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Abstract

It is well known that the coverage probability of the standard Wald

confidence interval to estimate a binomial proportion has a very erratic

behavior as a function of the parameters n (sample size) and p (probability

of success) . Till now it has been thought that this behavior was “basically

unpredictable”. Nevertheless, the analysis of this behavior allows to obtain

a formula that provides, for a fixed p, all the sample sizes in which the

coverage probability decreases sharply from n-1 to n.
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1. Introduction

To obtain a confidence interval for the probability of success in a binomial

distribution, one of the choices more widely used is the standard confidence

interval based on normal approximation, usually so called Wald interval. Let

us consider a simple random sample X1, ..., Xn from the Bernoulli distribution

with parameter p (where p is the probability of success) and X =
∑n

i=1Xi.

It is well known that X is a binomial random variable with parameters n and

p. The interval, of course, is p̂ ± zαn
−1/2(p̂(1 − p̂))1/2, where p̂ = X/n is the

sample proportion of successes and zα is the 100(1 − α/2)th percentile of the

standard normal distribution. The nominal confidence level of this interval is

1 − α. This definition is easy to present, and is usually justified on the basis

of the central limit theorem. In addition, it can be obtained from the Wald

large-sample normal test. So at first glance, we may think that the problem is

simple and the Wald interval is a solution totally satisfactory.
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Nevertheless, the problem is really complex, because of the discrete nature of

the binomial distribution. It has been pointed out that the coverage probability

of the interval is often very far from the nominal confidence level. In fact, the

majority of textbooks warn that this interval should be used only when certain

conditions are fulfilled. Although the qualifications with which the standard

interval is presented are varied, perhaps the most common is n·min{p, 1−p} ≥ 5

(or 10). This kind of condition is concerned about the poor coverage of the

interval when p is near the boundaries 0 or 1.

Really, the problem of the Wald interval’s coverage probability is far deeper.

In Brown et al. (2001) there are several references to articles in which it has

been pointed out that the coverage properties of the standard interval can be

erratically poor even if p is not near the boundaries and the authors conclude

that this behavior is more persistent than the statisticians have appreciated till

now. In addition, the problem does not get away even when n is quite large.

In this article, we will focus on analyzing the behavior of the coverage prob-

ability as function of n, when (p ≤ 0.5) is fixed. For this situation, Brown et

al. (2001) shows that there exist some “lucky” pairs (n, p) such that the actual

coverage probability is very close to the nominal level, and other “unlucky”pairs

(n, p) such that the corresponding coverage is much smaller than the nominal

level. For instance, when p = 0.05, the actual coverage probability of the nominal

95% interval is 0.953 if n = 17, but falls to 0.919 when n = 40. When p is near

to 0, this erratic behavior is more persistent and disconcerting. For instance,

when p = 0.005 (and the nominal confidence is 95%), the coverage probability

increases monotonically in n to the level 0.945 when n = 591 and then decreases

dramatically to 0.792 if n = 592. The same behavior happens from n = 953 to

n = 954, from n = 1278 to n = 1279, and on and on.

At first glance, the unlucky n appears in an unpredictable way. For instance,

in Brown et al. (2001), p.102, we can read:

“...the coverage of the standard interval can be significantly lower at

quite large samples sizes, and this happens in an unpredictable and

rather random way.”

The main objective of our paper is to analyze, for fixed p ≤ 0.5, why these

sharp decreases happen in the coverage probability and to provide a formula to

obtain all the “unlucky” values of n for which this occurs, without the need to

calculate directly the coverage probability for all n.

Specifically, we have found an “empirical rule” from which we can deduce the

formula that allows us to obtain the values of n in which the coverage probability

decreases when we rise the sample size from n-1 to n. We have found that this

rule is verified, without exception, considering a wide range of values of n and

p, although we could not have demonstrated it formally.

In Section 2, we present the standard Wald interval and the formula that
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allows us to calculate the actual coverage probability of this interval. In Section

3, we analyze the behavior of the coverage probability through some examples

and we establish the empirical rule. In Section 4, we present the formula that

allows us to obtain the “unlucky” values of n. Finally, in Section 5 we indicate

some concluding remarks.

