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Abstract
Fast-ion Dα (FIDA) and collective Thomson scattering (CTS) diagnostics provide indirect measurements of fast-
ion velocity distribution functions in magnetically confined plasmas. Here we present the first prescription for
velocity-space tomographic inversion of CTS and FIDA measurements that can use CTS and FIDA measurements
together and that takes uncertainties in such measurements into account. Our prescription is general and could
be applied to other diagnostics. We demonstrate tomographic reconstructions of an ASDEX Upgrade beam ion
velocity distribution function. First, we compute synthetic measurements from two CTS views and two FIDA
views using a TRANSP/NUBEAM simulation, and then we compute joint tomographic inversions in velocity-space
from these. The overall shape of the 2D velocity distribution function and the location of the maxima at full and
half beam injection energy are well reproduced in velocity-space tomographic inversions, if the noise level in the
measurements is below 10%. Our results suggest that 2D fast-ion velocity distribution functions can be directly
inferred from fast-ion measurements and their uncertainties, even if the measurements are taken with different
diagnostic methods.

(Some figures may appear in colour only in the online journal)

1. Introduction

ASDEX Upgrade is a medium-size tokamak that is equipped
with powerful and versatile auxiliary heating systems: a variety
of fast-ion populations can be generated by eight neutral beam
injection (NBI) sources with a total power of 20 MW and four
ion cyclotron resonance heating (ICRH) antennas with a total
power of 6 MW [1–3]. ASDEX Upgrade is also equipped
with a suite of fast-ion diagnostics: fast-ion loss detectors
(FILDs) [4–6], fast-ion Dα (FIDA) [7], collective Thomson
scattering (CTS) [8–13], neutron spectrometry [14, 15], neutral
particle analysers (NPA) [16, 17] and γ -ray spectrometry [18].
These auxiliary heating systems and fast-ion diagnostics give
unique opportunities to study fast ions in tokamak plasmas.
Each diagnostic observes fast ions in different, restricted parts
of configuration space and velocity space. CTS and FIDA
diagnose confined fast ions in small volumes relative to the
plasma size. FILDs are sensitive to lost fast ions near the

plasma edge that strike the scintilator plates. Passive NPAs,
neutron spectrometers and γ -ray spectrometers detect confined
fast ions anywhere along the lines-of-sight.

We focus here on CTS and FIDA measurements that
could be made at roughly the same location in configuration
space. CTS and FIDA measure spectra of scattered and
emitted radiation, respectively, that constitute 1D functions
of the fast-ion velocity distribution function. Traditionally,
fast-ion CTS or FIDA measurements are often compared with
simulated spectra to investigate if the measurements match
the expectation or if they are anomalous [9, 19, 20]. Orbit-
following codes such as TRANSP/NUBEAM provide the local
2D fast-ion velocity distribution function f , and then synthetic
measurements are calculated from f . However, if the real
measurements disagree with the synthetic measurements, it
is often unclear what caused this discrepancy. Our final
goal is to experimentally determine f , and this might help
establish where in 2D velocity space the measurements
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disagree with the simulation. Inference of tomographic
inversions in velocity space from CTS or FIDA measurements
was recently shown to be an achievable goal [13]. Velocity-
space tomographic inversions are the best fit to the CTS
and FIDA measurements under a regularization condition. It
was also shown that the resemblance of the inversions with
the original 2D ion velocity distribution function improves
with the number of available views, and this motivates
the combination of CTS and FIDA measurements in joint
velocity-space tomographic inversions. Here we derive a new
prescription for velocity-space tomography that allows such
a combination of diagnostics which was not possible with
previous methods [13]. Our new prescription is also the first
to account for uncertainty in the individual measurements.
Lastly, we here present a method to estimate uncertainty levels
in the tomographic inversions.

Among the most wide-spread applications of computed
tomography in configuration space are medical imaging, e.g.
x-ray computed axial tomography (CAT or CT) scanners,
positron emission tomography (PET) scanners or magnetic
resonance imaging (MRI) scanners [21, 22], and it is also
widely used in nuclear fusion research [23–32]. Velocity-
space tomography is less developed [13, 33, 34] but could
be particularly useful in studies of selective ejection or
redistribution in velocity space. Several types of modes affect
ions in only part of velocity space, for example sawteeth
[35–38], Alfvén eigenmodes [6, 39–43] and neoclassical
tearing modes [4, 5]. Turbulent transport of fast ions also
depends on the ion energy [44–47]. Additionally, velocity-
space tomography could be used to monitor phase-space
engineering of fast-ion velocity distribution functions which
has enabled control of sawteeth and neoclassical tearing
modes [48].

