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The Sister-Chromatid Exchange Assay in Human Cells

Emanuela Tumini and Andrés Aguilera

Abstract

The semiconservative nature of DNA replication allows the differential labeling of sister chromatids that is
the fundamental requirement to perform the sister-chromatid exchange (SCE) assay. SCE assay is a
powerful technique to visually detect the physical exchange of DNA between sister chromatids. SCEs
could result as a consequence of DNA damage repair by homologous recombination (HR) during DNA
replication. Here, we provide the detailed protocol to perform the SCE assay in cultured human cells. Cells
are exposed to the thymidine analog 5-bromo-20-deoxyuridine (BrdU) during two cell cycles, resulting in
the two sister chromatids having differential incorporation of the analog. After metaphase spreads prepara-
tion and further processing, SCEs are nicely visualized under the microscope.

Key words Sister-chromatid exchange (SCE), 5-Bromo-20-deoxyuridine (BrdU), Homologous
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1 Introduction

Sister-chromatid exchange (SCE) assay is a well-established tech-
nique to detect the exchange of DNA between sister chromatids. In
order to visually detect these events in metaphase chromosomes,
chromatids have to be differentially stained and this could be
accomplished taking advantage of the semiconservative mechanism
of DNA replication. This technique was initially performed cultur-
ing cells in medium supplemented with tritium-labeled thymidine
for one cell cycle followed by incubation in radioactive-free
medium for an additional cell cycle [1]. However, the use of radi-
olabeled nucleotides is per se a source of DNA breaks, as a conse-
quence of which it increases SCEs. Indeed, SCEs have been shown
to be induced by DNA damaging agents, and for this reason, the
SCE assay has been employed as a method to analyze the potential
mutagenicity of different compounds [2]. Repair of double-strand
breaks (DSBs) during replication by homologous recombination
(HR) is considered to be the main source of SCEs [3, 4]. In cycling
cells, SCEs occur spontaneously in association with DNA
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replication and upon replication fork breakage, at an estimated
frequency of 3–4 events per cell cycle (Fig. 1a) [5]. The use of
genotoxic treatments that produce replication-dependent DNA
breaks, such as camptothecin (CPT), dramatically increases the
levels of SCEs accumulated per cell and per chromosome
(Fig. 1b). Chromosomes with many SCEs are named “harlequin”
for their peculiar phenotype (Fig. 1b, inset). Harlequin chromo-
somes are also a distinctive trait of cells from Bloom’s syndrome

A

B

Fig. 1 Example of metaphase spreads to analyze SCE. (a) Untreated HeLa cells.
Inset magnifies four chromosomes to better appreciate the differential stained
chromatids; arrowheads point out SCEs. (b) HeLa cells exposed to 3 nM of
camptothecin during 45 h. Inset magnifies chromosomes with many SCEs also
named “harlequin” chromosomes, pointed out by arrows. The shown images
have been captured using a Leica AF600 upright microscope, objective HCX PL
APO CS 100�/1.4 OIL, equipped with a Leica DC350 FX camera and using the
Leica Application Suite LAS v3.8
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patients in which the mutation of the Bloom helicase gene confers
genome instability and a striking increase in SCE [6]. A crucial
improvement of this technique derived from the finding that DNA,
after 5-bromo-20-deoxyuridine (BrdU) incorporation followed by
fluorescence staining with Hoechst and light exposition, is much
weakly stained by Giemsa [7]. Therefore, chromatids with different
amount of incorporated BrdU stained by Giemsa will result darker
or lighter accordingly. Hence, the following protocol employs this
method to differentially label the two chromatids to be able to
detect SCEs.

Human cells are fed during two cell cycles with medium sup-
plemented with BrdU. During the first round of replication, each
chromosome duplicates in two chromosomes having both chroma-
tids half BrdU substituted. Following the second round of DNA
replication, each chromosome gives rise to two chromatids, one
fully BrdU substituted and the other half BrdU substituted (Fig. 2).
At this point, the sister chromatids have different amount of
incorporated BrdU that, after the subsequent procedure, will
stain differentially. In order to enrich for metaphase cells, the cells
are then treated with Colcemid, an inhibitor of microtubule poly-
merization and mitotic spindle formation that arrests cells in meta-
phase [8]. The timeline of this procedure is depicted in Fig. 3.
Subsequent to hypotonic treatment and fixation, the suspension
of swollen cells is dropped onto microscope slides leading to chro-
mosomes spreading. Staining with Hoechst 33258 and exposure to
UVA cause BrdU-based DNA photodegradation that produce dif-
ferent affinities to Giemsa stain.

