
Opuscula Math. 40, no. 3 (2020), 341–360
https://doi.org/10.7494/OpMath.2020.40.3.341 Opuscula Mathematica

EXISTENCE OF PERIODIC POSITIVE SOLUTIONS
TO NONLINEAR LOTKA–VOLTERRA COMPETITION

SYSTEMS

Mimia Benhadri, Tomás Caraballo, and Halim Zeghdoudi

Communicated by Josef Diblík

Abstract. We investigate the existence of positive periodic solutions of a nonlinear
Lotka–Volterra competition system with deviating arguments. The main tool we use to
obtain our result is the Krasnoselskii fixed point theorem. In particular, this paper improves
important and interesting work [X.H. Tang, X. Zhou, On positive periodic solution of
Lotka–Volterra competition systems with deviating arguments, Proc. Amer. Math. Soc. 134
(2006), 2967–2974]. Moreover, as an application, we also exhibit some special cases of the
system, which have been studied extensively in the literature.
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1. INTRODUCTION

It is well known that the application of theories of functional differential equations in
mathematical ecology or biology has developed rapidly and effectively. Lotka–Volterra
system is one of the most celebrated models in mathematical biology and population
dynamics. Recently, it has also been successfully applied to interesting applications
in epidemiology, physics, chemistry, economics, biological science, and other areas
(see [7, 11, 12, 24]). Lotka–Volterra model has been an active field of research, both
in the deterministic and stochastic cases, since it was originally introduced in 1920
by Lotka [21], and later applied by Volterra [28] to a predator-prey interaction. This
system can model the dynamics of ecological systems with predator-prey interactions,
mutualism, disease and competition. Many important and influential results have
been established and can be found in many articles and books. Particularly, the
existence of positive periodic solutions for various Lotka–Volterra-type population
dynamical systems has been extensively studied in [6,10,16,22,23,27] and the references
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cited therein. Motivated by this, in this paper we use a fixed point theorem due
to Krasnoselskii to study the existence of positive periodic solutions of nonlinear
Lotka–Volterra competition systems with deviating arguments as follows:

u′i(t) = ui(t)
{
ri(t)−

n∑

j=1
aij(t)uj(t)−

n∑

j=1
bij(t)fj (uj(t))

−
n∑

j=1
cij(t)gj (uj(t− δj (t)))

} (1.1)

for j = 1, 2, . . . , n, where u(t) = [u1(t), u2(t), . . . , un(t)]T ∈ Rn, and since we
are searching for the existence of periodic solutions for equation (1.1), we assume
ri, aij , bij , cij ∈ C (R+,R+) are all ω-periodic functions (ω > 0) with respect to time t,

aij (t+ ω) = aij(t), δj (t+ ω) = δj(t),
bij (t+ ω) = bij(t), cij (t+ ω) = cij(t)

(1.2)

for i, j = 1, 2, . . . , n, with δj being scalar continuous functions, and δj(t) ≥ δ∗j > 0 with

ri = 1
ω

ω∫

0

ri(s)ds > 0, aij = 1
ω

ω∫

0

aij(s)ds ≥ 0,

bij = Rj
ω

ω∫

0

bij(s)ds ≥ 0, cij = Tj
ω

ω∫

0

cij(s)ds ≥ 0,

(1.3)

for i, j = 1, 2, . . . , n, where Rj and Tj are given in (A1) and (A2), respectively. We also
assume that the functions, fi, gi : R+ → R+, i = 1, 2, . . . , n are continuous,

f(u(t)) = [f1 (u1(t)) , f2 (u2(t)) , . . . , fn (un(t))]T ∈ Rn+,

g(u(t)) = [g1 (u1(t)) , g2 (u2(t)) , . . . , gn (un(t))]T ∈ Rn+
are positive continuous in their respective arguments.

