
IJCSS, Vol.1, No.1, 2000 73

DISCOVERING HIERARCHICAL DECISION RULES WITH
EVOLUTIVE ALGORITHMS IN SUPERVISED LEARNING

José C. Riquelme, Jesús S. Aguilar and Miguel Toro

Departamento de Lenguajes y Sistemas Informáticos.
Facultad de Informática y Estadística.

Avenida Reina Mercedes s/n
41012 Sevilla

Spain
e-mail: riquelme@lsi.us.es, aguilar@lsi.us.es, miguel.toro@lsi.us.es

Accepted in the Þnal form: 15 November, 2000

Abstract. This paper describes a new approach, HIDER (HIerarchicalDEcisionRules), for learning
rules in continuous and discrete domains based on evolutive algorithms. The algorithm produces a
hierarchical set of rules, that is, the rules must be applied in a speciÞc order. With this policy, the
number of rules may be reduced because the rules could be one inside of another. The evolutive
algorithm uses both real and binary codiÞcation for the individuals of the population and introduces
several new genetic operators. In addition, this paper discusses the capability of learning systems
based on an evolutive algorithm to reduce both the number of rules and the number of attributes
involved in the rule set. We have tested our system on real data from the UCI repository. The results
of a 10-fold cross validation are compared to C4.5�s and they show an important improvement.

Keywords: Evolutive Algorithms, Supervised learning, Decision Lists.

1 Introduction

Supervised learning is used when the user knows the outcomes of the data samples and wants to
predict the outcome of a new unseen instance. An algorithm carries out the prediction (classiÞcation)
and it can produce knowledge by using a suitable data structure. Some techniques, like nearest
neighbour searching or neural networks, can classify an instance, but cannot obtain the knowledge
from the information stored in the database. This sort of learning is called �lazy learning� because
the algorithm does not generate a model of knowledge for the database. However, other techniques
produce sets of rules with a speciÞc structure: decision trees, decision lists, or simply, set of rules. In
general, when a rule-based framework is used to express the acquired knowledge, this is often called
decision rules. Such rules can subsequently be used both to infer properties of the corresponding
categories and to classify other, previously unseen, examples from the original space.

The algorithm is ran once to produce the set of rules that classify many new instances. Other
techniques as nearest neighbour classiÞers need one execution every time we want to predict the class of
an unseen new example. Therefore, the difference between the techniques that can produce knowledge
and those that cannot is very important from the point of view of the number of executions.

Supervised learning algorithms tend to emulate the human behaviour, since from input conditions
try to predict the action to be taken, based upon experience with similar situations. Such experience

74 IJCSS, Vol.1, No.1, 2000

is collected in a database and knowledge is inferred by means of heuristics or algorithms.
Decision trees are a particularly useful tool in the context of supervised learning because they

perform classiÞcation by a sequence of tests whose semantics is intuitively clear and easy to understand.
Some techniques, like C4.5 [1], construct decision trees selecting the best attribute by using a statistical
test to determine how well it alone classiÞes the training examples. This sort of decision trees may be
called axis-parallel, because the tests at each node are equivalent to axis-parallel hyperplanes in the
space. On the contrary, other techniques build oblique decision trees, as OC1 [2], that tests a linear
combination of the internal attributes at each node, for that, these tests are equivalent to hyperplanes
at an oblique orientation to the coordinate axes. To Þnd out the smallest decision tree (axis-parallel
or oblique) is a NP-hard problem [3]. Both methods use hill-climbing, that is, the algorithm never
backtracks; therefore, it could be converging to locally optimal solutions that are not globally optimal.

Simpson [4] introduced the idea of using hyperrectangles to cluster or classify spatial data. Each
hyperrectangle is viewed as a fuzzy cluster, a fuzzy set in which all of the elements within the hyperrect-
angle have membership 1, and examples outside the hyperrectangle can have a positive membership in
the set depending on a fuzzy membership function. Simpson used a deterministic procedure to place
and appropriately size hyperrectangles to describe data.

