
Data Set Editing by Ordered Projection

Jesús S. Aguilar, José C. Riquelme and Miguel Toro
Departamento de Lenguajes y Sistemas Inform ́aticos, Facultad de Inform ́atica, Universidad de Sevilla,
Avda. Reina Mercedes s/n. 41012 Sevilla, Spain
E-mail: {aguilar,riquelme,mtoro}@lsi.us.es

Abstract. This paper presents a new approach to data set editing. The algorithm (EOP: Editing by Ordered Projection) has
some interesting characteristics: important reduction of the number of examples from the database; lower computational cost
(O(mn log n)) with respect to other typical algorithms due to the absence of distance calculations; conservation of the decision
boundaries, especially from the point of view of the application of axis-parallel classifiers. The performance of EOP is
analysed in two ways: percentage of reduction and classification. EOP has been compared to IB2, ENN and SHRINK
concerning the percentage of reduction and the computational cost. In addition, we have analysed the accuracy of k-NN and
C4.5 after applying the reduction techniques. An extensive empirical study using databases with continuous attributes from the
UCI repository shows that EOP is a valuable preprocessing method for the later application of any axis-parallel learning
algorithm.

Keywords: Data mining, preprocessing techniques, data set editing, axis-parallel classifiers

1. Introduction

The data mining researchers, especially those dedicated to the study of algorithms that produce
knowledge in some of the usual representations (decision lists, decision trees, association rules, etc.),
usually make their tests on standard and accessible databases (most of them of small size). The purpose
is to verify and validate independently the results of their algorithms. Nevertheless, these algorithms
are modified to solve specific problems, for example real databases that contain much more information
(number of examples) than standard databases used in training. To accomplish the final tests on these
real databases with tens of attributes and thousands of examples is a task that takes a lot of time and
memory size.

Among all the methodologies used by data mining researchers, those based on axis-parallel
classifiers are the most common. These have an important advantage: they are classifiers that provide
easy-to-understand decision rules by humans and are very useful for the expert interested in getting
knowledge from the database. The C4.5 tool [9] is probably the most useful system of this type.

It is advisable to apply to the databases preprocessing techniques to reduce the number of examples
or the number of attributes in such a way as to decrease the computational cost. These preprocessing
techniques are fundamentally oriented to one of the next goals: editing (reduction of the number of
examples by eliminating some of them or calculating prototypes) and feature selection (eliminating
non-relevant attributes). Our algorithm belongs to the first group.

Editing methods are related to the nearest neighbours (NN) techniques [4]. Some of them are briefly
cited in the following lines. Hart [5] proposed to include in the subset S those examples of the training
set T whose classification with respect to S are wrong using the nearest neighbour technique, so that
every member of T is closer to a member of S of the same class than to a member of S of a different class;
Aha et al. [2] proposed a variant of Hart’s method; Wilson [13] proposed to eliminate the examples with
incorrect k-NN classification, so that each member of T is removed if it is incorrectly classified with the
k nearest neighbours; Tomek [11] extended the idea of Wilson eliminating the examples with incorrect
classification from any i = 1 to k, where k is the maximum number of neighbours to be analysed; the
work of Ritter [10] extended Hart’s method and every member of T must be closer to a member of S
of the same class than to any member of T. Other variants are based on Voronoi diagrams [8], Gabriel
neighbours (two examples are said to be Gabriel neighbours if their diametrical sphere does not contain
any other examples) or relative neighbours [12] (two examples p and q are relative neighbours if for
all other examples x in the set, is true the expression dist(p, q) < max{dist(p, x), dist(q, x)}. All of
these techniques need to calculate distances between examples, which is rather time consuming. If n
examples with m attributes are considered, the first methods take O(mn2) time, the Ritter’s algorithm is
O(mn2 + n3); the Voronoi neighbours, Gabriel neighbours and relative neighbours are O(mn3).

In this paper we present an algorithm, called EOP (Editing by Ordered Projection), which has some
important characteristics:

– Considerable reduction of the number of examples.
– Lower computational cost O(mn log n) than other algorithms.
– Absence of distance calculations.
– Conservation of the decision boundaries, especially interesting for applying classifiers based on

axis-parallel decision rules (like C4.5).