We compute joint tomographic inversions of 2D fast-
ion velocity distribution functions from synthetic 1D
CTS and FIDA measurements. The use of synthetic
diagnostics gives us the advantage that we can compare the
underlying, known 2D velocity distribution functions with the
inversions. The synthetic measurements were calculated from
a TRANSP/NUBEAM simulation for the combined four-view
FIDA/CTS system at ASDEX Upgrade. Our joint tomography
method could also combine the fast-ion charge exchange
spectroscopy (FICXS) (that detects light other than Dα but
is otherwise similar to FIDA) and the CTS diagnostics at
the Large Helical Device (LHD) [49, 50]. Moreover, joint
tomographic inversions could be directly relevant to ITER
where the proposed FICXS [51] and the CTS system [52–55]
could be combined even if there is only one CTS view.
Measurements from any other fast-ion diagnostic could be
included in our joint tomography prescription, if quantitative
weight functions describing the measurements such as those
for CTS [34] or FIDA [20, 56] can be formulated. Our joint
tomography method would then also be applicable to other
tokamaks with many-view FIDA systems and additional fast-
ion diagnostics, for example DIII-D [57, 58], NSTX [59] and
MAST. Here we make a start by combining CTS and FIDA.

In section 2 we describe the four-view CTS and
FIDA system at ASDEX Upgrade, and in section 3 we
discuss the combination of CTS and FIDA measurements
and their uncertainties in a joint tomography prescription.

Joint tomographic inversions of a simulated beam ion
distribution function from combined synthetic CTS and
FIDA measurements and their uncertainties are presented in
section 4, and in section 5 we study the effect of noise. Finally,
we discuss the intrinsically complementary nature of CTS and
FIDA measurements in section 6, and we draw conclusions in
section 7.

2. CTS and FIDA measurements at ASDEX
Upgrade

The CTS system at ASDEX Upgrade has two receivers after
installations in 2012, and likewise the FIDA system has two
optical heads. CTS and FIDA measurements are sensitive to
the velocity-space distribution in small measurement volumes.
Except for different shapes and sizes of the measurement
volumes, which we ignore here assuming measurements in
spatial points, the CTS and FIDA measurements could be made
at the same position assuming toroidal symmetry. Hence, four
simultaneous views of the 2D fast-ion distribution function
are now available if the CTS views and the FIDA views are
used together. The spatial resolution of the CTS diagnostic at
ASDEX Upgrade is about 10 cm which is given by the size
of the intersection pattern of the probe beam from a gyrotron
and the receiver field of view. The measurement positions
can be moved freely in the plasma core by means of steerable
antennas. The measurement locations of the two CTS views
can be similar in the poloidal (R, Z) plane if two probe beams
are used. The time resolution is often set to 4 ms given by
the gyrotron modulation frequency. The position of a FIDA
measurement is determined by the intersection of the NBI S3
beam path and the line-of-sight (LOS) of the optical head. The
spatial resolution of the FIDA diagnostic at ASDEX Upgrade
is about 7 cm, and the time resolution is 2 ms.

CTS and FIDA measure 1D functions g which depend on
the respective projection angles φCTS and φFIDA and the fast-ion
2D velocity-space distribution function f that we assume to
be rotationally symmetric about the magnetic field direction.
CTS and FIDA weight functions relate the 2D fast-ion velocity
distribution function f to the 1D measurements g [34, 56].
CTS and FIDA weight functions w are defined by

gCTS(u, φCTS)

=
∫ ∞

−∞

∫ ∞

0
wCTS(u, φCTS, v‖, v⊥)f (v‖, v⊥)dv⊥dv‖, (1)

gFIDA(λ, φFIDA)

=
∫ ∞

−∞

∫ ∞

0
wFIDA(λ,φFIDA,v‖,v⊥)f (v‖, v⊥)dv⊥ dv‖ (2)

where u is the projected velocity and λ is the wavelength of
detected FIDA light. Examples of weight functions for CTS
and FIDA for φCTS = φFIDA = 64◦ are shown in figure 1.

