particular, we will show the existence of a bounded
complete non-degenerate trajectory at −∞ which is unique in the class of non-
degenerate bounded complete trajectories in the whole line.

Let Dτ (uτ ) be the set of all strong solutions of (38) with initial condition uτ at
time τ and let Rτ = ∪x∈L2(Ω)Dτ (x). In the same way as in the autonomous case,
one can prove that the sets Rτ satisfy the following properties:

(K1) For any τ ∈ R and x ∈ L2(Ω) there exists ϕ ∈ Rτ such that ϕ (τ) = x.

(K2) ϕs = ϕ |[τ+s,∞)∈ Rτ+s for any s ≥ 0, ϕ ∈ Rτ (translation property).
(K3) Let ϕ,ψ ∈ R be such that ϕ ∈ Rτ , ψ ∈ Rr and ϕ(s) = ψ(s) for some s ≥ r ≥ τ .

Then the function θ defined by

θ(t) :=

{
ϕ(t), t ∈ [τ, s],
ψ(t), t ∈ [s,∞),

belongs to Rτ (concatenation property).
(K4) For any sequence ϕn ∈ Rτ such that ϕn (τ) → ϕ0 in L2(Ω), there exists a

subsequence ϕnk and ϕ ∈ Rτ such that

ϕnk (t)→ ϕ (t) , ∀t ≥ τ.

We define the multivalued family of operators U : R2
≥ × L

2(Ω) → P (L2(Ω)),

where R2
≥ = {(t, s) ∈ R2 : t ≥ s}, by

U(t, s, x) = {u(t) : u(·) ∈ Ds(x)}.

It easily follows from (K1) − (K3) that U is a strict multivalued process, that is,
U (t, t, ·) = Id is the identity map and U (t, s, x) = U (t, τ, U (τ, s, x)) for all s ≤ τ ≤ t,
x ∈ L2(Ω). Moreover, (K4) implies that the graph of the map x 7→ U(t, s, x) is
closed for all (t, x) ∈ Rd .

We recall that the familiy of sets {K(t)}t∈R is called pullback attracting for U
if it attracts every bounded set B in the pullback sense, that is,

dist(U(t, s, B),K(t))→ 0, as s→ −∞. (39)

Lemma 5 The process U has a pullback attracting family of compact sets {K(t)}t∈R.
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Proof For any strong solution multiplying equality (3) by u we have

1

2

d

dt
‖u‖2 +

∥∥∥∥∂u∂x (t)

∥∥∥∥2 =

∫ 1

0

r (t, x)u(t, x)dx

≤ b (t)

∫ 1

0

|u (t, x)| dx+ ω (t) ‖u (t)‖2

≤ b1 ‖u (t)‖+ ω1 ‖u (t)‖2

≤ b21
4ε0

+ (ε0 + ω1) ‖u (t)‖2 ,

where ε0 is chosen such that ε0 + ω1 < π2. Then, as π2 is the first eigenvalue of

the operator −∂
2u

∂x2
in H1

0 (Ω), we obtain

d

dt
‖u‖2 + δ ‖u (t)‖2 ≤ d

dt
‖u‖2 +

δ

π2

∥∥∥∥∂u∂x (t)

∥∥∥∥2 ≤ b21
2ε0

= C1,

where δ = 2(π2 − ω1 − ε0) > 0. By Gronwall’s lemma we get

‖u (t)‖2 ≤ e−δ(t−s) ‖u (s)‖2 +
C1

δ
for all t ≥ s. (40)

Also, integrating over (t− α, t), where 0 < α ≤ 1, we have∫ t

t−α

∥∥∥∥∂u∂x
∥∥∥∥2 dr ≤ π2C1

δ
+
π2

δ
‖u(t− α)‖2 . (41)

Further, we multiply (3) by
du

dt
and use Corollary 1 to obtain that∥∥∥∥dudt

∥∥∥∥2 +
1

2

d

dt

∥∥∥∥∂u∂x
∥∥∥∥2 ≤ b (t)