Now we will list the assumptions we will impose along our paper:
(A1) there exist nonnegative constants T j , Tj such that for all u ∈ R+,

T ju ≤ fj (u) ≤ Tju, j = 1, 2, . . . , n. (1.4)

(A2) there exist nonnegative constants Rj , Rj such that for all u ∈ R+,

Rju ≤ gj (u) ≤ Rju, j = 1, 2, . . . , n. (1.5)

(A3) The linear system
n∑

j=1

(
aij + bij + cij

)
uj = ri, i = 1, 2, . . . , n, (1.6)

possesses a positive solution.



Existence of periodic positive solutions. . . 343

Throughout this paper, a vector u = (u1, u2, . . . , un)T is said to be positive if
ui > 0 (i = 1, 2, . . . , n).

It is worth noting that in 1998, Li [18] considered the following delayed periodic
logistic equation

u′(t) = u(t) [r(t)− c(t)u(t− δ(t))] , (1.7)
and proved that equation (1.7) always has a positive ω-periodic solution if
r, c, δ ∈ C (R, [0,∞)) are ω-periodic functions such that

∫ ω
0 r(s)ds > 0 and∫ ω

0 c(s)ds > 0.
In [27], Tang and Zou studied the following n-species Lotka–Volterra competitive

systems with several deviating arguments:

u′i(t) = ui(t)
(
ri(t)−

n∑

j=1
cij(t)uj(t− δj (t))

)
, i = 1, 2, . . . , n, (1.8)

and, by using the Krasnoselskii fixed point theorem method, the authors proved that
(1.8) has at least one positive ω-periodic solution provided that the corresponding
system of linear equations

n∑

j=1
cijxj = ri, i = 1, 2, . . . , n,

possesses a positive solution with

ri = 1
ω

ω∫

0

ri(s)ds > 0, cij = 1
ω

ω∫

0

cij(s)ds ≥ 0, i, j = 1, 2, . . . , n.

On the other hand, Fan et al. [10] and Li [19] established a set of easily verifiable
sufficient conditions for the existence and global attractiveness of positive periodic
solutions for equation (1.8) by using the method of coincidence degree and Lyapunov
functional. Other competition models have been studied in [1–5,13–15,17,23,26,29,30].

The method used in [27] was also used in [23] where the authors investigated
the existence and global attractiveness of positive periodic solutions of a 3-species
Lotka–Volterra predator-prey system with several deviating arguments:





u′1(t) = u1(t) (r1(t)− c11(t)u1(t− δ1(t))− c12(t)u2(t− δ2(t))
− c13(t)u3(t− δ3(t))) ,

u′2(t) = u2(t) (−r2(t) + c21(t)u1(t− δ1(t))− c22(t)u2(t− δ2(t))
− c23(t)u3(t− δ3(t))) ,

u′3(t) = u3(t) (−r3(t) + c31(t)u1(t− δ1(t))− c32(t)u2(t− δ2(t))
− c33(t)u3(t− δ3(t))) .

(1.9)

In the current paper we extend, in particular, the results in [27] to the nonlinear
Lotka–Volterra system of equations (1.1). Notice that when aij = 0 in the second
term on the right hand side of (1.1), fj (uj) = 0, and gj (uj) = uj , then (1.1) reduces
to (1.8). Thus, our results are more general than those obtained in [27].
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The content of this paper is as follows. In Section 2, we recall some results which
are necessary for our analysis. The existence of positive periodic solutions of system
(1.1) by using the Krasnoselskii fixed point theorem is proved in Section 3. Finally,
in Section 4, we analyse an example to illustrate how our result can be easily applied
to interesting models.

2. PRELIMINARIES

For the reader convenience, we recall the definition of cone as well as the celebrated
Krasnoselskii fixed point theorem.

Let X be a Banach space and let Ω be a closed, nonempty subset of X. We say
that Ω is a cone if

(i) αu+ βv ∈ Ω for all u, v ∈ Ω and all α, β ≥ 0,
(ii) u,−u ∈ Ω imply u = 0.

The proof of Krasnoselskii’s fixed point theorem stated below can be found in [17].