Genetic Algorithms (GA) are a family of computational models inspired by evolution. These
algorithms employ a randomized search method to Þnd solutions to a particular problem [5]. This
search is quite different from the other learning methods mentioned above. A GA is any population-
based model that uses selection and recombination operators to generate new sample examples in a
search space [6]. The GA search can move much more abruptly, replacing a parent individual with an
offspring less likely to fall into the same kind of local minima that can happen with the other methods.
GAs have been used in a wide variety of optimization tasks [7, 8] including numerical optimization
and combinatorial optimization problems, although the range of problems to which GAs have been
applied is quite broad. The main tasks in applying GAs to any problem are selecting an appropriate
representation (coding) and an adequate evaluation function (Þtness).

In classical GAs the members of the population (typically maintaining a constant-sized) are rep-
resented as Þxed-length strings of binary digits. The length of the strings and the population size
P are completely dependent on the problem. The population simulates the nature behavior since
the relatively �good� solutions produce offspring, which replace the relatively �worse� ones, retaining
many of the features of their parents. The estimate of the quality of a solution is based on a Þtness
function, which determines how good an individual is within the population in each generation.

New individuals (offspring) for the next generation are formed by using (normally) two genetic
operators: crossover and mutation. Crossover combines the features of two individuals to create
several (commonly two) individuals. Mutation operates by randomly changing several components of
a selected individual.

The aim of our research was to obtain a set of rules to classify a database in the context of
supervised learning. In previous works, we presented a system to classify databases using binary coding
[9]; afterwards, we adopted real codiÞcation to handle efficiently continuous domains and axis-parallel
representations. (In addition, we explored other representations such as rotated hyperrectangles and
hyperellipses). Then, new genetic operators were introduced for real codiÞcation. This method is
conceptually nearer to evolutionary algorithms (EA) than GA. This new system used an EA to search
the best solutions and produced a hierarchical set of rules. The hierarchy follows that an example will
be classiÞed by the ith-rule if it does not match the conditions of the (i − 1)th precedent rules. The
rules are sequentially obtained until the space is totally covered.The behavior is similar to a decision
list [10]. A decision list DL is a list of pairs (f1, v1), . . . , (fr, vr) where each fj is a term in Cnk , each vi
is a value in {0, 1}, and the last function fr is the constant function true. (Cnk denotes the set of all
terms (conjunctions) of size at most k with literals drawn from Ln = {x1, x1, . . . , xn, xn}, therefore,

|Cnk | =
kX
i=0

Ã
2n
i

!
(1)

IJCSS, Vol.1, No.1, 2000 75

If conditions Then class
Else If conditions Then class

Else If conditions Then class
..
Else "unknown class"

Figure 1: Hierarchical set of rules.

A decision list DL deÞnes a boolean function as follows: for any assignment x ∈ Xn, DL(x) is deÞned
to be equal to vj where j is the least index such that fj(x) = 1 (such an item always exists, since the
last function is always true).

It is very important to note that decision rules are not the same thing as decision lists. The concept
of decision rules is more general than decision lists, because a decision list is a linearly ordered set of
decision rules [10].

We extend the concept of decision list to continuous domains. Decision lists work well with objects
that are described as concepts, so it can represent boolean attributes (positives or negatives examples).
However, when we want to learn rules in the context of continuous attributes, we need to extend the
concept of decision list in two ways: Þrst, for adapting the boolean functions to interval functions; and
second, for representing classes instead of true and false values (positives and negatives examples).