∫ 1

0

∣∣∣∣∂u∂x (t, x)

∣∣∣∣ dx+ ω (t)

∫ 1

0

u (t, x)
∂u

∂x
(t, x)dx (42)

≤ b1
∥∥∥∥∂u∂x (t)

∥∥∥∥+ ω1 ‖u (t)‖
∥∥∥∥∂u∂x (t)

∥∥∥∥
≤ b21

2
+
ω2
1

2
‖u (t)‖2 +

∥∥∥∥∂u∂x (t)

∥∥∥∥2 .
For s ≤ t− α ≤ r ≤ t we integrate over the interval (r, t). Hence, by (40) and (41)
we have∥∥∥∥∂u∂x (t)

∥∥∥∥2 ≤ ∥∥∥∥∂u∂x (r)

∥∥∥∥2 + b21 + ω2
1

∫ t

r

‖u (τ)‖2 dτ + 2

∫ t

r

∥∥∥∥∂u∂x (τ)

∥∥∥∥2 dτ
≤
∥∥∥∥∂u∂x (r)

∥∥∥∥2 + b21 + (ω2
1 +

2π2

δ
)e−δ(t−α−s) ‖u (s)‖2 +

C1

δ
(ω2

1 + 2π2 +
2π2

δ
).

Integrating now with respect to the variable r over the interval (t− α, t) and using
again (40) and (41) we get

α

∥∥∥∥∂u∂x (t)

∥∥∥∥2 ≤ π2C1

δ
+
π2

δ
‖u(t− α)‖2

+ b21 + (ω2
1 +

2π2

δ
)(e−δ(t−α−s) ‖u (s)‖2) +

C1

δ
(ω2

1 + 2π2 +
2π2

δ
)

≤ C2 + C3e
−δ(t−α−s) ‖u (s)‖2 , (43)
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where C2, C3 > 0 are some constants.
We define the family K(t) by

K(t) = {y ∈ H1
0 (Ω) : ‖y‖2H1

0
≤ 2C2

α
}.

The compact embedding H1
0 (Ω) ⊂ L2(Ω) implies that K(t) are relatively compact

in L2(Ω). Also, as K(t) is weakly closed in H1
0 (Ω), it is closed in L2(Ω). Thus,

K(t) are compact in L2(Ω). Finally, we obtain readily from (43) that for any
bounded set B and any t ∈ R there exists T (B, t) such that U(t, s, B) ⊂ K(t) for
all s ≤ T (B, t). Thus, (39) follows.

We recall the definition of pullback attractor.

Definition 7 The family of compact sets {A(t)}t∈R is called a pullback attractor
if:

1. It is pullback attracting.
2. A(t) ⊆ U(t, s,A(s)), for all t ≥ s (negative semi-invariance);
3. {A(t)}t∈R is minimal in the sense that if {K(t)}t∈R is a pullback attracting

family of closed sets, then A(t) ⊂ K(t) for all t ∈ R.

The pullback attractor is strictly invariant if A(t) = U(t, s,A(s)), for any t ≥ s.

Theorem 5 The process U possesses a strictly invariant pullback attractor {A(t)}t∈R.

Moreover, ∪t∈RA(t) is bounded in H1
0 (Ω) and ∪t∈RA(t) is compact in L2(Ω).

Proof Since there exists a pullback attracting family of compact sets {K(t)}t∈R
and the map x 7→ U(t, τ, x) has closed graph for all t ≥ τ (by (K4)), there exists
a compact pullback attractor {A(t)}t∈R, which satisfies A(t) ⊂ K(t) for all t ∈ R
(see Theorem 1 in [22]). Moreover, since A(t) ⊂ K(t) and the definition of K(t)
we deduce that ∪t∈RA(t) is bounded in H1

0 (Ω) and ∪t∈RA(t) is compact in L2(Ω).
Using this and the fact that U is a strict process we also obtain that the pullback
attractor is strictly invariant (see Lemma 2.5 in [12] or Proposition 4.3 in [19]).