Theorem 2.1 ([17]). Let X be a Banach space, and let Ω ⊂ X be a cone
in X. Assume that Ω1 and Ω2 are open subsets of X with 0 ∈ Ω1, Ω1 ⊂ Ω2
and let

P : Ω ∩
(
Ω2 \ Ω1

)
→ Ω

be a completely continuous operator such that either

‖Pu‖ ≤ ‖u‖ for u ∈ Ω ∩ ∂Ω1 and ‖Pu‖ ≥ ‖u‖ for u ∈ Ω ∩ ∂Ω2

or
‖Pu‖ ≥ ‖u‖ for u ∈ Ω ∩ ∂Ω1 and ‖Pu‖ ≤ ‖u‖ for u ∈ Ω ∩ ∂Ω2.

Then P has a fixed point in Ω ∩
(
Ω2 \ Ω1

)
.

3. EXISTENCE OF POSITIVE PERIODIC SOLUTIONS

To apply Theorem 2.1, we need to define a Banach space Cω, a closed S of Cω and
construct one mapping. Thus, we let (Cω, ‖ · ‖) = (X, ‖ · ‖), where

Cω = {u : u ∈ C (R,Rn) , u(t+ ω) = u(t)} , (3.1)

with the norm

∀u ∈ Cω : ‖u‖ =
n∑

i=1
|ui|0 , |ui|0 = max

t∈[0,ω]
|ui(t)| , i = 1, 2, . . . , n. (3.2)

Then Cω is a real Banach space endowed with the above norm ‖ · ‖.
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The following lemma is fundamental to our results.

Lemma 3.1. The function u is an ω-periodic solution of equation (1.1) if and only
if u is an ω-periodic solution of the following equation

ui(t) =
t+ω∫

t

Gi(t, s)ui(s)
{

n∑

j=1
aij(s)uj(s) +

n∑

j=1
bij(s)fj(uj(s))

+
n∑

j=1
cij(s)gj(uj(s− δj(s)))

}
ds,

(3.3)

where

Gi (t, s) = 1
1− e−riω exp


−

s∫

t

ri (ξ) dξ


 , i = 1, 2, . . . , n, (3.4)

and we assume

e−riω 6= 1.

Proof. Let u be an ω-periodic solution of equation (1.1), then


ui(t) exp


−

t∫

0

ri (s) ds





′

= − exp


−

t∫

0

ri (s) ds


ui(t)

{
n∑

j=1
aij(t)uj(t) +

n∑

j=1
bij(t)fj (uj(t))

+
n∑

j=1
cij(t)gj (uj(t− δj(t)))

}
.

(3.5)

Integrating both sides of (3.5) from t to t+ ω, we can obtain

ui(t+ ω) exp


−

t+ω∫

0

ri (s) ds


− ui(t) exp


−

t∫

0

ri (s) ds




=
t+ω∫

t

ui(s) exp


−

s∫

0

ri (ξ) dξ



{

n∑

j=1
aij(s)uj(s) +

n∑

j=1
bij(s)fj (uj(s))

+
n∑

j=1
cij(s)gj (uj(s− δj (s)))

}
ds.
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Since the functions u, aij , bij , cij , δj are ω-periodic with respect to t, we have

ui(t) =
t+ω∫

t

exp
(
−
∫ s

0 ri (ξ) dξ
)

exp
(
−
∫ t+ω

0 ri (s) ds
)
− exp

(
−
∫ t

0 ri (s) ds
)ui(s)

×





n∑

j=1
aij(s)uj(s) +

n∑

j=1
bij(s)fj (uj(s)) +

n∑

j=1
cij(s)gj (uj(s− δj (s)))



 ds,

and therefore

ui(t) =
t+ω∫

t

Gi (t, s)ui(s)
{

n∑

j=1
aij(s)uj(s) +

n∑

j=1
bij(s)fj (uj(s))

+
n∑

j=1
cij(s)gj (uj(s− δj (s)))

}
ds.

To simplify notation, we denote

Gi (t, s) = 1
1− e−riω exp


−

s∫

t

ri (ξ) dξ


 , i = 1, 2, . . . , n.