2. The Wald Interval and its coverage probability

Let us consider X a binomial random variable with parameters n and p

(where n is the sample size and p is the probability of success). We want to

obtain a confidence interval (CI) for the unknown parameter p with a confidence

level 1 − α, where α is some specified value between 0 and 1. Because of the

discrete nature of the binomial model, we know that it is not possible to obtain

a nonrandomized confidence interval that always achieves the exact nominal

confidence level. If we want to consider only nonrandomized intervals, the most

that we can achieve is that the coverage probability is “approximately” 1 − α,

that is, Pp[p ∈ CI] ≃ 1 − α. Following Brown et al. (2001) we will use the

notation C(n, p) = Pp[p ∈ CI] for the coverage probability.

One of the most widely used choices is the so called Wald interval. As we

noted in Section 1, the interval is

p̂± zαn
−1/2(p̂(1− p̂))1/2, (2.1)

where p̂ = X/n is the sample proportion of successes and zα = Φ−1(1 − α/2),

where Φ(·) is the standard normal cumulative distribution function. This interval

is obtained from the pivotal quantity

p̂− p√
p̂(1− p̂)/n

,

whose asymptotic distribution is a standard normal distribution.

Thus, we can guarantee that for any fixed p ∈ (0, 1), limn→∞ C(n, p) = 1−α.

However, it is very important to emphasize that fixed p, the coverage probability

is not monotonically increasing in n, that it is very far from the nominal level

for some values of n and that the problem does not go away even when n is quite

large.

From the definition of the interval, we can calculate its coverage probability

by straightforward calculation. Specifically, the probability is

C(n, p) =
∑

L1(n,p)≤j≤L2(n,p)

P [X = j], (2.2)

where L1(n, p) and L2(n, p) are the solutions (in l) of the equations n−1(l +

zα(l(n − l)n−1)−1/2 = p and n−1(l − zα(l(n − l)n−1)−1/2 = p, respectively.
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We can easily solve these equations and we obtain that

L1(n, p) =
n(z2

α + 2np)− zαn
√
zα + 4np(1− p)

2(z2
α + n)

, (2.3)

L2(n, p) =
n(z2

α + 2np) + zαn
√
zα + 4np(1− p)

2(z2
α + n)

, (2.4)

as we can see in Brown et al. (2002). For instance, when p = 0.5 and n = 17,

we obtain L1(17, 0.5) = 4.8508 and L2(17, 0.5) = 12.1492, thus the coverage

probability is given by
∑12

j=5 P [X = j] = 0.9510, taking into account that X is

a binomial random variable with parameters n = 17 and p = 0.5.

3. The reason for the chaotic behavior of the coverage

probability

As we have pointed out in Section 1, the coverage probability of standard

Wald confidence interval has a very erratic behavior as a function of the param-

eters n and p. We will focus our attention on the analysis of such behavior when

n increases and p ≤ 0.5 is fixed.

Example 1: Figure 1 shows the coverage probability of the nominal 95%

interval for fixed p = 0.25 and variable n from 20 to 60. We can appreciate

that there are many “unlucky” values of n, in which the coverage probability

falls sharply, and such values arise suddenly. In our example, these values are

{25, 31, 37, 42, 48, 53, 58}. Let us emphasize that, from now, we will say

specifically that a value of n is “unlucky” if C(n, p) < C(n − 1, p). Though our

interest focusses on the sharp decreases, it is interesting to remark that there is

a systematic negative bias in the coverage probability, since it is almost always

less than the nominal level 1− α = 0.95.