We have dealt with several databases from the UCI repository [3]. To show the performance of our
method we have used k-NN and C4.5 before and after applying EOP. Among the most known editing
methods we have chosen IB2 [2], ENN [13] and SRHINK [7]. A 10-fold cross validation for each method
is achieved to reduced the databases. Afterwards, we have used the 1-NN to show the classification
accuracy of the reduced sets using the original tests. In addition, C4.5 generates the decision trees from
the reduced sets and they are proved with the original tests. Several tables with computational costs,
percentages of reduction and classification accuracy for 1-NN, 3-NN, 5-NN and C4.5 are summarised in
the experiment section.

2. Description of the algorithm

If we choose a region where all examples inside have the same class, perhaps we could select some
of them, which are not decisive, in order to establish the boundaries of the region. For example, in two
dimensions we need four examples to determine the boundaries of one region, maximum. In general, in
d-dimensions we will need 2d examples, maximum. Therefore, if a region has more than 2d examples,
we could reduce the number of them.

That is the main idea of our algorithm: to eliminate the examples that are not in the boundaries of
the regions to which they belong. The aim is to calculate which set of examples could be covered by a
“pure” region and then eliminate those inside that are not establishing the boundaries. A region is pure
if all the examples inside have the same class.

 1

 3

 5

 7

 9

 2

 11

 4

 6

 8

 10

 12

I

P

I

P

 I P I P

Fig. 1. An example of database.

 1

 3

 5

 7

 9

 2

 11

 4

 6

 8

 10

 12

I

P

I

P

 I P I P

Fig. 2. The best solution with overlapped rules.

The method is completely heuristic because EOP will independently work with the projection of the
example in each dimension, not all dimensions at the same time. This heuristic could seem poor for lack
of generality, however the results are quite the opposite.

To show graphically (Fig. 1) the idea of our algorithm we use a simple two-dimensional database with
twelve numbered examples and two labels: I (odd numbers) and P (even numbers).

An optimal classifier would obtain the two rules showed in Fig. 2. However, this classifier must be
hierarchical, since it is producing overlapped rules. This is not the case of C4.5 and many others. An
axis-parallel classifier might provide one of the following solutions presented in Figs 3, 4, 5 or 6, where
rules are not overlapped.

Before formally exposing the algorithm, we will briefly explain the main idea. Consider the situation
depicted in Fig. 7: the projection of the examples on the abscissas axis produces four ordered sequences
{I, P, I, P} corresponding to the examples {[9, 3, 5, 1, 11], [8], [7], [4, 6, 2, 12, 10]}. Identically,

 1

 3

 5

 7

 9

 2

 11

 4

 6

 8

 10

 12

I

P

I

P

 I P I P

Fig. 3. One possible solution.

 1

 3

 5

 7

 9

 2

 11

 4

 6

 8

 10

 12

I

P

I

P

 I P I

Fig. 4. One possible solution.

with the projection on the ordinate axis we can obtain the sequences {P, I, P, I} formed by the examples
{[12, 10, 8, 6, 4], [11], [2], [9, 7, 5, 3, 1]}. Each sequence represents a rectangular region as a possible
solution of a classifier (a rule) and the initial and final examples of the sequence (if it has only one, it is
simultaneously the initial and the final one) represent the lower and upper values for each coordinate of
this rectangle. For example, in Fig. 5, there is a rectangle formed by the examples {1, 3, 5, 7, 9}. This
region needs the examples {9, 7} to establish the boundaries of a dimension and the examples {1, 9}
for another one. Therefore, the remaining examples will be candidates to be eliminated because they are
never boundaries. The idea is best understood by analysing the non-empty regions obtained by means
of projections on every axis, as shown in Fig. 7 and deleting the examples that are not relevant so as to
establish the boundaries of a rule (Fig. 8).

 1

 3

 5

 7

 9

 2

 11

 4

 6

 8

 10

 12

I

P

I

P

 I P I

Fig. 5. One possible solution.