1° round of 
DNA replication

+BrdU

2° round of 
DNA replication

Fig. 2 Schematic representation of the process leading to the differential incorporation of BrdU in sister
chromatids
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2 Materials

2.1 BrdU

Incorporation

and Cells Harvesting

for Metaphase Spread

1. 10 cm tissue culture plates.

2. HeLa or U2OS cell lines (see Note 1).

3. Tissue culture incubator.

4. Laminar flow hood and standard tissue culture setup, including
serological pipettes, pipettor, micropipettes, vacuum aspiration
apparatus, and inverted microscope.

5. Dulbecco’s modified Eagle’s medium (DMEM, Gibco) sup-
plemented with 10% heat-inactivated fetal bovine serum, 2 mM
L-glutamine, 100 μg/ml streptomycin, 60 μg/ml penicillin,
and 0.25 μg/ml amphotericin B.

6. Ca2+/Mg2+-free PBS.

7. Trypsin-EDTA.

8. 5-Bromo-20-deoxyuridine (BrdU) (Sigma).

9. KaryoMAX™ Colcemid™ Solution in PBS (Gibco).

10. Hypotonic buffer (KCl 0.075 M).

11. Fixative (3 volumes of methanol: 1 volume of acetic acid,
freshly prepared).

12. 15 ml centrifuge tubes.

13. 1.5 ml microcentrifuge tubes.

14. Aluminum foil.

15. Tabletop centrifuge (Beckman Allegra X-12 Tabletop Centri-
fuge) and microcentrifuge.

16. 37 �C water bath.

2.2 Preparing

Metaphase Spreads

1. Frosted microscope slides.

2. Pencil.

Day 1
seed cells

Day 2
add BrdU

Day 4
add Colcemid

+ BrdU (46 h) + Colcemid (3 h)

Day 3
cells harvesting,

hypotonic treatment 
and fixation

Fig. 3 Cell culture timeline to obtain metaphase cells with differential stained chromatids
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3. 70% ethanol.

4. 45% acetic acid solution.

5. P200 pipette.

6. Glass Coplin jar.

7. Beaker 500 ml.

8. 65 �C incubator.

2.3 Chromatid

Differential Staining

1. Phosphate buffer tablets pH 6.8—for preparing buffer solution
according to WEISE (Merck). Dissolve 1 tablet in 1 l of dis-
tilled water.

2. Hoechst 33258, 20 mM solution in water (AnaSpec).

3. Saline-Sodium Citrate (SSC) 2� buffer.

4. Methanol (Sigma).

5. Modified Giemsa stain (Sigma).

6. UV lamp (BS03 UV irradiation chamber; Dr. Gröbel
UV-Elektronik GmbH).

7. 60 �C incubator.

8. Plastic tray (to place the microscope slides).

9. 24 � 50 mm coverslip, thickness should be 0.17 mm or less
(optional).

10. Synthetic resin mounting medium (optional).

2.4 Chromosome

Spreads Scoring by

Microscope

and Sister-Chromatid

Analysis

1. Bright-field microscope with at least a 40� dry objective and a
100� high-quality oil-immersion objective.

2. Immersion oil.

3. High-resolution microscope digital camera.

4. Computer and microscope software for image acquisition.

5. ImageJ software [9].

3 Methods

3.1 BrdU

Incorporation

and Cells Harvesting

for Metaphase Spread

1. Plate cells in complete DMEM in 10 cm plates in order to have
them 20% confluent the following day (see Note 2).

2. 18–20 h after cell seeding, replace the medium with fresh
complete DMEM supplemented with BrdU at final concentra-
tion of 10 μM. Wrap the plates with aluminum foil before
returning them to the incubator (see Notes 3 and 4).

3. 43 h after BrdU addition, to arrest cells in metaphase add
Colcemid to the final concentration of 0.1 μg/ml directly to
the medium, wait for 3 more hours and proceed to harvest cells
for metaphase spreads (see Note 5).
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4. Collect the supernatant in a 15 ml centrifuge tube, wash
cells with 3 ml of Ca2+/Mg2+-free PBS and collect the PBS in
the same centrifuge tube (see Note 6). Add 1 ml of trypsin-
EDTA swirling the plate to ensure that it spreads covering all
the surface and return the plate to 37 �C tissue culture incuba-
tor for approximately 3–5min.When cells are clearly starting to
detach, gently tap the border of the plate and looking the plate
from the bottom check that cells are evenly detaching from all
the surface of the plate. Add 3 ml of the medium containing
FBS plus PBS previously collected in the centrifuge tube and
immediately pipette the cell suspension up and down until
obtaining a single-cell suspension (see Note 7). Collect cells
into the same centrifuge tube and centrifuge them for 5 min at
250 � g at room temperature (RT).

5. Remove supernatant by vacuum aspiration and wash cells
with 10 ml of PBS (see Note 8). Centrifuge for 5 minutes at
250 � g at RT to pellet cells down.