We let C denote the set of classes (labels) of a database. For each continuous (real) attribute ai we
obtain the boundary values, called li and ui (lower and upper boundaries, respectively) which deÞne
the space Ri (range of the attribute i). Let Hi be an interval [l, u] where l < u and l, u ∈ Ri, for the
attribute i. Then, an extended decision list EDL is a list of pairs

(f1, v1), . . . , (fr, vr) (2)

where each fi is a function in H1×H2× · · ·Hm, vi is a value in C and m is the number of attributes.
Our EDL does not have the last constant function true as DL has. However, we could interpret

the last function as an unknown function, that is, we do not know which class the example belongs
to. Therefore, it may be advisable to say �unknown class� instead of making an erroneous decision.
The structure of the set of rules will be as shown in Þgure 1.

Decision list policy is applied in order to reduce the number of rules. For an artiÞcial two-
dimensional database, Þgure 2 shows the classiÞcation that C4.5 gives. Nevertheless, as illustrated in
Þgure 3, rules inside of another one could improve the quality of the rule set.

A

B

B

A

B

A

A

A

A

A
A

A

A

B

B B

 A

Figure 2: C4.5

The most evident feature, graphically observed in Þgure 3, is the reduction of the number of rules
because of the rules overlapping.

As mentioned in [11] one of the primary motivations for using real-coded EAs is the precision
to represent attributes values and another is the ability to exploit the gradualness of functions of

76 IJCSS, Vol.1, No.1, 2000

A

B

B

A

B

Figure 3: HIDER

continuous attributes. We implemented our Þrst versions with binary-coded GAs, but we could prove
that real-coded EAs are more efficient (time and quality of results). In addition, HIDER reduces the
number of attributes involved in a rule, making its comprehension by humans easier.

2 Principles

Before an EA can be run, a suitable coding for the problem must be devised. We also require a Þtness
function, which assigns a Þgure of merit to each coded solution. During the run, parents are selected
for reproduction, and recombined to generate offspring. These aspects are described below.

2.1 Coding

In order to apply EAs to a learning problem, we need to select an internal representation of the
space to be searched and deÞne an external function that assigns Þtness to candidate solutions. Both
components are critical to the successful application of the EAs to the problem of interest.

Information of the environment comes from a data Þle, where each example has a class and a
number of attributes. We have to codify that information to deÞne the search space, which normally
will be dimensionally greater. Each attribute will be formed by several components in the search
space, depending on the speciÞc representation.

To Þnd out an appropriate coding for the problem is very difficult, but it is almost impossible to get
the perfect one. There exist two basic principles for choosing the coding: the principle of meaningful
building blocks and the principle of minimal alphabets [5].

In Þrst approaches, we studied several GA-based classiÞer [12, 13] with binary coding. These are
generally used as concept learners, which coding assigns a bit to each value of the attribute, i.e., every
attribute is symbolic (GABIL and GIL are two very known systems). For example, an attribute with
three possible values would be represented by three bits. A value of one in a bit indicates that the
value of the attribute is present. Several bits could be active. This coding is appropriate for symbolic
domains. However, it is very difficult to use in continuous domains, because the number of possible
values of an attribute is inÞnity.

The length of an individual is determined by the sum of the number of values of each attribute.
Using binary encoding in continuous domains requires transformations from binary to real for every
attribute. To apply the evaluation function is necessary to convert the binary to real encoding. This
process increases the computation time by a factor of m (number of attributes).

Moreover, when we convert binary to real, we are loosing precision. For that reason, we have to
Þnd the exact number of bits to eliminate the difference between any two values of an attribute. This
ensures that a mutation of the least signiÞcant bit of an attribute will not include or exclude more
than one example from the training set in a single step. Let li and ui be the lower and upper bounds of

IJCSS, Vol.1, No.1, 2000 77

an attribute. Let mi be the least absolute difference of any two values of the attribute i. The allowed
error for this attribute must be less than mi. Then, the length of an attribute would be as follows:

Li =

»
log2

µ
1 +

ui − li
errori

¶¼
(3)

However, in this paper, to eliminate the problem we use the real codiÞcation. This implies to
redeÞne the genetic operators for it as we see below.