A map γ : R→ L2(Ω) is called a complete trajectory if

ϕ = γ|[τ,+∞) ∈ Rτ , for all τ ∈ R. (44)

It is obvious that any complete trajectory satisfies

γ (t) ∈ U (t, s, γ (s)) for all s ≤ t. (45)

The complete trajectory γ is said to be bounded if ∪r∈Rγ (r) is a bounded set.
By the pullback attracting property and (45) it is easy to see that if γ (·) is a
bounded complete trajectory, then γ (t) ⊂ A(t) for any t ∈ R, where {A(t)}t∈R is
the pullback attractor.

We have the following characterization of the pullback attractor.

Lemma 6 A (t) = {γ (t) : γ is a bounded complete trajectory}.



24 Tomás Caraballo et al.

Proof Since (K1)− (K4) are satisfied and ∪t∈RA(t) is bounded, the result follows
either from [12, Corollary 2.10] or [12, Corollary 2.12].

We will also prove that the sets A(t) are compact in H1
0 (Ω).

Lemma 7 Let unτ → uτ in L2 (Ω) and let un ∈ Dτ (unτ ). Then there exists a subse-

quence {unk} and u ∈ Dτ (uτ ) such that

unk → u in C([τ + r, T ], H1
0 (Ω)) for all 0 < r < T − τ , T > τ. (46)

Proof We know by (K4) that there exists u ∈ Dτ (uτ ) such that, up to a subse-
quence, un (t)→ u (t) in L2(Ω) for any t ≥ τ . We need to prove that (46) holds for
this solution u.

We fix an interval [τ + r, T ]. Taking in (43) s = τ , t − α = τ , we obtain a
constant D1 = D1(r) such that∥∥un(t)

∥∥
H1

0 (Ω)
≤ D1, ∀t ∈ [τ + r, T ]. (47)

By integrating (42) over (τ + r, T ) and using (40) and (47) we have a constant
D2 = D2(τ, r, T ) satisfying ∫ T

τ+r

∥∥∥∥dundt
∥∥∥∥2 ds ≤ D2. (48)

Hence, Ascoli-Arzelá theorem implies, passing to a subsequence, that

un → u in C([τ + r, T ], L2(Ω)).

Also, from (48) and equality (3) we get a constant D3 = D3(τ, r, T ) such that∫ T

τ+r

∥∥∥∥∂2un∂x2

∥∥∥∥2 ds ≤ D3.

These inequalities and the Compactness Theorem [26, p.58] imply that

un → u weakly star in L∞(τ + r, T ;H1
0 (Ω)),

un → u weakly in L2(τ + r, T ;H2(Ω)),

dun

dt
→ du

dt
weakly in L2(τ + r, T ;L2(Ω)),

un → u strongly in L2(τ + r, T ;H1
0 (Ω)),

un(t)→ u(t) in H1
0 (Ω) for a.a. t ∈ (τ + r, T ) .

In view of (9) we obtain also that un, u ∈ C([τ + r, T ], H1
0 (Ω)).

Now, making use of (42) and (47) we deduce the existence of D4 = D4(r)
satisfying∥∥un(t)

∥∥2
H1

0 (Ω)
≤
∥∥un(s)

∥∥2
H1

0 (Ω)
+D4(t− s), for τ + r ≤ s ≤ t ≤ T,

and the same inequality is true for the limit function u. Hence, the functions
Jn(t) = ‖un(t)‖2H1

0 (Ω) + D4t, J(t) = ‖u(t)‖2H1
0 (Ω) + D4t are continuous and non-

increasing in the interval [τ + r, T ]. Moreover, Jn(t)→ J(t) for a.a. t ∈ (τ + r, T ).
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Let tn ∈ [τ + r, T ] and tn → t0 ∈ (τ + r, T ]. We choose tm ∈ (τ + r, t0) such
that tm → t0 and Jn(tm) → J(tm) for each m. It is important to observe that
when we fix m the elements tn are greater than tm for n big enough. By the above
properties we have

Jn(tn)− J(t0) = Jn(tn)− Jn(tm) + Jn(tm)− J(tm) + J(tm)− J(t0)

≤ Jn(tm)− J(tm) + J(tm)− J(t0) ≤ ε,

if n ≥ N(ε,m(ε)), where ε > 0. We infer that lim sup ‖u(tn)‖2H1
0 (Ω) ≤ ‖u(t0)‖2H1

0 (Ω).