It is easy to see that for all (t, s) ∈ [0, ω]× [0, ω] we have

Gi (t+ ω, s+ ω) = Gi (t, s) , i = 1, 2, . . . , n.

Thus, u is an ω-periodic function of equation (3.3).
On the other hand, if u is an ω-periodic solution of equation (3.3), then differenti-

ating equation (3.3) with respect to t,
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u′i(t) = Gi (t, t+ ω)ui(t+ ω)
{

n∑

j=1
aij(t+ ω)uj(t+ ω) +

n∑

j=1
bij(t+ ω)fj (uj(t+ ω))

+
n∑

j=1
cij(t+ ω)gj (uj(t+ ω − δj (t+ ω)))

}

−Gi (t, t)ui(t)
{

n∑

j=1
aij(t)uj(t) +

n∑

j=1
bij(t)fj (uj(t))

+
n∑

j=1
cij(t)gj (uj(t− δj(t)))

}

−
t+ω∫

t

(
d

dt
Gi (t, s)

)
ui(s)

×
{

n∑

j=1
aij(s)uj(s) +

n∑

j=1
bij(s)fj (uj(s)) +

n∑

j=1
cij(s)gj (uj(s− δj (s)))

}
ds

= (Gi (t, t+ ω)−Gi (t, t))ui(t)

×
{

n∑

j=1
aij(t)uj(t) +

n∑

j=1
bij(t)fj (uj(t)) +

n∑

j=1
cij(t)gj (uj(t− δj(t)))

}

+ ri(t)
t+ω∫

t

Gi (t, s)ui(s)

×
{

n∑

j=1
aij(s)uj(s) +

n∑

j=1
bij(s)fj (uj(s)) +

n∑

j=1
cij(s)gj (uj(s− δj (s)))

}
ds

= −ui(t)
{

n∑

j=1
aij(t)uj(t) +

n∑

j=1
bij(t)fj (uj(t)) +

n∑

j=1
cij(t)gj (uj(t− δj(t)))

}

+ ri(t)
t+ω∫

t

Gi (t, s)ui(s)

×
{

n∑

j=1
aij(s)uj(s) +

n∑

j=1
bij(s)fj (uj(s)) +

n∑

j=1
cij(s)gj (uj(s− δj (s)))

}
ds

= ui(t)
{
ri(t)−

n∑

j=1
aij(s)uj(s)−

n∑

j=1
bij(s)fj (uj(s))

−
n∑

j=1
cij(s)gj (uj(s− δj (s)))

}
.

The proof is completed.
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Let

σ = min
{
e−r̄iω : i = 1, 2, . . . , n

}
.

Now choose the cone Ω of Cω defined by

Ω = {u(t) = (u1(t), u2(t), . . . , un(t))T ∈ Cω : ui(t) ≥ σ |ui|0 , i = 1, 2, . . . , n}.

We use (3.3) to define the operator P : Cω → Cω by

(Pu)(t) := [(P1u1) (t), (P2u2) (t), . . . , (Pnun) (t)]T ,

where

(Piui) (t) =
t+ω∫

t

Gi (t, s)ui(s)
{

n∑

j=1
aij(s)uj(s) +

n∑

j=1
bij(s)fj (uj(s))

+
n∑

j=1
cij(s)gj (uj(s− τj (s)))

}
ds.

(3.6)

By (3.6), it is easy to check that u ∈ Cω is an ω-periodic solution of equation (1.1)
provided u is a fixed point of P.

Lemma 3.2. The mapping P maps Ω into Ω, i.e. PΩ ⊂ Ω.