 1

 3

 5

 7

 9

 2

 11

 4

 6

 8

 10

 12

I

P

I

P

 I P I

Fig. 6. One possible solution.

2.1. Definitions

Definition 1: Let the attribute Ai be a real variable that takes values in Ii = [mini,maxi]. Then, A is
the attributes space defined as A = I1 × I2 × . . . × Im, where m is the number of attributes.

Definition 2: An example e ∈ E is a tuple formed by the Cartesian product of the value sets of each
attribute and the set C of labels. We define the operations att and lab to access the attributes and its label
(or class): att: E × N → A and lab: E → C , where N is the set of natural numbers.

Definition 3: Let the universe U be a sequence of examples from E. We will say that a database
with n examples, each of them with m attributes and a class, forms a particular universe. Then
U =< u[1], . . . , u[n] > and as the database is a sequence, the access to an example is achieved by means
of its position. Likewise, the access to j-th attribute of the i-th example is made by att(u[i], j), and for
knowing its label lab(u[i]).

 1

 3

 5

 7

 9

 2

 11

 4

 6

 8

 10

 12

I

P

I

P

 I P I P

Fig. 7. Regions without overlapping.

 1

 7

 9

 2

 11

 4

 8

 10

 12

I

P

I

P

 I P I P

Fig. 8. Result of applying EOP.

Definition 4: An ordered projected sequence is a sequence formed by the projection of the universe
onto the i-th attribute. This sequence is sorted out in increasing order and it contains the numbers of the
examples. For example, in Fig. 1, for the first attribute we have {9, 3, 5, 1, 11, 8, 7, 4, 6, 2, 12, 10} and
for the second attribute {12, 10, 8, 6, 4, 11, 2, 9, 7, 5, 3, 1}.

Definition 5: A partition in subsequences is the set of subsequences formed from the ordered projected
sequence of an attribute in such a way as to maintain the projection order. All the examples belonging to
a subsequence have the same class and every two consecutive subsequences are disjointed with respect
to the class. In Fig. 7, we have for the first attribute {[9, 3, 5, 1, 11], [8], [7], [4, 6, 2, 12, 10]} and for
the second attribute {[12, 10, 8, 6, 4], [11], [2], [9, 7, 5, 3, 1]}. Henceforth, a subsequence will be called
a partition.

Definition 6: If an example is in the left or right extreme of a partition, the example is called border. If
the partition only has one example, it is a border. The remainders are not border, but inner. For example,

2 3 3 3 3 3 3 3 3 4

B A A A B B B B C A

values

classes

Fig. 9. QuickSort.

2 3 3 3 3 3 3 3 3 4

B B B B B C A A A A

values

classes

Fig. 10. ReSort.

in the partition obtained in the previous definition, the examples 9, 11, 8, 4 and 10 are borders for the
first attribute.

Definition 7: The weakness of an example is defined as the number of times that that example is not
a border in a partition (i.e., it is inner to a partition) for every partition obtained from ordered projected
sequences of each attribute.

In the previous example, let {[9, 3, 5, 1, 11], [8], [7], [4, 6, 2, 12, 10]} and {[12, 10, 8, 6, 4], [11], [2],
[9, 7, 5, 3, 1]} be the partitions, the weakness of each example is given by:

weakness = 0 ⇒ examples {9, 11, 4}
weakness = 1 ⇒ examples {1, 8, 7, 2, 12, 10}
weakness = 2 ⇒ examples {3, 5, 6}

Definition 8: Those examples whose weaknesses are equal to the number of attributes of the database
are called irrelevant. In our example, there are three irrelevant examples: {3, 5, 6}, and they do not
appear in the solution (Fig. 8).

2.2. Algorithm

The algorithm is conceptually very simple. However, in some cases, it needs special treatment due to
the sorting. To sort the database in increasing order by an attribute is a task achieved by the QuickSort [6]
algorithm. This algorithm is O(n log n), on average.