Since u(tn) → u(t0) weakly in H1
0 (Ω), then lim inf ‖u(tn)‖2H1

0 (Ω) ≥ ‖u(t0)‖2H1
0 (Ω),

so lim ‖u(tn)‖2H1
0 (Ω) = ‖u(t0)‖2H1

0 (Ω) and thus

un(tn)→ u (t0) in H1
0 (Ω).

As this argument is valid also in the interval [τ + r
2 , T ], this convergence holds for

tn → τ + r as well.
Using a standard diagonal procedure we obtain that (46) is true.

Corollary 6 The sets A(t) are compact in H1
0 (Ω).

Proof Let yn ∈ A(t), t ∈ R. Since A(t) is compact in L2(Ω), up to a subsequence
yn → y in L2(Ω). The invariance of A(t) implies the existence of solutions un (·) ∈
Rt−1 such that un(t) = yn and un(t−1) ∈ A(t−1). Again, passing to a subsequence
un (t− 1) → u in L2(Ω). Hence, by Lemma 7 we obtain the existence of u (·) ∈
Dt−1(u) such that yn = un (t)→ u (t) in H1

0 (Ω). This proves that the sets A(t) are
relatively compact in H1

0 (Ω). As they are closed in L2(Ω), so they are in H1
0 (Ω).

Thus, A(t) are compact in H1
0 (Ω).

Further we are going to give a deeper characterization of the pullback attrac-
tor by showing that any bounded complete trajectory is contained in an interval
defined by two special bounded complete trajectories.

Let w+
bi,ωi

, i = 0, 1, denote the positive fixed point v+1 of problem (29) for the
parameters b = bi, ω = ωi.

Theorem 6 There exists a bounded complete trajectory ξM such that any complete

bounded trajectory γ satisfies

−ξM (t) ≤ γ(t) ≤ ξM (t) for all t ∈ R. (49)

Moreover,

w+
b0,ω0

≤ ξM (t) ≤ w+
b1,ω1

, (50)

−ξM (t) ≤ y ≤ ξM (t) for all y ∈ A(t), (51)

−ξM (t) ≤ lim inf
s→−∞

u(t) ≤ lim sup
s→−∞

u(t) ≤ ξM (t), (52)

uniformly for u ∈ Ds(uτ ), uτ ∈ B, where B is bounded.



26 Tomás Caraballo et al.

Proof Let D+
τ (uτ ) be the set of all non-negative strong solutions of (2) with initial

condition uτ at time τ (which is non-empty for any uτ ∈ L2(Ω) by Corollary 5)
and let R+

τ = ∪x∈L2(Ω)D+
τ (x), that is, R+

τ is the set of all non-negative strong
solutions of problem (2).

We divide the proof into several steps.
Step 1. Theorem 3 and the fact that the solution of (29) corresponding to the

initial condition w+
b1,ω1

is unique imply that for any u ∈ D+
τ (w+

b1,ω1
),

u (t) ≤ w+
b1,ω1

, for all t ≥ τ , (53)

and the existence of v ∈ D+
τ (w+

b0,ω0
) such that

w+
b0,ω0

≤ v(t), for all t ≥ τ. (54)

Using the comparison principle given in Theorem 2 we can choose a maximal
solution uτmax of the set Dτ (w+

b1,ω1
). As (54) and uτmax(t) ≥ v(t) imply that

uτmax(t) ≥ w+
b0,ω0

, for all t ≥ τ , (55)

and w+
b0,ω0

(x) > 0 for x ∈ (0, 1), uτmax is the unique solution of the linear problem
∂u

∂t
− ∂2u

∂x2
= b(t) + ω(t)u, on Ω × (τ,∞),

u|∂Ω = 0,
u(x, τ) = uτ (x).