CTS diagnostics are sensitive to 1D projections of f

onto the wave vector kδ = ks − ki which is the difference
between the wave vectors of scattered radiation ks and incident
radiation ki . The most important angle to describe the pre-
selected projection direction given by kδ is the projection angle
φCTS = � (kδ, B) where B is the magnetic field. A frequency
shift νδ of scattered radiation can be related to the ion velocity
v projected onto kδ:

νδ = νs − ν i ≈ v · kδ/2π = ukδ/2π, (3)
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Figure 1. Weight functions [a.u.] at a projection angle of φCTS = φFIDA = 64◦ for (a) CTS and (b) FIDA and a particular velocity or
wavelength interval.

where kδ = |kδ|. We define here a CTS measurement as
detection of the fast-ion phase-space density in a particular
interval in u that is related to an interval in νδ via equation (3).
The projection angles φCTS of the two CTS views can be varied
independently if two probe beams are used.

For FIDA, the fast ions likewise leave a spectral signature
in the detected light by Doppler shift and Stark splitting. FIDA
weight functions are directly parametrized by the wavelength
of detected radiation λ instead of u [20, 56]. Hence we define
here as FIDA measurement the detection of Doppler- and
Stark-shifted light in a particular wavelength interval. The
FIDA optical head observes NBI source S3 in the plasma core
at two different fixed angles φFIDA = � (kLOS, B) where kLOS

is the wave vector along the LOS of the optical heads. The
toroidal LOS has an angle of φFIDA = 11◦, and the poloidal
LOS, that was installed in 2012, has φFIDA = 64◦. The angles
φCTS andφFIDA describing the view, the measurementsgCTS and
gFIDA, and the weight functions wCTS and wFIDA are analogous
and will hereafter simply be called φ, g and w, respectively.
The analogy between CTS and FIDA measurements is reflected
in the form of the weight functions that can be chosen to be
quite similar as we show in figure 1. We will discuss the
differences between the CTS and FIDA weight functions with
identical projection angle φ in section 6.

3. Prescription for joint tomographic reconstruction
from measurements and their uncertainties

We discretize f and the measurements g from CTS and
FIDA into fkl and gij and the coordinates (u, φ, v‖, v⊥) into
(ui, φj , v‖k, v⊥l). The discrete functions fkl and gij are written
into the column matrices F and G, respectively, similarly to
the procedure in [13]. F is a column matrix of size N × 1
obtained from the discrete 2D fast-ion velocity distribution
function described by N = K × L grid points (K grid points
in v⊥ and L in v‖). G is a column matrix of size M × 1
consisting of the discrete 1D functions measured with CTS or
FIDA. M is the total number of measurements in ui (CTS)
and λi (FIDA) made in the J views with projection angles φj .
The subscripts i, j, k, l, m, n run from 1 to the corresponding
upper case letter I, J, K, L, M, N . The discretized form of

equations (1) and (2) is

gij =
K∑

k=1

L∑
l=1

wijklfkl�v⊥�v‖, (4)

where �v⊥ and �v‖ are the cell sizes in v⊥ and v‖, respectively.
Using these discrete weight functions, we can immediately
write down an M ×N transfer matrix W taking F into G [13],
and we obtain the linear system of equations

WF = G. (5)

In real experiments the transfer matrix W and the
measurements G are known, and tomographies can be
found by solving the inverse problem in equation (5).
If the measurements G contain noise, there is no exact
solution irrespective of whether the system of equations is
underdetermined or overdetermined, but we can find a best
fit F + by minimizing a figure of merit χ2. Whereas in [13] we
assumed identical uncertainties in all measurements, we here
allow for individual uncertainties σG,m in each measurement.
For correlated uncertainties in the measurements, the χ2

figure of merit is determined by the covariance matrix of the
measurements CG and the misfit of the measurements [60]:

χ2 =
∑
m,m′

(
Gm −

∑
n

WmnFn

)
C−1

G,mm′

×
(
Gm′ −

∑
n′

Wm′n′Fn′

)
, (6)

where the subscripts denote the matrix elements. We here
assume the uncertainties to be uncorrelated and get the usual
least-squares figure of merit in which the misfit of each
measurement is divided by its uncertainty:

χ2 =
∑
m

(
Gm − ∑

n WmnFn

σG,m

)2

=
∑
m

(
Gm

σG,m

−
∑

n

Wmn

σG,m

Fn

)2

. (7)

In matrix form this becomes

χ2 =| Ĝ − ŴF |2 . (8)

3
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Figure 2. (a) Singular values of the transfer matrix W for combined CTS and FIDA measurements (before normalization with the
uncertainties). (b) Singular values of the transfer matrix Ŵ for combined CTS and FIDA measurements (after normalization with the
uncertainties).
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Figure 3. (a) 2D velocity distribution function f on a very fine grid (300 × 601). (b) Synthetic measurement data in G from two CTS views
with φ = (33◦, 85◦) (left bumps) and two FIDA views with φ = (11◦, 64◦) (right bumps). m is the index of the measurement.