After applying QuickSort, we might have repeated values with different class. For this reason, the
algorithm firstly sorts by value and, in case of equality, by class. In spite of two comparisons, we could
find the situation depicted as in Fig. 9.

Despite sorting, the examples sharing the same value for an attribute are not nearer to that examples that
have the same class and have another value. In Fig. 9 we can observe that it might be more interesting to
have the examples with value 3 and class B nearer to the example with value 2 and class B. The solution
to that problem consists of resorting the interval containing repeated values. The heuristic is applied to
obtain the least number of changes of class. In this way, the resorting method would produce the output
shown in Fig. 10 from the example in Fig. 9.

We have considered the two different values (2 and 4) as pivots for resorting. Then, every example with
the same class as the left pivot is moved to the left, and every example with the same class as the right pivot
is moved to the right, looking for the adjacent partition. In the middle, the examples will remain with

Input: E: training file (n examples, m attributes)

Output: E edited training file (n* examples)

For each example ei E with i in {1,...,n}

weakness(ei) = 0

For each attribute aj with j in {1,..., m}

Ej = QuickSort(Ej,aj) in increasing order

Ej = ReSort(Ej)

For each example ei Ej with i in {1,...,n}

If ei is not border

weakness(ei) = weakness(ei)+1

For each example ei of E with i in {1,...,n}

If weakness(ei)=m

remove ei from E

Fig. 11. EOP algorithm.

BD.data
BD_N.data

BD_N.test

N={0,1,...,9}

10 sets

10 sets

Fig. 12. Ten-fold cross-validation.

the order generated by QuickSort. That is the algorithmic principle of the method implemented in the
ReSort algorithm. The complexity of the ReSort algorithm is O(n), due to the shifting of equal-valued
examples. Therefore, the average computational cost of the algorithm is O(mn log n), much lower than
other algorithms proposed in the bibliography, normally O(mn2).

The algorithm is illustrated in Fig. 11.

3. Experiments

Tests have been achieved in over several databases of varying complexity from the UCI repository [3].
A summary of the characteristics of these databases appears in the Appendix.

In our experiments they all use the range-normalised Euclidean Metric (EM) [14]. This function
defines the distance between two values r and s of given attribute i as

rn diffi(r, s) =
|r − s|

maxi −mini

The overall distance between two examples x and y is given by

EM(x, y) =

√√√√
m∑

i=1

rn diffi(xi, yi)2

For each database (BD), 10-fold cross-validation was used. A ten-fold cross-validation is performed
by dividing the data into ten blocks of cases that have approximately similar size, and for each block in
turn, testing the model constructed from the remaining nine blocks on the unseen cases in the hold-out
block (Fig. 12).

BD_N.data

METHOD={EOP, IB2, ENN, SHR}

BD_METHOD_N.data 10 x 4 = 40 setsMETHOD

 Percentage of Retention (PR)

 Computational Cost in seconds (CCS)
TABLE 1

N={0,1,...,9}

Fig. 13. Reduction methods.

BD_METHOD_N.data

BD_N.test
K-NN

K={1, 3, 5}

 Error Rate (ER)

 Computational Cost in seconds (CCS)

TABLES 2, 3

10 x 4 x 3 + 10 x 3 = 150 experiments

METHOD={EOP, IB2, ENN, SHR}N={0,1,...,9}

Fig. 14. Comparing the quality of reduced datasets from the editing methods by classifying with {1, 3, 5}-NN.

BD_METHOD_N.data

BD_N.test
C4.5

 Error Rate (ER) TABLE 4

10 x 4 x 3 + 10 x 3 = 150 experiments

METHOD={EOP, IB2, ENN, SHR}N={0,1,...,9}

Fig. 15. Comparing the quality of reduced datasets from the editing methods by classifying with C4.5.

Each reducing method was given a training set (BD N) consisting of 90% of the available data, from
which it returned a subset BD METHOD N (Fig. 13), where METHOD is one of {EOP, IB2, ENN,
SHR} and N is a value in {0, 1, . . ., 9}. For example, from BD 1.data we would obtain BD IB2 1.data
by applying the IB2 method. Since we are using four methods together with ten-fold cross-validation
the total amount of experiments is forty for every database.