6. Remove supernatant by vacuum aspiration but leave approxi-
mately 200 μl of PBS to resuspend the pellet thoroughly by
flicking.

7. Hypotonic treatment. Add 1 ml of pre-warmed (37 �C) KCl
0.075 M and pipette 2–3 times with a P1000 pipette. Add
additional 9 ml of pre-warmed KCl 0.075 M, mix by inversion
and incubate at 37 �C in a water bath for 10 min (see Note 9).

8. Add 300 μl of fixative solution dropwise, gently mix by invert-
ing the tube and centrifuge for 5 min at 250 � g at RT (see
Note 10).

9. Remove supernatant by vacuum aspiration but leave approxi-
mately 200 μl of volume to resuspend cells by flicking. Wash
with 10 ml of fixative and repeat this step 4 more times.

10. Resuspend the pellet in 500 μl of fixative solution and transfer
to a 1.5 ml microtube. The protocol may be stopped at this
point and the cells stored at �20 �C indefinitely.

3.2 Preparing

Metaphase Spreads

1. Warm up cell suspension at room temperature before starting.
If samples have been stored for more than 1 day before starting
this procedure, centrifuge the sample and resuspend cells in
fresh fixative.

2. Clean microscope frosted slides with 70% ethanol, 1 for each
experimental condition, and label them with a pencil on the
frosted side.

3. For this procedure refer to Fig. 4. Hold a microscope slide by
the side of the frosted edge, parallel to the bench and above the
500 ml beaker that will serve to collect waste. Pour 45% acetic
acid as much as to cover the slide, you have to create a layer of

388 Emanuela Tumini and Andrés Aguilera



this solution over the slide. Resuspend cell suspension in fixa-
tive just before its use, collect 100–150 μl with a P200 pipette
and release dropwise on the microscope slide. Just before the
dropping of cell suspension onto the slide, incline the slide to
30–45� angle letting the acetic acid slide away. Drops of cells
suspension have to fall from a height of approximately
10–15 cm above the slide (see Note 11).

4. Tap the edge of the slide opposite to the frosted edge onto
paper towel to remove the excess of liquid. Let the slides air dry
in horizontal position (see Note 12).

5. Before staining, incubate the slides at 65 �C overnight or
alternatively store them for 3 days at room temperature
(aging procedure).

3.3 Sister-Chromatid

Differential Staining

1. Incubate the slides with Hoechst 33258 at 20 μg/ml
(freshly prepared by diluting the 20 mM solution in distilled
water) for 20 min in dark (see Note 13).

2. Wash with distilled water.

Pour acetic acid 45%
on the slide

Hold the slide horizon-
tal with a layer of 

acetic acid on top of it

Tilt the slide 
to an angle 
of 30°- 45°, 
just before 
releasing 
dropwise 
the cell 

suspension

Fig. 4 Schematic representation of the procedure to spread cells on microscope slides
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3. Place the slides upward horizontally on a tray and fill with SSC
2� buffer up to cover them by 1–2 mm. Expose to UVA
irradiation during 1 h.

4. Change the buffer with SCC 2� pre-warmed at 60 �C and
incubate for 20 min at 60 �C (see Note 14).

5. Wash with distilled water.

6. Incubate 5 min in methanol.

7. Incubate 20 min in Giemsa staining solution (Giemsa diluted
1:20 in Weise buffer).

8. Wash one or two times quickly with Weise buffer and let the
slides air dry in a vertical position (seeNote 15). Store the slides
overnight at RT to be sure they completely dry.

9. Metaphase chromosomes could be scored directly under
the microscope or the slides could be mounted using a syn-
thetic resin mounting medium (DPX, Permount, Cytoseal
60 or similar) and 24 � 50 mm coverslips. Soak slides in xylene
before applying the mounting media as a longitudinal line on
the center of the coverslip. Starting from one edge carefully let
the coverslip adhere to the slide and the mounting media
spread homogenously without trapping air bubbles. Remove
the excess of mounting medium and wait until it completely
dries before microscope exploration.

3.4 Chromosome

Spreads Scoring by

Microscope

and Sister-Chromatid

Analysis

1. Using a bright-field microscope, score for metaphases by 40�
dry objective.

2. Once encountered an informative metaphase, change to 100�
oil-immersion objective and capture an image (see Notes 16
and 17).

3. Score and record images of at least 20 metaphases.

4. To analyze the SCEs, use the “cell counter” plugin of the
software ImageJ. Count the number of chromosomes per
metaphase and the number of SCE per chromosome to obtain
the number of exchanges per chromosome.