Figure 1: Coverage probability for fixed p = 0.25 and variable n = 20 to 60
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From the formula (2.2) that allows to calculate C(n, p), it is easy to under-

stand at an intuitive level that the oscillation in the coverage probability is caused

by the discreteness of the binomial model. Indeed, given the values of n and p

the coverage probability of the interval is the sum of some of all possible values of

a binomial random variable with parameters n and p. Concretely, we must add

only the probabilities of the integer values in the interval [L1(n, p), L2(n, p)], that

is, the first term is the smallest integer larger than or equal to L1(n, p), namely

ℓn,p, and the last term is the largest integer smaller than or equal to L2(n, p),

namely un,p. Thus, as we can see in Brown et al. (2002), p.167, what happens

is that a small change in n or p can cause ℓn,p and/or un,p to leap to the next

integer value.

Let us consider, for instance, the case p = 0.25 y α = 0.05. For n = 41, we

have L1(41, 0.25) = 5.858 and L2(41, 0.25) = 16.398 and hence ℓ41,0.25 = 6 and

u41,0.25 = 16; when n = 42, we have L1(42, 0.25) = 6.042 and L2(42, 0.25) =

16.718 and therefore ℓ41,0.25 increases to 7, while u42,0.25 remains 16. Thus,

when n increases, the sum loses a term and this fact implies the decrease of the

coverage probability.

4. The formula to obtain the “unlucky” values

Let us consider again the case p = 0.25. Table 1 list the values of L1(n, 0.25),

L2(n, 0.25), ℓn,0.25, un,0.25 and C(n, 0.25) for some values of n. We have high-

lighted with dark background the “unlucky” values of n . Let us remark that

both L1 and L2 are strictly increasing in n (it is easy to demonstrate this prop-

erty calculating the derivatives of both functions and checking that they are

positives). On the other hand, we can verify that the probability decreases when,

and only when, the integer part of L1(n, 0.25) increases.

We have seen empirically for a wide range of values of n and p that the above

property is always verified, without any exception. Thus, we will establish the

following “empirical rule”: Fixed p ≤ 0.5, when we rise from n − 1 to n, the

coverage probability of the Wald interval decreases if and only if the integer part

of L1 increases, that is,

C(n, p) < C(n− 1, p)⇔ ℓn,p > ℓn−1,p. (4.1)

This empirical rule (or conjecture) allows to obtain all the values of n in

which the coverage probability decreases when we rise from n− 1 to n. Indeed,

solving (in n) the equations

L1(n, p) = k, k ∈ N, (4.2)

let us consider {n∗
k}k∈N the set of solutions of such equations. Then, the set

of “unlucky” values of n is given by {nk = Int[n∗
k] + 1}k∈N , where Int[z] is the
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Table 1: Extremes terms of the sum and coverage probability for fixed p = 0.25.

n L1(n, 0.25) L2(n, 0.25) ℓn,0.25 un,0.25 C(n,0.25)

23 2.7164 10.4294 3 10 0.9359
24 2.8799 10.7759 3 10 0.9389
25 3.0450 11.1200 4 11 0.8931
26 3.2116 11.4618 4 11 0.9043
. . . . . . . . . . . . . . . . . .
30 3.8926 12.8101 4 12 0.9410
31 4.0661 13.1428 5 13 0.9057
. . . . . . . . . . . . . . . . . .
36 4.9502 14.7854 5 14 0.9449
37 5.1300 15.1101 6 15 0.9172
. . . . . . . . . . . . . . . . . .
41 5.8581 16.3980 6 16 0.9483
42 6.0422 16.7176 7 16 0.9089

integer part of z. One option to obtain these values of n is to solve numerically

the equation (4.2) using an appropriate software. However, if we square the

equation (4.2), we obtain a fourth degree equation; with help of the software

Mathematica 5.2, we can confirm that this equation has only one real and positive

solution that verifies the initial equation (4.2). Specifically, defining

f(p, zα, k) = k2p2 + 3kp2z2
α (4.3)

g(p, zα, k) = −2k3p3 + 18k2p3z2
α − 27k2p4z2

α (4.4)

h(p, zα, k) =
√

4f(p, zα, k)3 − g(p, zα, k)2, (4.5)

we obtain that the solution of equation (4.2) in which we are interested is given

by

n∗
k =

2k

3p
+

2
√
f(p, zα, k)

3p2
cos

(
1

3
arctan

(
h(p, zα, k)

g(p, zα, k)

))
, (4.6)

and therefore, the succession of “unlucky” values of n, fixed p, is

{
nk = Int

[
2k

3p
+

2
√
f(p, zα, k)

3p2
cos

(
1

3
arctan

(
h(p, zα, k)

g(p, zα, k)

))]
+ 1

}

k∈N

.

