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a  b  s  t  r  a  c  t

In  this  work,  discriminant  analysis  is  used  as  the  main  approach  for  building  a physics  based  automated
classifier  for  the  discrimination  of  the  edge-localized  mode  (ELM)  plasma  instability.  The  classifier  is then
applied for  distinguishing  type  I and  type  III  ELMs  from  a set of  carbon-wall  plasmas  at  JET.  This  provides
a fast,  standardized  classification  of ELM  types  which  is expected  to significantly  reduce  the  effort  of ELM
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experts  in  identifying  ELM  types.  Further,  the  classifier  yields  a separation  hyperplane  in  terms  of  global
plasma  parameters,  which  provides  an insight  into  the  range  of  conditions  under  which  specific  ELM
behaviors  occur.

© 2017  Elsevier  B.V.  All  rights  reserved.
ET

. Introduction

Edge-localized modes (ELMs) are magnetohydrodynamic insta-
ilities occurring in the edge region of high confinement fusion
lasmas. ELMs lead to the ejection of energy and particles from
he plasma core and onto the plasma-facing components (PFCs).

hile they are beneficial for impurity regulation, in future devices,
uch as ITER, large unmitigated ELMs will lead to intolerable heat
oads on the PFCs.

A first characterization of ELMs is the identification of their
ype. In this work, a statistical method, discriminant analysis
DA) is employed for developing a simple predictive algorithm
or distinguishing ELM types. As an application of our analysis,
e discriminate between type I and type III ELMs in a set of
arbon-wall (CW) plasmas from the Joint European Torus (JET)
okamak. Previously, several efforts have been made to statisti-
ally characterize [1,2] and provide an automated classification

∗ Corresponding author at: Department of Applied Physics, Ghent University, B-
000 Ghent, Belgium.

E-mail address: geert.verdoolaege@ugent.be (G. Verdoolaege).
1 See the author “list of Overview of the JET results in support to ITER” by X.

itaudon et al. to be published in Nuclear Fusion Special issue: overview and sum-
ary reports from the 26th Fusion Energy Conference (Kyoto, Japan, 17–22 October

016).

ttp://dx.doi.org/10.1016/j.fusengdes.2017.05.101
920-3796/© 2017 Elsevier B.V. All rights reserved.
scheme for ELMs [3–5]. Herein, the advantage with respect to ear-
lier ELM classification works is twofold. First, we rely on routinely
measured global plasma parameters. Secondly, compared to other
classifiers that may  be more accurate, DA yields a separation hyper-
plane between ELM types. Thus we obtain an analytical expression
enabling verification and prediction of the ELM regime in terms
of these parameters, as well as quantification of the significance
of each parameter. Our approach is intended as a tool to support
planning and analysis of experiments.

2. Discriminant analysis

In this section, background on the application of DA [6] to the
discrimination of ELM types is given. DA enables prediction of the
class membership (ELM type) based on a linear or a quadratic com-
bination of plasma parameters. DA is a parametric method and
assumes that the distribution of the plasma parameters within each
class is multivariate normal.

In this work, two  classes (k = 1, 2) of plasmas with type I and type
III ELMs are considered. Each class k with nk plasmas is denoted by

a nk × p data matrix, where p is the number of plasma parameters
and plasma x is a (1 × p) vector from this matrix. The class-specific
probability density of x belonging to class k = r is denoted as fr(x).
Further, �r denotes the prior probability of plasma x belonging to

dx.doi.org/10.1016/j.fusengdes.2017.05.101
http://www.sciencedirect.com/science/journal/09203796
http://www.elsevier.com/locate/fusengdes
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fusengdes.2017.05.101&domain=pdf
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Table 1
Predictive capability of individual plasma parameters using linear discriminant
analysis.

Plasma parameters Leave-one-out CV success rate (%) DV

Bt (T) 73.0 2.35
Ip (MA) 74.0 2.34
ne (1019 m−2) 74.0 6.45
P (MW)  82.0 13.7
18 A. Shabbir et al. / Fusion Enginee

lass r, with �k
r=1�r = 1. The posterior probability of a plasma x

elonging to class k = r is obtained by applying Bayes’ theorem:

(r|x) = fr(x)�r

�k
s=1fs(x)�s

. (1)

he denominator is consistent across all classes; hence it suffices
o estimate class-specific densities fr(x) for each of the classes. It
ollows that we classify x in class r if fr(x)�r is maximal. Each of the
lass densities is modeled as a multivariate normal density:

r(x) = 1

(2�)p/2
√

|�r |
exp ( − 1

2
d2

r (x)). (2)

he Mahalanobis distance of a plasma x to class r is given as

r(x) =
√

(x − �r)t(�r)−1(x − �r). (3)

.1. Linear discriminant analysis (LDA)