(56)

Let s1 < s2 ≤ t and let ui = usimax, i = 1, 2, be the maximal solutions of the
sets Dsi(w+

b1,ω1
). By (53), (55) and the strong comparison principle we get

u1(s2) ≤ w+
b1,ω1

,

w+
b0,ω0

≤ u1(t) ≤ u2(t). (57)

Thus, the function s 7→ usmax(t) is non-increasing as s → −∞ and it is bounded
from below. Then there exists a function ξM (t) such that

ξM (t, x) = lim
s→−∞

usmax(t, x) pointwise in x.

However, by Lemma 5 and Lemma 7 we have that usmax(t) → ξM (t) in H1
0 (Ω) ⊂

C([0, 1), for any t ∈ R, so

ξM (t, x) = lim
s→−∞

usmax(t, x) uniformly in x. (58)

Step 2. ξM (t) is a bounded complete trajectory.
We fix some t0 ∈ R and put xn = usnmax(t0), ϕn(t) = usnmax(t), t ≥ t0. where

sn → −∞. Then ϕn ∈ Dt0(xn) and from (K4) and xn → ξM (t0) we infer that
ϕn(t) → ϕ(t), for all t ≥ t0, where ϕ ∈ Dt0(ξM (t0)). By (58) we have that ϕ(t) =
ξM (t) for all t ≥ t0, so ξM |[t0,+∞)∈ Dt0(ξM (t0)) for all t0 ∈ R. Therefore, ξM is a
complete trajectory. Since ξM (t) ∈ A(t), ξM is bounded.

Also, from (53) and (57) we obtain (50).
Step 3. ξM is maximal.
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Let ψ be any bounded global trajectory. Since the pullback attractor is bounded
in H1

0 (Ω) ⊂ C([0, 1]), there is Φ ∈ L2(Ω) satisfying

Φ ≥ y for all y ∈ ∪t∈RA(t).

Thus, Φ ≥ ψ(t) for any t ∈ R. Take a sequence sn → −∞. Denote by vnmax the
maximal solution of the set Dsn(Φ). Then as ψ(t) = un(t), where un = ψ |[sn,+∞)∈
Dsn(ψ(sn), Theorem 2 implies

ψ(t) ≤ vnmax(t).

Let sn < r ≤ t be arbitrary. Taking into account that

vn = vnmax |[r,+∞)∈ D
+
r (vnmax(r)),

and being wnmax the maximal solution of the autonomous problem (29) at τ = sn
with initial condition wnmax(sn) = Φ and b = b1, ω = ω1, which is the unique
solution of the linear problem

∂u

∂t
− ∂2u

∂x2
= b1 + ω1u, on Ω × (τ,∞),

u|∂Ω = 0,
u(x, sn) = Φ(x),

(59)

Theorem 3 implies that

vnmax(r) ≤ wnmax(r).

Now let pnmax be the maximal solution of the set Dr(wnmax(r)). Then, again by the
comparison principle,

ψ(t) ≤ vn(t) ≤ pnmax(t).

Since wnmax is the unique solution to problem (59), wnmax(r) → w+
b1,ω1

as n → ∞.
Hence, it follows from (K4) the existence of p ∈ D+

r (w+
b1,ω1

) such that up to a
subsequence

pnmax(t)→ p (t) .

But urmax is the maximal solution of Dr(w+
b1,ω1

), so

ψ(t) ≤ p (t) ≤ urmax(t).

Using the definition of ξM ,

ψ(t) ≤ lim
r→−∞

urmax(t) = ξM (t),

and by symmetry of solutions,

−ξM (t) ≤ ψ(t) ≤ ξM (t),

proving (49). Therefore, Lemma 6 and the pullback attracting property of A(t)
imply (51)-(52).
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Let

Φ(0, 1) = {u ∈ C([0, 1]) : u(x) > 0, ∀x ∈ (0, 1) , u (0) = u (1) = 0}.