Proof. It is easy to see that for any s ∈ [t, t+ ω] , thanks to (3.4), we have

Ai := e−riω

1− e−riω ≤ Gi (t, s) ≤ 1
1− e−riω =: Bi, i = 1, 2, . . . , n. (3.7)
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For any u ∈ Ω, we can obtain

(Piui) (t+ ω) =
t+2ω∫

t+ω

Gi (t+ ω, s)ui(s)
{

n∑

j=1
aij(s)uj(s)

+
n∑

j=1
bij(s)fj (uj(s)) +

n∑

j=1
cij(s)gj (uj(s− δj (s)))

}
ds

=
t+ω∫

t

Gi (t+ ω, s+ ω)ui(s+ ω)

×
{

n∑

j=1
aij(s+ ω)uj(s+ ω) +

n∑

j=1
bij(s+ ω)fj (uj(s+ ω))

+
n∑

j=1
cij(s+ ω)gj (uj(s+ ω − δj (s+ ω)))

}
ds

=
t+ω∫

t

Gi (t, s)ui(s)
{

n∑

j=1
aij(s)uj(s) +

n∑

j=1
bij(s)fj (uj(s))

+
n∑

j=1
cij(s)gj (uj(s− δj (s)))

}
ds

= (Piui) (t).

Thus Pu ∈ Cω. Moreover, from (3.6) and (3.7), we have for u ∈ Ω

|(Piui)|0 ≤ Bi
ω∫

0

ui(s)
{

n∑

j=1
aij(s)uj(s) +

n∑

j=1
bij(s)fj (uj(s))

+
n∑

j=1
cij(s)gj (uj(s− δj (s)))

}
ds

and

(Piui) ≥ Ai
ω∫

0

ui(s)
{

n∑

j=1
aij(s)uj(s) +

n∑

j=1
bij(s)fj (uj(s))

+
n∑

j=1
cij(s)gj (uj(s− δj (s)))

}
ds

≥ Ai
Bi
|(Piui)|0 ≥ σ |(Piui)|0 .

Hence, PΩ ⊂ Ω. The proof is complete.
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Lemma 3.3. The mapping P : Ω→ Ω is completely continuous.

Proof. For i = 1, 2, . . . , n, we set

Ki (t, u(t)) = ui(t)
n∑

j=1
aij(t)uj(t),

Fi (t, u(t)) = ui(t)
n∑

j=1
bij(t)fj (uj(t)) ,

and

Hi (t, ut) = ui(t)
n∑

j=1
cij(t)gj (uj(t− δj(t))) .

We first show that P is continuous. For any L > 0 and ε > 0, there exists η1 > 0 such
that for ‖u‖ ≤ L, ‖v‖ ≤ L, and ‖u− v‖ < η1 imply

|Ki (s, u (s))−Ki (s, v (s))| < ε

3nBω , i = 1, 2, . . . , n. (3.8)

For any L > 0 and ε > 0, there exists η2 > 0 such that for ‖u‖ ≤ L, ‖v‖ ≤ L, and
‖u− v‖ < η2 imply

|Fi (s, u (s))− Fi (s, v (s))| < ε

3nBω , i = 1, 2, . . . , n. (3.9)

For any L > 0 and ε > 0, there exists η3 > 0 such that for ‖u‖ ≤ L, ‖v‖ ≤ L, and
‖u− v‖ < η3 imply

|Hi (s, us)−Hi (s, vs)| <
ε

3nBω , i = 1, 2, . . . , n, (3.10)

where B = max1≤i≤nBi.
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If u, v ∈ Cω with ‖u‖ ≤ L, ‖v‖ ≤ L, and ‖u− v‖ ≤ η, where η = min{η1, η2, η3}.
Then, from (3.6), (3.7) and (3.8), (3.9), (3.10), we have

|(Piui)− (Pivi)|0 ≤
t+ω∫

t

Gi (t, s) |Ki (s, u (s))−Ki (s, v (s))| ds

+
t+ω∫

t

Gi (t, s) |Fi (s, u (s))− Fi (s, v (s))| ds

+
t+ω∫

t

Gi (t, s) |Hi (s, us)−Hi (s, vs)| ds

≤ B
t+ω∫

0

|Ki (s, u (s))−Ki (s, v (s))| ds

+B

t+ω∫

0

|Fi (s, u (s))− Fi (s, v (s))| ds

+B

t+ω∫

0

|Hi (s, us)−Hi (s, vs)| ds

<
ε

n
, i = 1, 2, . . . , n.