All classes are considered to be sharing a common covariance
atrix. Hence, �r = � for all classes r. Taking the logarithm of fr(x)�r

nd after simplifying we obtain for each class, the class scores lr(x)
re given by

r(x) = xt�−1�r − 1
2

(�r)t�−1�r + log(�r). (4)

he score lr(x) is a linear function of x and the decision bound-
ry between two classes is the collection of points x for which

r(x) = ls(x). In p dimensions the boundary between two classes is
hus a hyperplane. The class centers and the common covariance

atrix for the classes are estimated from the plasmas for which the
LM type is known (training data). The standard estimates are:

r = 1
nr

∑
ki=r

xi, (5)

 = 1
n − k

k∑
r=1

∑
ki=r

(xi − �r)(xi − �r)t . (6)

rior class probabilities are also estimated from the data and are
iven as:

r = nr

n
,  (7)

here nr is the number of plasmas belonging to class r and n is the
otal number of plasmas in the data.

.2. Quadratic discriminant analysis (QDA)

Classes do not share a common covariance matrix and the class
core qr(x) is a quadratic function of x. Hence, the decision bound-
ry between any two classes qr(x) = qs(x) is also quadratic. Again,
he covariance matrix for each class is estimated by the sample
ovariance matrix of the training samples in that class.

. Classification of ELM types

.1. Dataset

A dataset comprising 74 type I and 26 type III ELMy plasmas
panning over the shot range [50564–76483] was assembled from
he JET CW experiments. This is an extension of the data set used
arlier by Webster et al. [1] and is the same dataset that was  used

arlier for the visualization of the tokamak operational space in
7]. The analysis, in this work, has been restricted to time intervals
n which the plasma conditions are quasistationary with approxi-

ately constant heating, gas fueling and central density. Further, all
input

�D2 (1022 s−1) 81.0 2.99
ıavg 74.0 0.384

experiments dealing with ELM control and mitigation techniques
have been excluded. The global plasma parameters considered
herein are: vacuum toroidal field at R = 2.96 (Bt, T), plasma current
(Ip, MA), line integrated edge density (ne, 1019 m−2), gas fueling
(�D2 , 1022s−1), input power (Pinput, MW)  and average triangularity
(ıavg). Histograms of plasma parameters for each class are pre-
sented in Fig. 1. From a visual inspection of Fig. 1 it can be observed
that while Bt, Ip and ne appear to have symmetric distributions, �D2 ,
in particular, deviates from the normality assumption. However,
the normality assumption is only a criterion for optimality and LDA
works reasonably well even if this assumption is violated [8,9]. Fig. 1
also indicates a non-trivial classification problem as considerable
overlap amongst the two  classes can be readily observed.

3.2. Performance assessment

Leave-one-out cross validation is used for assessing generaliza-
tion capability of the classifier. For a dataset with N plasmas, N
iterations are performed where N − 1 plasmas are used for training
and the remaining sample is used for testing. The leave-one-out
cross validated (CV) success rate, which here is quoted as the
percentage of ELMy plasmas correctly classified, is in effect, an
estimation of the expected performance of the classifier on an
unknown independent dataset.

3.3. Predictive capability of each plasma parameter

LDA is performed on the plasmas represented by each global
plasma parameter individually. In this case, the estimated covari-
ance matrices coincide with the variances of the two classes and
the discriminant function is reduced to a discriminating value (DV).
This DV, derived under the assumption of equal variances, is then
applied for classification. The DV is given as:

DV = 1
2

(�class 1 + �class 2). (8)

The leave-one-out CV success rates (%) and DVs are presented in
Table 1. Under the assumption of unequal variances (QDA), the
analysis produces success rates similar to those presented in Table 1
(differences are ∼ 1%). Further, Table 1 reveals that the parameters
Pinput and �D2 yield the highest success rates and hence may  play
the main role in the classification between the two  classes. This cor-
responds with established knowledge regarding ELM occurrence.

3.4. Combinations of plasma parameters

DA is then performed on the linear and quadratic combinations
of the plasma parameters, in order to further improve the success
rate. The average and class-wise leave-one-out CV success rates are
given in Table 2. It can be noted that a linear combination of Pinput
and �D2 improves the average leave-one-out CV success rate to

91.0% from (81.0–82.0)% yielded by each of them individually. On
the other hand, a quadratic combination of Pinput and �D2 increases
the average success rate to 89.0%. This is further illustrated in Fig. 2.
It can be readily observed that the vertical and horizontal dashed
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Fig. 1. Histograms of plasma p

ines discriminate the two classes poorly, whereas the solid lines,
hich are a function of Pinput and �D2 , better separate the two

lasses. Further, it can be seen that for 10.4 MW ≤Pinput≤ 16.5 MW
he difference between the quadratic and linear boundary is small
��D2 ≤ 1.0 s−1). However, for Pinput > 16.5 MW,  this difference is
ubstantial.