In other words, Φ(0, 1) is the subset of continuous functions on [0, 1] satisfying zero
Dirichlet boundary conditions and being strictly positive on (0, 1).

Lemma 8 Let ξ1, ξ2 be two bounded complete trajectories of (2) such that ξi(t) ∈
Φ(0, 1) for all t ∈ R. Then ξ1(t) = ξ2(t) for all t ∈ R.

Proof Since ξi(t) ∈ Φ(0, 1), ui = ξi |[s,∞) are solutions to the linear problem (56)
with initial conditions ui(s) = ξi(s), respectively. Then, taking the difference of
the two equations and multiplying by v = u1 − u2, we obtain

1

2

d

dt
‖v‖2 +

∥∥∥∥∂v∂x
∥∥∥∥2 = ω (t) ‖v‖2 .

Then
∥∥ ∂v
∂x

∥∥2 ≥ π2 ‖v‖2, ω (t) ≤ ω1 < π2 and Gronwall’s lemma imply

‖v(t)‖2 ≤ ‖v(s)‖2 e−β(t−s),

where β = 2(π2 − ω1) > 0. Passing to the limit as s→ −∞ the statement follows.

Since (50) implies that ξM (t) ∈ Φ(0, 1) for all t ∈ R, we obtain the following
straightforward consequence of Lemma 8.

Corollary 7 ξM is the unique bounded complete trajectory such that ξM (t) ∈ Φ(0, 1)
for all t ∈ R.

The next lemma is proved exactly in the same way as Lemma 8.

Lemma 9 Let ξ1, ξ2 be two bounded complete trajectories of (2) such that for some t0
we have ξi(t) ∈ Φ(0, 1) for all t ≤ t0, that is, they are non-degenerate at −∞. Then

ξ1(t) = ξ2(t) for all t ≤ t0.

Corollary 8 If ψ is a bounded complete trajectory such that for some t0 we have

ψ(t) ∈ Φ(0, 1) for all t ≤ t0, then ψ(t) = ξM (t) for all t ≤ t0.

Remark 2 If we could prove that the solutions are unique for the initial conditions
ξM (s), s ∈ R, then ξM would be the unique bounded complete trajectory such that
for some t0 we have ξM (t) ∈ Φ(0, 1) for all t ≤ t0, that is, the only non-degenerate
bounded complete trajectory at −∞.

Lemma 10 If u1 (·) , u2 (·) ∈ R+
t0

are two solutions such that ui(t) ∈ Φ(0, 1) for all

t ≥ t0, that is, they are non-degenerate at +∞, then

‖u1(t)− u2(t)‖ → 0 as t→ +∞.

Proof Arguing in the same way as in Lemma 8 we obtain that

‖u1(t)− u2(t)‖2 ≤ ‖u1(t0)− u2(t0)‖2 e−β(t−t0) → 0 as t→ +∞.
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Corollary 9 If u (·) ∈ R+
t0

is non-degenerate at +∞, then

‖u(t)− ξM (t)‖ → 0 as t→ +∞.

In fact, we can prove that for every non-negative initial datum at least one
non-degenerate solution at +∞ exists.

Lemma 11 Let us ≥ 0, s ∈ R. Then there exists u (·) ∈ R+
t0

with u (s) = us such

that

‖u (t)− ξM (t)‖ → 0 as t→ +∞.

Proof Let u (·) be the unique solution to the linear problem
∂u

∂t
− ∂2u

∂x2
= b(t) + ω(t)u, on Ω × (τ,∞),

u|∂Ω = 0,
u(x, s) = us(x),

which clearly belongs to Rs and, moreover, is the maximal solution for the ini-
tial condition us. Since ξM (·) is a solution of the same problem but with initial
condition ξM (s), arguing as before we have

‖u(t)− ξM (t)‖2 ≤ ‖us − ξM (s)‖2 e−β(t−s) → 0 as t→ +∞.
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