The representation for continuous and discrete attributes is best explained by referring to Þgure
4, where li and ui are values representing an interval for the continuous attribute; bi are binary values
indicating that the value of the discrete attribute is active or not. A last value (omitted) is for the
class.

continuous discrete
attribute b 1 b 2 b k ...

Binary
values

l i u i attribute

Real
values

Figure 4: Continuous (left) and discrete (right) attributes.

The number of classes determines the set of values to which an example belongs, i.e., if there are
Þve classes, the value of a class will belong to the set {0, 1, 2, 3, 4}. Every rule will be obtained from
this representation, but when li = min(ai) or ui = max(ai) the rule will not have deÞned that value
in the interval. For example, in the Þrst case the rule would be [−, v] (the left value of the interval is
equal to the minimum value of the range of the attribute) and in the second one [v,−] (the right value
of the interval is equal to the maximum value of the range of the attribute). If both values are equal
to the boundaries then the rule appears [−,−] for that attribute, which means that it is not relevant.
Under these assumptions, some continuous attributes may not appear in the rule set. In addition,
when every discrete value is active, that attribute does not appear in the rule.

2.2 Algorithm

The algorithm is a typical sequential covering GA [14]. It chooses the best individual of the evolution-
ary process, transforming the individual into a rule, which is used to eliminate data from the training
Þle [15]. In this way, the training Þle is reduced for the following iteration. A termination criterion
could be reached when more examples to cover do not exist. The method of generating the initial
population consists of randomly selecting an example from the training Þle for every individual of the
population. Then, an interval to which the example belongs is obtained by adding and subtracting a
random quantity from the values of the example.

Sometimes, the examples very near to the boundaries are hard to cover during the evolutionary
process. To resolve this problem, the search space is increased (actually, the lower bound is decreased
by 5%, and the upper bound is increased by 5%). For example in one dimension, let a and b be the
lower and upper bounds of the attribute; then, the range of the attribute is b− a; next, we randomly
choose an example (x1, class) from the training Þle; for last, a possible individual of the population
could thus be (x1 − range× k1, x1 + range× k2, class) where k1 and k2 are random values belonging
to [0, rangeN] (N is the size of the training data, and class is the same of that of the example). For
discrete attributes, this is not a problem because the individual has the same active values as the
example. The evolution module includes elitism: the best individual of every generation is replicated
to the next one. A set of children (50%) is obtained from copies of randomly selected parents, generated
by their Þtness values and using the roulette wheel selection. These individuals could be mutated later
(only the individual from the elite will not be mutated). The remainder is formed through crossovers.
Afterwards, mutation is applied depending on a probability.

An overview of the EA-based classiÞer is shown in the Þgure 5.

78 IJCSS, Vol.1, No.1, 2000

While exists examples in training file
Step 1. Initialize population
Step 2. Repeat num generations times
Step 2.1. Evaluation
Step 2.2. Select the best
Step 2.3. Replication
Step 2.4. Crossover and Mutation

Step 3. Put the best one in Decision List
Step 4. Eliminate examples covered by best

Figure 5: Pseudocode.

Wright�s linear crossover operator [16] creates three offspring: treating two parents as two points
p1 and p2, one child is the midpoint of both, and the other two lie on a line determined by 3

2p1 − 1
2p2

and −12p1 + 3
2p2. Radcliffe�s ßat crossover [17] chooses values for an offspring by uniformly picking

values between (inclusively) the two parents values. Eshelman and Schaffer use a crossover operator
that is a generalization of Radcliffe�s which is called blend crossover (BLX-α). It uniformly picks
values that lie between two points that contain the two parents, but may extend equally on either
side determined by a user speciÞed EA-parameter α. For example, BLX-0.1 picks values from points
that lie on an interval that extends 0.1I on either side of the interval I between the parents. Logically,
BLX-0.0 is the Radcliffe�s ßat crossover.