The remainder 10% of the unseen data (BD N.test) was tested on the instances of BD METHOD N.data
using k-NN, with k = 1, 3, 5. For example, we could obtain iris ib2 1.data by applying the IB2 method
to the iris 1.data file generated by the cross validation. Afterwards, we will use iris ib2 1.data to classify
iris 1.test by means of the nearest neighbour technique varying k from one to five (odd values). We
report the results from ten datasets to which four editing methods are applied and three classifications are
made, so that the total amount of experiments is 120 (see 10 × 4 × 3 in Fig. 14), plus the classification
over the original (non-reduced) BD N.data (see 10 × 3 in Fig. 14), i.e. 150.

As a further comparison, another widely-used learner, C4.5, was run on these datasets (Fig. 15). For
example, after reducing iris 3.data with EOP, iris eop 3.data was generated, it was given as input to C4.5
and the decision tree generated was used to classify the iris 3.test file (test files are never reduced). The
purpose is to demonstrate that EOP is more useful than other methods if we are interested in producing
axis-parallel-based models like that of C4.5 (decision trees), COGITO [1] (decision lists), and many
others. EOP conserves the axis-parallel decision boundaries better than IB2, ENN and SHRINK.

The experiments show that by applying EOP, the knowledge in the original training file is conserved
into the reduced training file since the decision boundaries of every region in the space are conserved.

A summary of the results of the editing methods appears in Table 1. The first column (CCS) shows the
computational cost in seconds of the complete 10-fold cross-validation (the sum of the ten experiments).

Table 1
Computational cost in seconds (CCS) and percentage of retention (PR) of the editing methods: EOP,
IB2, ENN and SHRINK

DATABASE EOP IB2 ENN SHRINK
CCS PR CCS PR CCS PR CCS PR

BUPA 0,7 79,3 1,7 44,3 7,3 62,5 5,5 45,3
CANCER 2,8 21,2 1,9 8,3 38,9 95,8 22,4 6,1
HAYES-ROTH 0,19 91,33 0,22 47,65 1,1 68,26 0,82 53,12
HEART 1,7 92,5 1,4 32,8 7,9 75,5 5,5 32,4
IONOSPHE 6,3 99,1 3,8 20,2 32,4 86,7 19,8 16,3
IRIS 0,2 66,1 0,1 12,8 1,0 95,3 0,7 10,1
LETTER 331,7 34,8 4720,3 13,8 56629,8 96,1 33371,7 8,8
PIMA 2,4 74,9 8,1 38,1 45,0 71,2 32,4 37,2
average 43,3 69,9 592,2 27,2 7095,4 81,4 4182,4 26,2

Table 2
Computational cost in seconds (CCS) and error rate (ER) of NN, EOP, IB2, ENN and SHRINK using 1-Nearest
Neighbour technique

DATABASE KNN EOP IB2 ENN SHRINK
CCS ER CCS ER CCS ER CCS ER CCS ER

BUPA 0,8 36,6 0,7 38,0 0,4 40,3 0,5 37,4 0,4 38,6
CANCER 4,4 4,0 0,9 6,6 0,4 6,7 4,1 3,9 0,3 21,5
HAYES-ROTH 0,09 32,0 0,09 32,0 0,05 39,5 0,09 48,4 0,06 36,5
HEART 0,9 23,3 0,8 23,7 0,3 26,7 0,7 20,7 0,3 28,5
IONOSPHE 3,6 12,6 3,5 12,9 0,7 16,9 3,1 14,6 0,6 18,9
IRIS 0,1 4,7 0,1 6,0 0,0 8,0 0,1 4,7 0,0 14,0
LETTER 6471,1 4,0 2168,2 7,0 830,8 7,9 6045,4 4,9 549,7 27,6
PIMA 4,9 28,3 3,7 30,5 2,1 35,8 3,5 24,4 1,9 39,7
average 810,7 18,2 272,2 19,6 104,3 22,7 757,2 19,9 69,1 28,2