This yields

‖Pu− Pv‖ =
n∑

i=1
|(Piui)− (Pivi)|0 < ε.

Thus, P is continuous.
Next, we show that P is compact. Set

a = max
1≤i≤n

n∑

j=1
aij , b = max

1≤i≤n

n∑

j=1
bij , c = max

1≤i≤n

n∑

j=1
cij .

We let

S = {u(t) = (u1(t), u2(t), . . . , un(t))T ∈ Cω : ‖u‖ ≤M},

where M is non-negative constant.
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For any u ∈ S, it follows from (3.6) and (3.7) that

|(Piui)|0 ≤ Bi
ω∫

0

|ui|0
n∑

j=1
aij(s) |uj |0 ds+Bi

ω∫

0

|ui|0
n∑

j=1
Tjbij(s) |uj |0 ds

+Bi

ω∫

0

|ui|0
n∑

j=1
Rjcij(s) |uj |0 ds

= ωBM2
n∑

j=1

(
aij + bij + cij

)

≤ BωM2 (a+ b+ c) ,

and so

‖Pu‖ =
n∑

i=1
|(Piui)|0 ≤ BnωM2 (a+ b+ c) , u ∈ S.

This shows that P (S) is uniformly bounded.
To show that P (S) is equicontinuous. Let u ∈ S, we calculate d

dt (Piui) (t) and
show that it is uniformly bounded, we obtain by taking the derivative in (3.6) that

∣∣(Piui)′ (t)
∣∣ ≤ ri(t) |(Piui) (t)|+ |ui(t)|

n∑

j=1
aij(t) |uj(t)|

+ |ui(t)|
n∑

j=1
bij(t) |fj (uj(t))|

+ |ui(t)|
n∑

j=1
cij(t) |gj (uj(t− δj(t)))|

≤ r∗iBωM2 (a+ b+ c) +M2
n∑

j=1
aij(s)

+M2
n∑

j=1
bij(s)Tj +M2

n∑

j=1
cij(s)Rj

≤ r∗iBM2ω (a+ b+ c) +M2
n∑

j=1
a∗ij

+ λ1M
2

n∑

j=1
b∗ij + λ2M

2
n∑

j=1
c∗ij ≤ DM2, i = 1, 2, . . . , n,
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where

D = max
1≤i≤n


r∗iBω (a+ b+ c) + λ1

n∑

j=1
b∗ij + λ2

n∑

j=1
c∗ij


 ,

λ1 = max
{
Tj , j = 1, n

}
, λ2 = max

{
Rj , j = 1, n

}
,

and

r∗i = max
t∈[0,ω]

ri (t) ,

b∗ij = max
t∈[0,ω]

bij(t),

c∗ij = max
t∈[0,ω]

cij(t),

for i, j = 1, 2, . . . , n.
Hence, PS ⊂ Cω is a family of uniformly bounded and equi-continuous functions.

By the Ascoli–Arzelà Theorem (see [26, p. 169]), the operator P is compact, and
therefore completely continuous. The proof is complete.

We can now state and prove our main result of this paper.

Theorem 3.4. Assume condition (1.6) holds. Then Eq. (1.1) possesses at least one
positive ω-periodic solution.

Proof. Let

u∗ = (u∗1, u∗2, . . . , u∗n)T

with u∗i > 0, i = 1, 2, . . . , n, be a positive solution of (1.6).

A = min {riAi : i = 1, 2, . . . , n} ,
B = min {riBi : i = 1, 2, . . . , n} .

Then 0 < A < B < +∞. Define

Ω1 =
{
u(t) = (u1(t), u2(t), . . . , un(t))T ∈ Cω : |ui|0 <

u∗i
Bω

, i = 1, 2, . . . , n
}
.