Fig. 3, presents the decrease in error rate (%) with the addition
f other plasma parameters. An addition of the remaining 4 plasma
arameters, Bt, Ip, ne and ıavg to Pinput and �D2 reduces the average
rror rate to 8% (alternatively, average success rate improves to
2%) for the linear combination of parameters and to 6% for the
uadratic case. While the addition of �D2 to Pinput had reduced
he error rate by a factor of ∼2, the addition of the remaining 4
arameters only lowers it further by 1% for LDA and 5% for QDA.

t is noteworthy that the error rate for type III ELMs reduces by
4% for both LDA and QDA whereas the error rate for type I ELMs

emains unchanged for LDA and lowers by ∼ 5% for QDA. However,
his reduction in error rates comes at the expense of an increased
odel complexity brought about by an increase in the number of
arameters in the discriminant function [10].

From the various models analyzed, the linear combination of
input, �D2 , Bt, Ip along with either ne or ıavg, can be considered
eters in the analyzed dataset.

best models as they yield high average and class-wise success
rates with the least number of parameters. The quadratic combi-
nation of Pinput, �D2 , Bt, Ip and ne gives a slightly higher success rate
amongst all analyzed models. However, the quadratic model is sig-
nificantly more complex, less intuitive and less tractable, than the
linear counterpart. However, if the primary goal is correct classifi-
cation of a new plasma, then this quadratic model can be slightly
advantageous compared to the linear ones.

3.5. Separation hyperplane for type I and type III ELMs

The mathematical form for the linear discriminant functions
derived for the classification of type I and III ELMs is presented
in Table 3. The classification success rates for these linear separat-
ing hyperplanes (boundary) are provided in Table 2. For each of the
discriminant functions, given in Table 3, type III ELMs are expected
if the left-hand side of the expression is less than the constant on
the right-hand side. Otherwise, type I ELMs are expected. Further,

the goodness-of-fit of each discriminant function is indicated by
the Wilks’ � test statistic [11]. Wilks’ � is the ratio of within class
variability to the total variability in the discriminator variables. A
small value (closer to 0) indicates that almost all of the variability
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Table  2
Average and class-wise (type I and type III ELMy plasmas) leave-one-out CV success
(%) for a linear and quadratic combination of plasma parameters obtained by LDA
and  QDA, respectively.

Plasma parameters Leave-one-out CV success (%)

I III Avg

Pinput , �D2

LDA 94.6 80.8 91.0
QDA 90.5 84.6 89.0

Pinput , �D2 , Ip
LDA 94.6 76.9 90.0
QDA 91.9 80.8 89.0

Pinput , �D2 , ıavg
LDA 94.6 80.8 91.0
QDA 91.9 73.1 87.0

Pinput , �D2 , ne
LDA 93.2 76.9 89.0
QDA 90.5 80.8 88.0

Pinput , �D2 , Bt
LDA 90.5 80.8 88.0
QDA 93.2 84.6 91.0

Pinput , �D2 , ıavg , Bt , Ip
LDA 94.6 84.6 92.0
QDA 94.6 88.5 93.0

Pinput , �D2 , ne , Bt , Ip
LDA 94.6 84.6 92.0
QDA 94.6 92.3 94.0

Pinput , �D2 , ıavg , Bt , Ip , ne
LDA 94.6 84.6 92.0
QDA 96.0 88.5 94.0

Fig. 2. The solid line and curve indicate the linear (LDA) and the quadratic (QDA)
discriminant functions for type I and type III ELMs from the analysed plasmas. Ver-
tical  and horizontal dashed lines mark the discriminating values for Pinput and �D2 ,
respectively.

Table 3
Linear separation hyperplanes (boundary) for type I/III ELMs, in terms of global
plasma parameters. Type III ELMs are expected if the left-hand side of the expres-
sion  is less than the constant on the right-hand side. The corresponding classification
success rates (%) are provided in Table 2.

Linear discriminant functions Wilks’ �

L1 Pinput − 1.41�D2 = 7.47 0.60
L2  Pinput − 1.25�D2 + 7.06Bt − 8.81Ip + 0.70ne = 8.75 0.53
L3  Pinput − 0.765�D2 + 12.4Bt − 10.7Ip − 26.1ıavg = 3.96 0.47

Fig. 3. Leave-one-out CV error rate versus the number of combined plasma param-

eters using (a) LDA, (b) QDA.

captured by the discriminant function is due to the class differences.
It can be observed from Table 3 that while each discriminant func-
tion appears to provide a reasonably good fit, discriminant function
L3 provides the best separation of the ELMy plasmas.

4. Conclusions

In this work, a simple, high-accuracy, standardized automated
classifier has been presented which can considerably reduce the
effort of ELM experts in identifying ELM types. Further, the classifier
provides a separation hyperplane in terms of plasma parameters
which reflects underlying physics and can also aid in determining
the operational boundaries for ELMy regimes during experimental
planning.

The future work will involve an expansion of the dataset as well

as the use of normalized global plasma parameters for rendering a
machine independent classifier of ELM types.
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