Table 3
CCS and ER of NN, EOP, IB2, ENN and SHRINK using {1, 3, 5}-Nearest Neighbour technique

DATABASE KNN EOP IB2 ENN SHRINK
CCS ER CCS ER CCS ER CCS ER CCS ER

average 1-NN 810,7 18,2 272,2 19,6 104,3 22,7 757,2 19,9 69,1 28,2
average 2-NN 804,0 20,3 271,6 22,1 105,5 27,9 773,4 20,7 71,6 38,2
average 3-NN 807,3 22,0 274,8 22,9 106,4 29,0 772,1 22,3 70,1 39,5

The second column (PR) presents the average percentages of examples in the original training file that
were included in the reduced file. As catalogued in the last row, the most salient aspect is the large
difference in time between EOP and the other methods when the database has a large number of examples
(for example, letter database).

From the point of view of the computational cost, EOP outperforms the remainder techniques (Table 1).
As the overall averages at the foot of the table indicate, with respect to the computational cost, EOP is
thirteen times faster than IB2. Without taking into account letter database, the average time consumption
is 2, 5 seconds for IB2 and 2.0 seconds for EOP. ENN and SHRINK are much slower, about a hundred
times. SHRINK and IB2 produce the best percentages of retention (26.2% and 27.2%, respectively) at
the expense of increasing the error rate.

In Table 2 the results of the classification using 1-NN are shown. The results obtained by 1-NN, 3-NN
and 5-NN are very similar (see Table 3). As reflected in the average error rate, they are worsening as k is
increasing, from 1 to 5. ENN and EOP reach an interesting error rate, similar to NN without reduction,

Table 4
C4.5: Error rate of the original training files, and the reduced datasets
from EOP, IB2, ENN and SHRINK

DATABASE ORIGINAL EOP IB2 ENN SHRINK
BUPA 33,4 37,7 43,8 33,7 41,2
CANCER 6,7 6,3 13,0 5,7 48,5
HAYES-ROTH 18,3 18,3 16,7 23,5 12,0
HEART 25,5 22,9 32,6 20,7 35,2
IONOSPHE 11,2 11,4 25,4 9,1 48,0
IRIS 4,0 6,0 26,0 6,0 39,3
LETTER 12,1 18,0 27,7 12,5 50,4
PIMA 26,6 28,8 31,9 25,0 36,3
average 17,2 18,7 27,1 17,0 38,9

Table 5
Global comparison

METHOD TIME REDUCTION ERROR 1-NN ERROR C4.5
1-NN – 100.0 18.2 17.2
EOP 43.3 69.9 19.5 18.7
IB2 592.2 27.2 22.7 27.1
ENN 7095.4 81.4 19.9 17.0
SHRINK 4182.0 26.2 29.0 38.9

Table 6
Databases

Databases #Examples #Continuous #Classes
Bupa liver disorder 345 6 2
Breast cancer 699 9 2
Hayes-Roth 132 5 3
Heart disease 270 13 2
Ionosphere 351 34 2
Iris 150 4 3
Letter 20000 16 26
Pima Indian diabetes 768 8 2

even though the percentage of reduction of ENN is very low (the resulting database is almost the same,
without outliers). SHRINK has a marked increase in error (28.2%). Consequently, it is not a good
method for a further classification. As IB2 produces smaller reduced sets, the cost of classifying using
k-NN is logically lower.

The results presented in Table 4 indicate that IB2 has a weaker performance when C4.5 is used. Using
C4.5, EOP is more accurate than IB2 and SHRINK. When the database is reduced with IB2, it does not
conserve the necessary examples so that a parallel classifier, like C4.5, can generate accurate decision
trees. EOP has an error rate of 18.7, IB2, 27.1. ENN (17%) is more accurate than EOP (18.7%), but in
comparison it takes a lot of time, as we observed in Table 1 (43.3 seconds versus 7095.4 seconds).