The matrix elements of Ĝ and Ŵ are given by

Ĝm = Gm/σG,m (9)

Ŵmn = Wmn/σG,m, (10)

where repeated indices do not imply summation. We
find a minimum χ2 figure of merit under minimum two-
norm regularization and positivity constraint using the
Moore–Penrose pseudoinverse Ŵ + [61, 62] computed from
the singular value decomposition of Ŵ [63]. Therefore,
the tomographic inversion F + is determined from the
measurements and their uncertainties by

F + = Ŵ +Ĝ. (11)

F + is the least-squares fit to the normalized set of equations

ŴF = Ĝ. (12)

In [13] the figure of merit was simply

χ2 =| G − WF |2 (13)

which is minimized by

F + = W +G (14)

as the best-fit solution to equation (5). Equations (5) and (12)
are equivalent, but here the figure of merit χ2 (equation (8))

is different than in [13] (equation (13)). By this normalization
of W and G with σG here we take the uncertainties of the
individual measurements into account. If all uncertainties are
equal, the reconstruction prescription in [13] is recovered.

The normalization of the measurements and the weight
functions by their respective uncertainties is also essential
to improve the conditioning of the transfer matrix. Without
this normalization the conditioning of W would usually be
poor for combined CTS and FIDA measurements because
CTS and FIDA measure different physical quantities, and
their weight functions are usually given in different units and
have amplitudes that differ by orders of magnitude. The
conditioning of Ŵ , in contrast, should usually be good, and
this well-conditioned transfer matrix allows the combination
of CTS and FIDA measurements. The singular values before
and after the normalization by the uncertainties are shown in
figure 2. Here we assume the uncertainty in each view to be
10% of the maximum value of the respective view.

4. Joint tomographic inversion from combined CTS
and FIDA measurements

First we illustrate the data we use for the inference of F +.
Figure 3(a) shows a beam ion velocity distribution function
for NBI source S3 (60 keV, 2.5 MW) at ASDEX Upgrade
computed with TRANSP/NUBEAM, and figure 3(b) shows
a set of normalized, synthetic CTS and FIDA measurements
of that function. The resolution of the original function, from

4
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Figure 4. (a) Interpolation of the original function from figure 3(a) to the 30 × 61 grid of the tomographic inversion. (b) Inversion using
200 singular values. No additional noise has been added to G. The colour scales in (a) and (b) are identical. Figure 5(e) presents the
inversion with a different colour scale.

which we take the synthetic measurements, is 300 × 601 grid
points. The two bumps to the left in figure 3(b) represent
CTS measurements taken in two views at φ = (33◦, 85◦),
and the two bumps to the right represent FIDA measurements
at φ = (11◦, 64◦) for the two FIDA views. The CTS
measurements are distributed in the u-intervals −5 × 106 <

u < −0.7×106 m s−1 and 0.7×106 < u < 5×106 m s−1 with
a resolution of �u = 0.1×106 m s−1 that is roughly achievable
with the filterbank receivers at ASDEX Upgrade. We do not
use CTS measurements in the interval −0.7 × 106 < u <

0.7×106 m s−1 because bulk ions make unambiguous detection
of fast ions very difficult if not impossible in this interval. The
FIDA measurements are evenly distributed in the wavelength
intervals 649 nm < λ < 654 nm and 659 nm < λ < 663 nm.
FIDA light cannot be observed in the wavelength interval
654 nm < λ < 659 nm due to beam emission and halo
neutrals [7], and we likewise exclude this wavelength range in
the synthetic measurements. Figure 3(b) contains the synthetic
normalized measurements that we use for the inference of
the tomographic inversions. The abscissa is the measurement
index label m that runs from 1 to M , and the ordinate is the
corresponding CTS or FIDA measurement normalized by the
uncertainty of the measurement (10% of the maxima of each
CTS or FIDA view as explained above).