If u ∈ Ω ∩ ∂Ω1, then

σ |ui|0 ≤ ui(t) ≤ |ui|0 = (Bω)−1
u∗i , i = 1, 2, . . . , n,
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and

(Piui) (t) ≤ Bi
ω∫

0

{
uj(s)

n∑

j=1
aij(s)uj(s) + uj(s)

n∑

j=1
bij(s)fj (uj(s))

+ uj(s)
n∑

j=1
cij(s)gj (uj(s− δj (s)))

}
ds

≤ Bi
ω∫

0

|ui|0
n∑

j=1
aij(s) |uj |0 ds+Bi

ω∫

0

|ui|0
n∑

j=1
Tjbij(s) |uj |0 ds

+Bi

ω∫

0

|ui|0
n∑

j=1
Rjcij(s) |uj |0 ds

= Biω |ui|0
n∑

j=1
aij |uj |0 +Biω |ui|0

n∑

j=1
bij |uj |0 +Biω |ui|0

n∑

j=1
cij |uj |0

= Biω (Bω)−1 |ui|0
n∑

j=1
aiju

∗
j +Biω (Bω)−1 |ui|0

n∑

j=1
biju

∗
j

+Biω (Bω)−1 |ui|0
n∑

j=1
ciju

∗
j

= Biω (Bω)−1 |ui|0




n∑

j=1
aiju

∗
j +

n∑

j=1
biju

∗
j +

n∑

j=1
ciju

∗
j




= Biω (Bω)−1 |ui|0




n∑

j=1

(
aij + bij + cij

)
u∗j




= Biriω (Bω)−1 |ui|0
≤ |ui|0 , i = 1, 2, . . . , n,

and therefore

‖Pu‖ =
n∑

i=1
|(Piui)|0 ≤

n∑

i=1
|ui|0 = ‖u‖ , u ∈ Ω ∩ ∂Ω1.

Let θ = min{1, θ1, θ2}, where

θ1 = min
{
T j
Tj
, j = 1, n

}
and θ2 = min

{
Rj
Rj

, j = 1, n
}
.

Next, we define

Ω2 =
{
u ∈ Cω : |ui|0 <

u∗i
θσ2Aω

, i = 1, 2, . . . , n
}
.
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If u ∈ Ω ∩ ∂Ω2, then

σ |ui|0 ≤ ui(t) ≤ |ui|0 =
(
θσ2Aω

)−1
u∗i , i = 1, 2, . . . , n,

and consequently

(Piui) (t) ≥ Ai
ω∫

0

ui(s)
{

n∑

j=1
aij(s)uj(s) +

n∑

j=1
bij(s)fj (uj(s))

+
n∑

j=1
cij(s)gj (uj(s− τj (s)))

}
ds

≥ σ2Ai |ui|0
n∑

j=1

ω∫

0

aij(s) |uj |0 ds+ σ2Ai |ui|0
n∑

j=1

ω∫

0

Tj
T j
Tj
bij(s) |uj |0 ds

+ σ2Ai |ui|0
n∑

j=1

ω∫

0

Rj
Rj
Rj

cij(s) |uj |0 ds

≥ 1× σ2Aiω |ui|0
n∑

j=1
aij |uj |0 + θ1 × σ2Aiω |ui|0

n∑

j=1
bij |uj |0

+ θ2 × σ2Aiω |ui|0
n∑

j=1
cij |uj |0

≥ θσ2Aiω |ui|0
n∑

j=1
aij |uj |0 + θσ2Aiω |ui|0

n∑

j=1
bij |uj |0

+ θσ2Aiω |ui|0
n∑

j=1
cij |uj |0

= θσ2Aiω |ui|0
n∑

j=1
aij
(
θσ2Aω

)−1
u∗i + θσ2Aiω |ui|0

n∑

j=1
bij
(
θσ2Aω

)−1
u∗i

+ θσ2Aiω |ui|0
n∑

j=1
cij
(
θσ2Aω

)−1
u∗i

= Aiω (Aω)−1 |ui|0




n∑

j=1

(
aij + bij + cij

)
u∗j




= Airiω (Aω)−1 |ui|0
≥ |ui|0 , i = 1, 2, . . . , n,

and thus
‖Pu‖ =

n∑

i=1
|(Piui)|0 ≥

n∑

i=1
|ui|0 = ‖u‖ , u ∈ Ω ∩ ∂Ω2.
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Obviously, Ω1 and Ω2 are open bounded subsets of Cω with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2.
Hence, P : Ω ∩ (Ω2\Ω1) → Ω is a completely continuous operator and satisfies
condition (i) in Theorem 2.1. By Krasnoselskii’s Theorem, there exists a fixed point
u ∈ Ω ∩ (Ω2\Ω1) such that u(t) = (Pu)(t), i.e. u is a positive ω-periodic solution
of Eq. (1.1).