For the purposes of global comparison, in Table 5 we present the average results of the methods used
in this paper. EOP has a lower cost than the other methods. IB2 and SHRINK reach a great percentage
of reduction, although SHRINK has a very high error rate as with NN as C4.5. Applying C4.5 to the
reduced database generated by IB2, the decision tree produces an error rate greater than that of EOP.

The comparison clearly indicates that EOP is a robust method to reduce databases since it takes a
reasonable time and produces accurate results for both k-NN and C4.5. In addition, it is completely
deterministic and it does not depend on the order of presentation of examples, like IB2, ENN, SHRINK

and many others. This means that it may be more convenient to use EOP as a preprocessing method when
we are interested in proving the accuracy of a learning method based on axis-parallel representation, like
decision lists or decision trees.

Conclusions

In this paper an editing algorithm (EOP: Editing by Ordered Projection) is presented. Its main
application is as a preprocessing method for axis-parallel classifiers (like C4.5). EOP has an important
characteristic: it does not need distance calculations and, therefore, it is not necessary to define it.
NN-based techniques need to initially set some parameters; EOP does not. The computational cost is
lower than other methods O(mn log n). The test set has been realised with eight different databases
from the UCI repository. The results are very interesting because they show that our algorithm is a robust
method to reduce databases for studying other learning algorithms, without losing decision boundaries.
EOP is deterministic; it is neither dependent on random values nor the order of example processing.

At the same time, we are presenting a measure, named weakness, which can help to determine the
importance of an example as a decision boundary. More weakness implies less relevance. Thus, in more
complicated databases we could relax the reduction factor for eliminating which weakness is greater
than or equal to m − k (being k an integer value in [1, m-1]), instead of m, as it is used in the algorithm
above.

Appendix

Table 6 lists the number of examples,number of nominal attributes, and number of continuous attributes
in each database, along with the number of output classes.

Acknowledgements

This work has been supported by the Spanish Research Agency CICYT under grant TIC2001-1143-
C03-02. Thanks to R. López de Mántaras for useful comments and suggestions.

References

[1] J.S. Aguilar, J.C. Riquelme and M. Toro, Decision queue classifier for supervised learning using rotated hyperboxes,
Lecture Notes on Artificial Intelligence 1484 (1998), 326–336.

[2] D.W. Aha, D. Kibler and M.K. Albert, Instance-Based Learning Algorithms, Machine Learning 6 (1991), 37–66.
[3] C. Blake and E.K. Merz, UCI Repository of machine learning databases, 1998.
[4] T. Cover and P.Y. Hart, Nearest Neighbour Pattern Classification, IEEE Transactions on Information Theory 13 (1967).
[5] P.E. Hart, The Condensed Nearest Neighbour Rule, IEEE Transactions on Information Theory IT-14 (1968).
[6] C.A.R. Hoare, QuickSort, Computer Journal 5(1) (1962), 10–15.
[7] D. Kibler and D.W. Aha, Learning representative exemplars of concepts: an initial case study. Proceedings of Fourth

International Workshop on Machine Learning, Morgan Kaufmann, Irvine, CA, pp. 24–30.
[8] V. Klee, On the complexity of d-dimensional Voronoi diagrams, Arch. Math. 34 (1980), 75–80.
[9] J. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann, Publishers, San Mateo, California, 1993.

[10] G.L. Ritter, H.B. Woodruff, S.R. Lowry and T.L. Isenhour, An algorithm for a Selective Nearest Neighbour Decision
Rule, IEEE Transactions on Information Theory 21 (1975).

[11] I. Tomek, An Experiment with the Edited Nearest-Neighbour Rule, IEEE Transactions on Systems, Man, an Cybernetics
SMC-6 (1976).

[12] G.T. Toussaint, The relative neighbourhood graph of a finite planar set, Pattern Recognition 12(4) (1980), 261–268.
[13] D. Wilson, Asymptotic Properties of Nearest Neighbour Rules using Edited Data, IEEE Transactions on Systems, Man

and Cybernetics 2 (1972).
[14] R. Wilson, Advances in Instance-Based Learning Algorithms, Doctoral Dissertation, Brigham Young University, 1997.