The inversions are calculated on a much coarser grid with
30×61 grid points corresponding to velocity-space resolution
of typical simulations. The original function has been
interpolated to the coarser grid of the inversion in figure 4(a)
to illustrate an upper limit of the achievable resemblance
between the inversion and the original function. If the data are
noisy, it is necessary to truncate the SVD and use lower rank
approximations to the Moore–Penrose pseudoinverse. Explicit
noise will be added in section 5 whereas in this section the noise
originates from the different discretizations of the original
function (300 × 601) and the inversion (30 × 61). Here the
transfer matrixW has a rank of about 320, corresponding to 320
significant singular values (see figure 2(b)). In truncated SVD,
only the largest singular values are used. Figure 4(b) shows a
inversion using 200 singular values. The joint inversion from
a mix of CTS and FIDA measurements reproduces the overall
shape of the underlying function including the location of the
peaks at full and half beam injection energy. However, these
peaks are broader in the inversion than in the original function,
and their amplitudes are approximately 3–4 times smaller.

Figure 5 shows inversions computed with various
truncation levels from 40 singular values to 320 singular values.

From here on we use different colour scales in the inversions
to emphasize the shape of the inferred inversions more clearly.
The two peaks at full and half beam injection energies emerge
if about 80 singular values are used. The peak amplitudes
become larger if more singular values are used, but they
never become quite as large as in the original. Using more
singular values, however, also tends to increase the jitter in the
inversion.

It should be possible to improve the resemblance of
the inversions with the original velocity distribution function
by adding more CTS or FIDA views or other fast-ion
measurements and by increasing the frequency resolution
of the measurements [13]. High-frequency resolution
CTS measurements on the order of 1 MHz were recently
demonstrated which give a few thousand measurements in
frequency space per view [64–66].

5. Joint tomographic inversions from noisy
measurements

In the following we investigate inversions computed from
noisy measurements. Noise makes the smallest singular values
useless, and the inversions then have to be inferred using only
the largest singular values. The lower the noise level, the
more singular values can be used. We add various levels of
uncorrelated Gaussian noise to the synthetic measurements and
infer inversions at various truncation levels of the SVD.

Figure 6 shows inversions computed for a Gaussian noise
level of 2%. The two beam injection peaks again emerge if
about 80 singular values are used. About 240 singular values
contain useful information at 2% noise. In figure 7 we infer
inversions at various noise levels up to 50%. The two peaks
at full and half beam injection energy are visible for 100
singular values at noise levels of 4% (figure 7(a)). At 10%
noise (figure 7(b)), the form of the peaks is distorted by the
noise, and for larger noise levels such as 20% they completely
disappear (figure 7(c)) in the jitter. Nevertheless, even at a
noise level of 50%, the inversion based on 20 singular values
still reveals the coarsest anisotropy features of the original
function (figure 7(d)).

For a matrix equation of the form F + = Ŵ +Ĝ, we
can investigate the propagation of errors from the normalized
measurements Ĝ to the inversion F +. The measurements can
contain correlated noise that can be summarized in the m × m

5
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Figure 5. Tomographic inversions inferred from the synthetic CTS/FIDA four-view data in figure 3(b). 40–320 singular values are used in
(a) to (h). No additional noise has been added to G. The colour scales are different from that of the original in figure 4.

covariance matrix ĈG. We then use standard error propagation
methods [60] to find the n × n covariance matrix C+

F of F +:

C+
F = Ŵ +ĈG(Ŵ +)T . (15)

For uncorrelated noise in the measurements, the diagonal
elements (σ +

F,n)
2 of C+

F are given by

(σ +
F,n)

2 =
∑
m

(Ŵ +
nm)2σ̂ 2

G,m. (16)

Figure 8 shows standard deviations σ +
f , which are

immediately given by the vectors σ +
F , using 100 singular values

(a) and 300 singular values (b). Tomographic inferences

using only the largest singular values are less sensitive to
noise than those using many singular values. For 100 singular
values, the values of f are well above the noise level σ +

f , and
hence a tomographic inversion f + using 100 singular values
is dominated by the measured values g. In contrast, for 300
singular values, the values of f are below the noise level σ +

f ,
and hence this inversion f + is strongly influenced by noise.