Our crossover operator is like Radcliffes�s most of the time, and sometimes the value is perturbed
to approximate it to the boundary. Let [l1, u1] and [l2, u2] be the intervals of two parents for the
same attribute. In the Þgure 6 the parents are in the Þrst two segments. From these parents we can
generate four possible children selecting values as follows: let [l, u] be the interval we want to obtain
after applying the crossover to two parents and let L and U be the boundaries of the attribute being
treated. We have four possibilities (the percentages of application are to the right):

l ∈ [l1, l2] u ∈ [u1, u2] 85%
l ∈ [L,min(l1, l2)] u ∈ [max(u1, u2), U] 5%
l ∈ [l1, l2] u ∈ [max(u1, u2), U] 5%
l ∈ [L,min(l1, l2)] u ∈ [u1, u2] 5%

1 1 u 1

1 2 u 2

(1)

(2)

Figure 6: Axis-Parallel crossover operator.

Mutation is applied in two different ways: if the randomly chosen location corresponds to a value
of the interval, then a quantity is subtracted or added, depending on whether it is the lower or the
upper bound, respectively (the quantity actually is the lower Euclidean distance between any two
examples); if the location corresponds to the class, a new value is randomly generated.

When the attribute is discrete, the crossover operator is like uniform crossover [18] and mutation
is applied with low probability. We introduce a speciÞc mutation operator to generalize the attribute

IJCSS, Vol.1, No.1, 2000 79

when almost all values are 1. In this case, the attribute does not appear in the rule. For example in
Þgure 10, the attribute sex is not in the rule R1.

2.3 Relaxing coefficient

Databases used as training Þles do not have clearly differentiated areas. Therefore, to obtain a rule
system totally coherent (without error from the training Þle) involves a high number of rules. We
showed in previous papers [19] a system capable of producing a rule set exempt from error; however
sometimes, it is interesting to reduce the number of rules for having a rule set which may be used
like a comprehensible linguistic model. In this way, it could be better to have a system with fewer
rules, despite some errors, than too many rules and no errors. When databases present a distribution
of examples very hard to classify, it may be interesting to introduce the relaxing coefficient (RC) for
understanding the behavior of databases by decreasing the number of rules [20]. RC indicates what
percentage of examples inside of a rule can have a different class than what the rule has. RC behaves
like the upper bound of the error with respect to the training Þle, that is, as an allowed error rate.
To deal efficiently with noise and Þnd a good value for RC, the expert should have an estimate of the
noise percentage in its data. For example, if database X produces too many rules when RC is 0, we
could set RC to 5 to decrease the number of rules and, possibly, the error rate might be the same as
before.

2.4 Fitness function

The Þtness function must be able to discriminate between correct and incorrect classiÞcation of exam-
ples. Finding an appropriate function is not a trivial task, due to the noisy nature of most databases.

The evolutionary algorithm minimizes the Þtness function f for each individual. It is given by

f(i) = 2(N −CE(i)) +G(i) +Coverage(i)
where the rule coverage is the value of the side of a k-dimensional hypercube which volume is equivalent
to the volume of the k-dimensional region covered by the rule; CE(i) is the class error, which are
produced when the example i belongs to the region deÞned by the rule, but does not have the same
class; G(i) is the number of goals of the rule. Every rule can be quickly expanded for Þnding more
examples due to the rule coverage in the Þtness function. The reason why f(i) is not N − CE(i) +
G(i) + Coverage(i) is as follows: for example, when CE(i) = 7 and G(i) = 9 we will have the same
Þtness value as when CE(i) = 15 and G(i) = 17 (the difference is 2; assuming the same coverage for
both). Therefore, we decided to penalty the second case (97 is greater than

17
15).