(4.7)

Let us remark that applying the general formula to solve fourth degree equa-

tions, the initial solution given by Mathematica 5.2 is

n∗
k =

2k

3p
+

21/3f(p, zα, k)

3p2i(p, zα, k)
+
i(p, zα, k)

3p221/3
,
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Table 2: Extremes terms of the sum and coverage probability for fixed p = 0.005.

n L1(n, 0.005) L2(n, 0.005) ℓn,0.005 un,0.005 C(n,0.005)

2155 5.9863 19.3600 6 19 0.9508
2156 5.9898 19.3665 6 19 0.9502
2157 5.9934 19.3729 6 19 0.9503
2158 5.9970 19.3793 6 19 0.9504
2159 6.0006 19.3857 7 19 0.9056
2160 6.0041 19.3922 7 19 0.9057
2161 6.0077 19.3986 7 19 0.9059

where

i(p, zα, k) =
(
g(p, zα, k) +

√
−4f(p, zα, k)3 + g(p, zα, k)2

)1/3

.

In this expression, i(p, zα, k) is a complex number, because of −4f(p, zα, k)
3 +

g(p, zα, k)
2 is less than 0. But we can see that the second and third fractions in

this formula of n∗
k are conjugate complex numbers. Thus, an alternative formula

is

n∗
k =

2k

3p
+ 2Re

[
i(p, zα, k)

3p221/3

]
,

where Re[z] is the real part of the complex number z. Calculating Re [i(p, zα, k)]

and replacing it in the last formula, we obtain finally (4.6).

Consider p = 0.25. The first values given by formula (4.7) are {12, 19, 25,

31, 37, 42, 48, 53, 58, 63, 68, . . . }. In Example 1, with variable n from 20 to 60,

we obtained the “unlucky” values {25, 31, 37, 42, 48, 53, 58}. We can verify the

consistency between the two series; moreover, without calculating the coverage

probabilities we can state that the next“unlucky”values are 63 and 68. Brown et

al. (2001) consider the case p = 0.005, and they obtain calculating the coverage

probability the first five “unlucky”values {592, 954, 1279, 1583, 1876}. The first

seven terms given by (4.7) in this case are {592, 954, 1279, 1583, 1876, 2159,

2436}, and then we can deduce that the next “unlucky” value is n = 2159. In

fact, Table 2 list the values of L1(n, 0.005), L2(n, 0.005), ℓn,0.005, un,0.005 and

C(n, 0.005) in the neighbor of n = 2159, and we can confirm that the probability

fall occurs in this value of n due to the rise in the integer part of L1.

5. Concluding remarks

Interval estimation of the probability of success in a binomial distribution is

a very basic but very important problem of statistical practice. As it has been

pointed out in Brown et al. (2001,2002), and references therein, the coverage

probability of the most widely used interval, namely the standard Wald interval,
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have a chaotic behavior. Besides, in many cases, this erratic behavior does not

go away even when n is quite large. The authors recommend other alternative

intervals.

The sharp oscillations in the coverage probability is caused by the discrete-

ness of the binomial model and, at first glance, happens in an unpredictable and

random way. We observed a property of the coverage probability of the Wald

interval that helps us to understand why the coverage probability decreases some-

times when we increase from n−1 to n (for fixed p ≤ 0.5), and from this property

we can deduce a formula to obtain all these “unlucky” values of n, without need

to calculate the coverage probabilities.

Let us remark that the restriction p ≤ 0.5 does not reduce generality to

the result, since we can always define the success of the experiment so that its

probability p is smaller than or equal to 0.5.

In future researches, the most interesting thing would be to obtain a formal

proof of the empirical rule given in (4.1).
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