4. AN EXAMPLE

In this section, we analyze an example to illustrate the application of our main result.

Example 4.1. Let us consider the following system:

u′i(t) = ui(t)



ri(t)−

2∑

j=1
bij(t)fj (uj(t))−

2∑

j=1
cij(t)gj (uj(t− δj(t)))



 , (4.1)

for i = 1, 2. This model corresponds to system (1.1) when n = 2, ω = π. Let

r1(t) = 1
2 (1 + sin 2t) , r2(t) = 3

4 (1 + cos 4t) ,

and δj ∈ (R+,R+) be arbitrary continuous functions which satisfy δj(t+ ω) = δj(t),
i = 1, 2. We then have

r1 = 1
ω

ω∫

0

r1(t)dt = 1
2π

π∫

0

(1 + sin 2t) dt = 1
2 ,

r2 = 1
ω

ω∫

0

r1(t)dt = 3
4π

π∫

0

(1 + cos 4t) dt = 3
4 ,

and it is straightforward to check that Ai ≤ Gi (t, s) ≤ Bi, for i = 1, 2, where

Gi (t, s) = 1
1− e−riω exp


−

s∫

t

ri (ξ) dξ


 , i = 1, 2,

and

A1 := e−r1ω

1− e−r1ω
= e−

π
2

1− e−π2 , A2 := e−r2ω

1− e−r1ω
= e−

3π
4

1− e− 3π
4
,

B1 := 1
1− e−r1ω

= 1
1− e−π2 , B2 := 1

1− e−r2ω
= 1

1− e− 3π
4
.

Let

fj (u) =
√
u2

2 e
sinu, gj (u) =

√
u2

2 (ecosu + 1), j = 1, 2.
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Since | sin u| ≤ 1 and | cosu| ≤ 1 for u ∈ R,

T ju ≤ fj (u) ≤ Tju, for u ≥ 0,

Rju ≤ gj (u) ≤ Rju, for u ≥ 0,

where Tj = e+ 1
2 , T j = e−1 + 1

2 and Rj = e

2 , Rj = e−1

2 , j = 1, 2.
We can choose

b11(t) = (1 + cos 2t)
3T1

, b12(t) = (1 + sin 2t)
2T2

, b21(t) = 0, b22(t) = cos (4t) ,

which implies

b11 = T1
ω

ω∫

0

b11(s)ds = 1
3 , b12 = T2

ω

ω∫

0

b12(s)ds = 1
2 ,

b21 = T1
ω

ω∫

0

b21(s)ds = 0, b22 = T2
ω

ω∫

0

b22(s)ds = 0,

and also choose

c11(t) = 0, c12(t) = 2(1 + cos 4t)
R1

, c21(t) = (1 + sin 2t)
R2

, c22(t) = (1 + sin 2t)
2R2

,

obtaining

c11 = R1
ω

ω∫

0

c11(s)ds = 0, c12 = R2
ω

ω∫

0

c12(s)ds = 2,

c21 = R1
ω

ω∫

0

c12(s)ds = 1, c22 = R2
ω

ω∫

0

c22(s)ds = 1
2 .

Moreover, it is easy to verify that the corresponding system of nonlinear equation (4.1)




2∑
j=1

b1juj +
2∑
j=1

c1juj = r1,

2∑
j=1

b2juj +
2∑
j=1

c2juj = r2,

has a unique positive solution u = (u1, u2) =
( 39

56 ,
3
28
)
. The conditions of Theorem 3.4

are fulfilled and system (4.1) possesses at least one positive π-periodic solution.
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