3 Application

The experiments described in this section are from the UCI repository [21]. To measure the perfor-
mance of the method, a 10-fold cross validation was realized with each dataset. It is very important
to note that every execution has been carried out with a population size of as little as 100 individuals
and 300 generations for the EA. These are very low numbers considering the number the examples
and the dimensionality of some databases. HIDER needed about 8 hours to complete the 10-fold cross
validation for the 18 databases on a Pentium 400Mhz with 64Mb of RAM. However, C4.5 only needed
about 8 minutes on the same machine. C4.5 is an extremely robust algorithm that performs well on
many domains. It is very difficult to consistently outperform C4.5 on a variety of datasets. Thus,
improving C4.5 should yield an interesting learning algorithm.

The results of these trials appear in tables 1, 2 and 3. Table 1 gives a 10-fold cross validation of
the error rates for the C4.5 and HIDER algorithms on the selected domains.

Table 2 compares the number of rules generated by the two approaches. From the point of view of
the comprehension of the knowledge inside the database, HIDER is much better than C4.5 since the
number of rules is very much lower.

80 IJCSS, Vol.1, No.1, 2000

Table 1: Comparing error rates.
Database C4.5R8 HIDER
Bupa 34.73 35.71
Breast Cancer 6.28 4.29
Cleveland 26.77 20.49
German 32.1 29.1
Glass 32.73 29.41
Heart 21.83 22.32
Hepatitis 21.42 19.41
Horse Colic 19.0 17.64
Iris 4.67 3.33
Lenses 29.99 25.0
Mushroom 0.01 0.76
Pima 32.06 25.9
Sonar 30.31 43.07
Tic-Tac-Toe 14.2 3.85
Vehicle 30.6 30.6
Vote 6.19 6.42
Wine 6.71 3.95
Zoo 7.0 8.0
Average 19.81 18.29

The set of rules generated for the Wine database is presented in Þgures 7 and 8. The exact same
folds were used for both algorithms so that the ten resulting performance numbers for HIDER and
C4.5 are pairwaise comparable. HIDER produced an error rate of 0%, however, that of C4.5 was
22.2%.

c12 <= 2.15 :
| c4 <= 17.5 : 2 (6.0)
| c4 > 17.5 : 3 (45.0/2.0)
c12 > 2.15 :
| c13 <= 725 : 2 (54.0/1.0)
| c13 > 725 :
| |c10 <= 3.4 : 2 (4.0)
| | c10 > 3.4 : 1 (51.0)

Figure 7: Decision Tree generated by C4.5 for Wine database.

Table 3 shows a measure of improvement (²) for the error rate (Þrst column: (²er)) and the number
of rules (second column: (²nr)). To calculate those coefficient (²er and ²nr, respectively) the error rate
(number of rules) of C4.5 has been divided by the error rate (number of rules) of HIDER. The last
row contains the average of every column. On average, HIDER found solutions that had less than half
of the rules output by C4.5. Surprisingly, C4.5 generated a number of rules Þve times greater than
HIDER for one third of the databases.

Figures 9 and 10 illustrate an example a little more complex (Hepatitis database), which shows
that when the number of rules is large, the number of attributes involved in the rule set is also reduced.
Thus, in the example, C4.5 uses 63 conditions and HIDER uses 30 conditions.

Morover, the error rate was 31.2% for C4.5, in contrast with 12.5% for HIDER (using the same
fold).

IJCSS, Vol.1, No.1, 2000 81

Table 2: Comparing number of rules.
Database C4.5R8 HIDER
Bupa 28.6 11.3
Breast Cancer 21.9 2.6
Cleveland 35.2 7.9
German 181.5 13.3
Glass 29.0 19.0
Heart 29.2 9.2
Hepatitis 13.8 4.5
Horse Colic 39.3 6.0
Iris 5.5 4.8
Lenses 4.1 6.5
Mushroom 15.5 3.1
Pima 93.6 16.6
Sonar 16.8 2.8
Tic-Tac-Toe 93.9 11.9
Vehicle 102.3 36.2
Vote 14.7 4.0
Wine 5.4 3.3
Zoo 9.9 7.2
Average 41.12 9.46

IF R1: c7 [1.08,-] and
c10 [3.82,-] and
c13 [741.80,-] : 1(51|0)

ELSE IF R2: c7 [1.14,-] and
c11 [0.68,-] and
c12 [1.61,-] : 2(64|1)

ELSE IF R3: c4 [11.57,-] : 3(43|0) ELSE unknown

Figure 8: Hierarchical Decision List generated by HIDER for Wine database.