6. The complementary nature of CTS and FIDA
measurements

Lastly, we remark that the velocity-space interrogation regions
of CTS and FIDA measurements and the relative weightings

6



Nucl. Fusion 53 (2013) 063019 M. Salewski et al

−3 −2 −1 0 1 2 3
0

1

2

3

v
||
 [106 m/s]

v ⊥
 [

10
6  m

/s
]

1

2

3

x 10
5

(a) 2%, 80 SV

−3 −2 −1 0 1 2 3
0

1

2

3

v
||
 [106 m/s]

v ⊥
 [

10
6  m

/s
]

1

2

3

x 10
5

(b) 2%, 140 SV

−3 −2 −1 0 1 2 3
0

1

2

3

v
||
 [106 m/s]

v ⊥
 [

10
6  m

/s
]

1

2

3

4
x 10

5

(c) 2%, 200 SV

−3 −2 −1 0 1 2 3
0

1

2

3

v
||
 [106 m/s]

v ⊥
 [

10
6  m

/s
]

1

2

3

4

5
x 10

5

(d) 2%, 240 SV

Figure 6. Tomographic inversions inferred from the synthetic CTS/FIDA four-view data in figure 3(b) with 2% Gaussian noise. 80–240
singular values are used. The colour scales are different from that of the original in figure 4.
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Figure 7. Tomographic inversions inferred from the synthetic CTS/FIDA four-view data in figure 3(b) with 4–50% Gaussian noise. In (a) to
(c) we use 100 singular values, in (d) we use 20 singular values. The colour scales are different from that of the original in figure 4.

within these can in fact never coincide, irrespective of how
we choose the scattering geometry. These weightings are
described by the weight functions w that relate the 2D velocity-
space (v‖, v⊥) to the 1D CTS or FIDA measurements of
a spectrum of radiation. CTS and FIDA measurements g

are sensitive to products of their respective weight functions
and the ion velocity distribution function f according to
equations (1) and (2). The basic shapes of CTS and
FIDA velocity-space interrogation regions were illustrated in
figure 1. They are given by 1D projections of velocities of
gyrating ions determining the frequency shifts of detectable

radiation [34]. Despite the identical projection angle in
figure 1, the boundaries of the triangular velocity-space
interrogation region of FIDA have a smaller slope than those for
CTS due to Stark splitting: Stark splitting broadens the FIDA
velocity-space interrogation regions compared with those of
CTS. The weights are also different due to Stark splitting,
the charge-exchange probability, and the probability of a
Balmer alpha photon emission. Figure 1 suggests that the
observable signals emphasize different velocity-space regions
even if the interrogation regions are chosen to be as similar as
possible. This makes direct comparisons of CTS and FIDA
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Figure 8. Standard deviation σ +
f of the inversion obtained from the diagonal elements of the covariance matrix for (a) 100 singular values

and (b) 300 singular values.

measurements difficult as these measurements can never be
redundant; they are complementary irrespective of the viewing
geometry. But the combination of the measurements in joint
inversions turns this intrinsically complementary nature of the
measurements into an advantage. One may then speculate
how to set the projection angles of the available CTS and FIDA
views to obtain the best possible inversion and how many views
are really required. It is firstly beneficial to increase the number
of views and secondly to select very different projection angles
in each view as one would intuitively expect. It is, however,
outside the scope of this work to find optimum projection
angles or number of views, and we will give comprehensive
discussion of these topics elsewhere.

7. Conclusions

We have demonstrated that diagnostic information from CTS
and FIDA measurements can be combined in joint velocity-
space tomographic inversions that provide the best fit to
the measurements under a regularization condition. To
enable this combination of diagnostic methods, we have
derived a new velocity-space tomography prescription that can
use information from any fast-ion diagnostic and that takes
uncertainties in the measurements into account. We infer
tomographic reconstructions using synthetic measurements
with the combined four-view CTS/FIDA system at ASDEX
Upgrade. The synthetic measurements are based on a
beam ion velocity distribution function simulated with
TRANSP/NUBEAM. The overall shape of the distribution
function and the location of the maxima at full and half
beam injection energy are reproduced well in tomographic
inversions, if uncorrelated Gaussian noise in the measurements
has a level below 10%. Joint tomography using real
fast-ion measurements can combine different diagnostic
methods—also other than CTS and FIDA—and can yield an
experimentally determined 2D fast-ion velocity distribution
function.
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