4 Notes

1. Here, we describe the optimized conditions for these two cell
types. However, thanks to the detailed explanation of every
step of the procedure, this assay could be performed with any
kind of proliferating cell lines, once the cell line-dependent
parameters have been adapted accordingly to the specific cell
features.

2. The optimal seeding density of cells is important. Cells have to
be in exponential grow during BrdU incorporation and at the
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moment of Colcemid treatment. Only exponentially growing
cells would have two rounds of DNA replication and afterwards
would efficiently progress to mitosis. If cells get too close to
confluency it will result in incomplete chromatid labeling
and/or poor metaphases recovery.

3. The best option is to seed cells in late afternoon and feed them
with BrdU the following morning. For fast proliferating cells,
waiting the least possible time between the seeding and the
start of the supplementation with BrdU is helpful in order to
have cells still in exponential growth at the moment of Colce-
mid treatment. In case the cell type needs more time to adhere
properly and start growing after trypsinization and plating, it
might be useful to seed the cells in half of the usual volume
(e.g., in 5 ml instead than 10 ml for a 10 cm plate) and the
following day add 1 volume of medium containing 2� BrdU.

4. Minimize light exposure. BrdU is light sensitive, and cells
incorporating BrdU are more susceptible to light-induced
DNA breaks since light exposure induces photolysis of DNA
at sites of BrdU incorporation.

5. These time points are optimal for HeLa, U2OS, and all the cell
types with similar growth rate. In case of a slower proliferating
cell type, both BrdU and Colcemid incubations could be
lengthened or, in the opposite situation that cells proliferate
faster, they could be shortened. At the moment of Colcemid
treatment, cells should be approximately 70–80% confluent to
ensure their progression through mitosis and the recovery of a
sufficient number of metaphases.

6. Adherent cells such as HeLa or U2OS round up and detach
(or loosen their adherence) from the plate surface when under-
going mitosis, recovering the supernatant and the PBS wash is a
way to recover them all.

7. Single-cell suspension is important to distinguish efficiently
single metaphases. Using small volume, such as 4 ml in this
case, as well as pipetting straight after addition of
FBS-containing medium to trypsin-detached cells, helps avoid
the formation of cellular clumps. In the case that more than
1 plate has to be trypsinized, add FBS-containing medium to
neutralize trypsin and pipette cell suspension one by one. If
plates are numerous you could return most of them to room
temperature a bit before cells are completely detached.

8. To ease the resuspension of the cells, it is better to add the first
1 ml of PBS, resuspend them by pipetting and then add the
remaining 9 ml of PBS and mix the tube by inversion. Homog-
enous cells resuspension works better in smaller volumes.

9. The hypotonic treatment has to be adjusted to cell types. Too
gentle treatment will result in metaphases too close,
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chromosome crowded and overlapping and cytoplasm visible
on the background. Too harsh condition will result in dis-
rupted metaphases that could culminate in a “chromosomes
soup” and in the impossibility to recognize individual meta-
phases. The condition described here works well for HeLa and
U2OS cells.

10. After hypotonic treatment, the cell pellet should have doubled
the size and should appear translucent since swollen cells have
increased their water content.

11. At this point, it is possible to check cell density. In case the
concentration is too high (cells and metaphase overlaps) or too
low (too few metaphases to analyze), the sample could be
diluted with fixative or concentrated after centrifugation,
respectively .

12. The time that a slide takes to dry is a critical parameter because
it influences the good spreading of chromosomes and it
depends on environmental temperature and humidity. If the
conditions are optimal, the slide will take 30–45 s to dry. In
case it takes longer, it could be waved in the air. If, on the
contrary, the slide dries too fast, it could be placed to dry on the
top of a wet paper towel covered with a box lid in order to
create a humid chamber.

13. This incubation could be performed in Coplin jar or, alterna-
tively, to minimize the use of Hochest 33258, slides could be
placed upward horizontally on a tray and 2–2.5 ml of the
solution could be applied on the top of the entire slide.

14. From now on it is convenient to use a glass Coplin jar.

15. At this point, it is worthwhile to check by microscope using a
dry 40� objective whether the staining worked fine. If chro-
mosomes stained too dark, perform another wash with Weise
buffer. If chromosomes are too lightly stained, repeat the
staining with Giemsa staining solution for additional 20 min,
wash quickly with Weise buffer and air dry.

16. A metaphase could be considered informative if the chromo-
somes display the differential staining of chromatids (may hap-
pen that not all the cells underwent two rounds of DNA
replication), they are well separated (not overlapping) and
clearly belonging to the same metaphase cell.

17. Good optics is very important in order to resolve the differen-
tially stained chromatids and the exchanges of DNA between
them. The 100� oil-immersion objective should have a numer-
ical aperture of 1.4. Furthermore, closing the diaphragm aper-
ture helps to increase the contrast and to get a clearer image.
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