4 Conclusions

A supervised learning tool to classify databases is presented in this paper. It produces a hierarchical
set of decision rules where the conditions of each rule indicate if an example belongs to a region. The
number of rules is reduced with regard to other systems, like C4.5, and improves the ßexibility to
construct a classiÞer varying the relaxing coefficient. We also have explored several types of crossover
and mutation operators. Finally, real-coded genetic algorithms are more efficient Þnding rule sets than
binary-coded ones on supervised learning with continuous domains. The tables show how effective
HIDER is, particularly, with respect to the number of rules. The error rate provided by C4.5 is
about 20% greater. Likewise, the number of rules provided by C4.5 is about a factor of four greater
than HIDER produces. In addition, the number of attributes involves in the rule set is reduced too.
Therefore, HIDER would be considered an approach of great quality.

Acknowledgements

The research was supported by the Spanish research agency CICYT under grant TIC99-0351.

82 IJCSS, Vol.1, No.1, 2000

Table 3: Comparing global results.
Database ²er ²nr
Bupa 0.97 2.53
Breast Cancer 1.46 8.42
Cleveland 1.31 4.46
German 1.10 13.65
Glass 1.11 1.53
Heart 0.98 3.17
Hepatitis 1.10 3.07
Horse Colic 1.08 6.55
Iris 1.4 1.15
Lenses 1.20 0.63
Mushroom 0.01 5.00
Pima 1.24 5.64
Sonar 0.70 6.00
Tic-Tac-Toe 3.69 7.89
Vehicle 1.00 2.83
Vote 0.96 3.68
Wine 1.70 1.64
Zoo 0.88 1.38
Average 1.22 4.40

References

[1] J. R. Quinlan, C4.5: Programs for machine learning, Morgan Kaufmann, San Mateo, California,
1993.

[2] S. K. Murthy, S. Kasif, and S. Salzberg, �A system for induction of oblique decision trees,�
Journal of ArtiÞcial Intelligence Research, 1994.

[3] A. Blum and R. L. Rivest, �Training a 3-node neural network is np-complete,� in Proceedings
of the First ADM Workshop on the Computational Learning Theory, Cambridge, MA, 1988, pp.
9�18.

[4] P. K. Simpson, �Fuzzy min-max neural network,� IEEE Transactions on Neural Networks, vol.
3, pp. 776�786, 1992.

[5] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison-
Wesley, 1989.

[6] D. Whitley, �A genetic algorithm tutorial,� Tech. Rep. CS-93-103, Colorado State University,
Fort Collins, CO 80523, 1993.

[7] S. Forrest, �Genetic algorithms,� ACM Computer Surveys, vol. 28, no. 1, pp. 77�80, 1996.

[8] Z. Michalewicz �Genetic Algorithms + Data Structures = Evolution Programs (Third edition),�
Springer-Verlag, 1996.

[9] J. Aguilar, J. Riquelme, and M. Toro, �A tool to obtain a hierarchical qualitative set of rules
from quantitative data,� in Lectures Notes in ArtiÞcial Intelligence. Springer-Verlag, 1998, pp.
336�346.

[10] R. L. Rivest, �Learning decision lists,� Machine Learning, vol. 1, no. 2, pp. 229�246, 1987.

IJCSS, Vol.1, No.1, 2000 83

ALBUMIN <= 2.8 : 1 (9.0/1.0)
ALBUMIN > 2.8 :
| BILIRUBIN <= 3.5 :
| | PROTIME <= 43 :
| | | LIVER BIG = 0: 2 (3.0)
| | | LIVER BIG = 1:
| | | | SGOT <= 54 : 2 (3.0/1.0)
| | | | SGOT > 54 : 1 (5.0)
| | PROTIME > 43 :
| | | BILIRUBIN <= 1.9 :
| | | | AGE <= 58 : 2 (89.0/2.0)
| | | | AGE > 58 :
| | | | | SGOT <= 55 : 2 (7.0)
| | | | | SGOT > 55 :
| | | | | | SEX = 0: 1 (2.0)
| | | | | | SEX = 1: 2 (2.0)
| | | BILIRUBIN > 1.9 :
| | | | SPIDERS = 1: 2 (6.0)
| | | | SPIDERS = 0:
| | | | | AGE <= 45 : 2 (3.0/1.0)
| | | | | AGE > 45 : 1 (3.0)
| BILIRUBIN > 3.5 :
| | ALBUMIN <= 3.7 : 1 (5.0)
| | ALBUMIN > 3.7 : 2 (2.0)

Figure 9: Decision Tree generated by C4.5 for Hepatitis database.

[11] L. J. Eshelman and J. D. Schaffer, �Real-coded genetic algorithms and interval-schemata,�
Foundations of Genetic Algorithms-2, pp. 187�202, 1993.

[12] C. Z. Janikow, �A knowledge-intensive genetic algorithm for supervised learning,� Machine
Learning, vol. 1, no. 13, pp. 169�228, 1993.

[13] K. A. De Jong, W. M. Spears, and D. F. Gordon, �Using genetic algorithms for concept learning,�
Machine Learning, vol. 1, no. 13, pp. 161�188, 1993.

[14] T. Mitchell, Machine Learning, McGraw Hill, 1997.

[15] G. Venturini, �Sia: a supervised inductive algorithm with genetic search for learning attributes
based concepts,� in Proceedings of European Conference on Machine Learning, 1993, pp. 281�
296.

[16] A. H. Wright, �Genetic algorithms for real parameter optimization,� Foundations of Genetic
Algorithms-1, pp. 205�218, 1991.

[17] N. J. Radcliffe, Genetic Neural Networks on MIMD Computers, Ph.d., University of Edinburgh,
1990.

[18] G. Syswerda, �Uniform crossover in genetic algorithms,� in Proceedings of the Third Interna-
tional Conference on Genetic Algorithms, 1989, pp. 2�9.

[19] J. Aguilar, J. Riquelme, and M. Toro, �Decision queue classiÞer for supervised learning using
rotated hyperboxes,� in Progress in ArtiÞcial Intelligence IBERAMIA�98. Lectures Notes in
ArtiÞcial Intelligence 1484. Springer-Verlag, 1998, pp. 326�336.

84 IJCSS, Vol.1, No.1, 2000

IF R1: ASCITES {2} and
VARICES {2} and
BILIRUBIN [0.77,-] and
ALBUMIN [2.97,6.3] and
PROTIME [38.48,-] : 2(100|8)

ELSE IF R2: AGE [26.88,75.1] and
SEX {1} and
FATIGUE {1} and
ALK PHOSPHATE [35.45,178.83] and
ALBUMIN [2.19,-] and
PROTIME [-,61.01] and
HISTOLOGY {2} : 1(17|1)

ELSE IF R3: ALBUMIN [2.77,-] : 2(11|1) ELSE unknown

Figure 10: Hierarchical Decision List generated by HIDER for Hepatitis database.

[20] J. Riquelme and J. Aguilar, �A ga-based tool to obtain a hierarchical classiÞer for supervised
learning (in spanish),� Revista Iberoamericana de Inteligencia ArtiÞcial, vol. 1, no. 5, pp. 38�43,
1998.

[21] C. L. Blake and C. J. Merz, �UCI repository of machine learning databases,�
�www.ics.uci.edu/mlearn/MLRepository.html, 1998.�

