An Enablement Detection Algorithm
for Open Multiparty Interactions

J.A. Pérez, R. Corchuelo, D. Ruiz, and M. Toro
Dept. Lenguajes y Sistemas Informaticos
Universidad de Sevilla

{iperez,corchu,druiz,mtoro}@lsi.us.es

ABSTRACT

Coordination amongst an arbitrary number of entities has
become an important issue in recent years in fields such as e-
commerce, web—based applications and so on. Traditionally,
clasgical client/server primitives have been used to imple-
ment synchronisation and communication. But, when more
than two entities need to coordinate by means of those prim-
itives, the coordination must be decomposed into a number
of client/server biparty interactions, leading the program-
mer to the need of thinking in terms of the protocols needed
to achieve properties like livenes, atomicity and so on. In
this paper, we present an algorithm to perform enablement
detection to implement open multiparty interactions. This
primitive provides a high level of abstraction since the pro-
grammer can implement multiparty coordination without
the need of thinking in terms of protocols.

Keywords: Multiparty interactions, coordination algo-
rithms.

1. INTRODUCTION

In recent years, the development of distributed applica-
tions has been paid much attention, mainly due to the Inter-
net boom. Traditionally, most services provided by means of
the network involved only two entities, a provider entity and
a client entity. For example, a purchase trough the web in-
volved just two entities: a seller and a purchaser. Recently,
more complicated scenarios have emerged, since frequently
several entities collaborate to provide a service. For exam-
ple, in a purchase through the web, the purchaser may order
his or her bank to transfer the sale amount to the seller bank
account. And both seller and purchaser may require each
other to certificate their identity, involving then certification
entities in the scenario.

When more than two entities need to collaborate to achieve
a common goal, coordination becomes an important issue.
Traditionally, coordination has been achieved by means of
client/server primitives (remote procedure call, message pass-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, o post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SAC 2002, Madrid, SPAIN

Copyright 2002 ACM 1-58113-445-2/02/03 ...85.00.

378

ing, and so on). Those primitives are biparty because they
only involve two entities that need to synchronise bhefore ex-
changing data, but this concept can be easily extended to
an arbitrary number of entities that need to agree and co-
operate to achieve a common goal. These interactions are
usually said to be multiparty, and they provide a higher level
of abstraction because they allow to express complex coop-
erations as atomic units. A taxonomy of languages offering
linguistic support for multiparty interactions can be found
in [6]. We think that those interaction models are interest-
ing because they allow to express coordination regardless of
the protocols needed to achieve it.

Most interaction models proposed in the literature are
aimed at coordinating a set of entities that must be known
in advance, i.e., they are static models. Those models are
not adequate for open scenarios such as e-commerce where
frequently entities need to collaborate without knowing one
another. For example, in the purchase through the web, nor
the purchaser knows the account of the seller, neither vice
versa. Furthermore, the seller do not need to know the client
in advance.

In [2], the CAL language is presented. The CAL lan-
guage is aimed at increasing the level of abstraction of a
programme by considering the concurrent behaviour of com-
ponents as an aspect where multiparty interactions are the
sole means for synchronisation and communication. CAL
relies on an open interaction model that allows to express
coordination amongst entities that do not know one another
in advance.

Although several authors have proposed algorithms to im-
plement multiparty interactions as a coordination primitive
[9, 1, 5, 4, 6], they have focused on finding solutions to
achieve exclusion in the scope of static interaction models.
To implement an open, dynamic interaction model we must
deal not only with the exclusion problem, but also with the
enablement detection problem. The enablement detection
consists on finding sets of entities that agree to coordinate
through a given interaction. In an open context, this is an
important problem since in general, it has a high computa-
tional cost.

In this paper we present the algorithms we have devised
to implement enablement detection in the CAL interaction
model. The problem of finding enablements in this model
has a computational combinatorial complexity. But, by
means of the adequate data structures, the algorithms we
propase behave quite efficiently in most practical situations.
Furthermore, they can be customized with a selection algo-

Figure 1: Example of CAL interaction model.

rithm to solve the exclusion problem.

The rest of this paper is organised as follows: section 2
sketches the CAL interaction model; section 3 outlines our
strategy to implement this model; section 4 focuses on the
algorithms we have developed to perform enablement de-
tection, and section 5 glances at the problem of enablement
selection. Next, we show some performance results from our
implementation in section 6, and finally, section 7 shows our
conclusions.

2. ANOPENMULTIPARTY INTERACTION
MODEL

This section presents the CAL [2] interaction model. To
the best of our knowledge, this is the only open, dynamic
interaction model proposed so far. It improves static models
in that it can coordinate entities that do not need to know
one another. This is very important because it makes it
feasible as a coordination primitive for open systems. As
we describe in this section, interactions in CAL work as
templates of static interactions.

In CAL, each interaction is given a name, a number of
roles and a number of slots associated with it. The name
of the interaction is a string which unambiguously identifies
an interaction in the system. When an object is ready to
coordinate with other objects, it offers to participate in one
or more interactions by means of their names.

So, every object can offer participation in one or more
interactions simultaneously. In every offer, a participant
states which role it plays in the interaction, and may estab-
lish constraints on what objects should play the other roles.
An interaction may be executed as long as a set of objects
satisfying the following constraints is found: (i) there is an
object per role willing to participate in that interaction and
play that role; (ii) those objects agree in imteracting with
each other, i.e., the constraints they establish are satisfied.
A set of objects which can execute an interaction is what we
call an enablement.

Figure 1 shows an example with an interaction called I
amongst three objects that must play roles P, Q and R.
Objects p1 and p; make offers to play role P, objects g, and
g2 make offers to play role @, and object r; makes an offer to
play role R. The objects p; and p; require that role () must
be played by ¢q: and g respectively, and vice versa. Neither
P1, q1, p2 nor gz establish constraints on what object should
play role R. On the other hand, the object r1 accepts that
roles P and () can be played by any object.

Since exclusion must be guaranteed, an object cannot
commit to more than one interaction at a time. But, since an
object can offer participation simultaneously in more than
one interaction, it can be in more than one enablement. So,

79

when two or more enablements share objects, they cannot
be executed simultaneously. The set of enablements that
cannot be executed are refused.

When an enablement of an interaction is executed, the
objects in it can communicate by means of the interaction
slots. A slot is a shared variable amongst the objects in the
enablement which is created when the enablement is exe-
cuted. These slots make up a local state that simulates the
temporary global combined state in IP [3], being the most
important difference that an object does not need to have
access to the local state of other objects in order to get the
information it needs. Obviously, a multiparty interaction
delays an object that tries to read a slot that has not been
initialized yet by another object.

3. STRATEGY TO IMPLEMENT THE CAL
INTERACTION MODEL

In this section, we describe the strategy we have used
to implement the CAL multiparty interaction model. We
follow a “divide-and-conquer” strategy, since we split the
execution of an interaction into two steps:

Synchronisation: The execution of an interaction begins
when a set of entities get synchronised and commit
to the interaction. This synchronisation can also be
divided into two steps:

Enablement detection: The participation offers are
analysed to find sets of objects that agree in par-
ticipating in an interaction, i.e, enablements.

Enablement selection: When one or more enable-
ments have been detected, as many as possible of
them should be executed simultaneously, ensur-
ing exclusion. Thus, an election under conflicting
enablements needs to be held.

Communication: Once an enablement of an interaction
having slots has been selected to execute, a set of slots
must be instatiated for it. The details concerning com-
munication fall beyond the scope of this paper.

The algorithm we have developed to implement synchro-
nisation is called a. This algorithm uses a special resource
per interaction, called interaction coordinator. This is an
object which receives the offers of participation in a given
interaction issued by entities in the system.

Enablement detection may be performed in a local man-
ner in the interaction coordinator. In other words, a coor-
dinator can compute the enablements originated by a set of
offers made to it disregarding the offers made to ather co-
ordinators of potentially conflicting interactions. When the
enablement detection algorithmn finds out one enablement,
this enablement is dealt with as if it was an entity which
must compete to achieve exclusion over every participant
in it. This task is performed by an enablement selection
algorithm.

4. ENABLEMENT DETECTION

In this section we describe a-solver, which is the algo-
rithm we have devised to implement enablement detection in
the scope of a. a~solver builds a data structure which holds
the information about every offer being processed. This data

structure is updated (i) every time an offer is received by
the coordinator and (ii) every time that an offer is given up
because the participant that made it is executing an interac-
tion. The latest may happen either because an enablement
of the interaction has been selected for execubion, or be-
cause an enablement of another conflicting interaction has
been selected for execution.

4.1 Data structures

Consider for example a system like the one in Figure 1
with an interaction called I amongst three objects that must
play roles P, (Q and A. Assume that objects p1 and ps make
offers to play rale P, objects g1 and g; make offers to play
role Q and that object r; makes an offer to play role R.

a—solver uses an acyclic directed graph to store the in-
formation about the offers being processed. Every node in
the graph holds a data structure that we call fuple, such
as [p1,(q1), ()] This tuple represents the offer made by p:
and it means that it wants to play role P in interaction I,
requires q; to play role @}, and does not care about which
object should play role R. We say that role P is consoli-
dated in this tuple, whereas role @ requires object ¢ and
role R accepts any object. So, when an offer is received, a
tuple with its information is created for it, and the graph
is updated with this tuple and probably with other tuples
calculated from it. Some of this calculated tuples may stand
for an enablement. Furthermore, when the participant that
made the offer commits to an interaction, the tuple which
holds the information related to such offers is removed from
the graph, and the tuples calculated from it are removed or
updated to take this change into account.

Figure 2 shows the graph built by our algorithm as the
offers made by the objects in our example arrive at the coor-
dinator responsible for interaction J. Assume that the offer
made by p1 arrives first so that a—solver constructs a graph
with only one node [p1, (q1), ()}- If the second offer is made
by object pz, a new node of the form [p3, (gz), ()] is added to
the graph, and no connecting node is constructed because
the tuples so far processed are not compatible, i.e., objects
p1 and p; cannot interact together. If the offer made by q;
is then received, a node of the form [(p1), g1, ()] is added.
Since it is compatible with [p1,(g1), ()], a connecting node
of the form [p1, g1, ()] is added. It indicates that both p; and
g1 want to participate in interaction I and agree in commit-
ting to it together with any object playing role R. Notice
that no enablement is found until object r; makes its offer.
When this happens, two enablements are found simultane-
ously, but they are conflicting because they share r;.

[Py Gy il Pr 0y 1\l

SN\

P @ 0L) (e 0L) (U ae 0)

[V

Figure 2: Consolidation graph for the system in Fig-
ure 1.

380

In order to formalise the concept of comnpatibility amongst
tuples, we define a consolidation operator that is defined
on both the tuples of the graph and its elernents. We re-
fer to this operator as ® and it is defined on tuples as
[e1,ez,.-.,en]O[e], €5, .., en] = [e106€],e20Q€3, . .. ,ea@er].
It is defined on the elements of a tuple by means of the fol-
lowing axioms:

1. p1O(p2) = (P2) Op1 =p1, as long as p, = p;

2. (1) © (p2) = (p2) © (P1) = (p1), as long as p1 = pz
3. po0=00p=>p

4. P o0=00@E) =)

5 0o0=0

Note that this operation is defined on two tuples if and
only if both tuples represent offers that can lead to an en-
ablement. Furthermore, if the ©® operation is defined be-
tween two tuples, the resulting tuple holds the combined
information of the consolidated tuples. For example, this is
the case of [(p1), g1, ()] and [p1, (g1), ()] in Figure 2. The con-
solidation of those tuples is a tuple [p1, q1, ()], which means
that p, wants to play role P in the interaction, that q; wants
to play role), and that both of them accept that role R can
be played by any object. Furthermore, the consolidation op-
eration is not defined on tuples [p1, (q1), ()] and [p3, (g2).],
because they are incompatible since both p; and ¢, are will-
ing to play role P, and p: requires that role @ be played
by ¢1 and pi requires the same role to be played by ga.
Since the graph is built with consolidation amongst the tu-
ples which represent the offers, we usually refer to it as the
consolidation graph. In this graph, we refer to the top—most
tuples (having no outgoing edge) as roots, and we refer to
the bottom-most tuples (with no incoming edge) as leqves.

4.2 Processing offers

Figure 3 shows a routine called ProcessO f fer(T, G). This
routine is the entry—point to a—solver. Parameters T' and
G represent the offer being processed and the current con-
solidation graph, respectively. It simply iterates over the
set of roots of graph G and calls routine Search(T, R) (pre-
sented in the same figure) on each one. Its parameters T
and R represent the current offer and the root where search
begins, respectively. This routine first tries to comnsolidate
tuples T and R, and if it is possible, the consolidated tuple
is returned and inserted in the graph as a parent of both
T and R. Otherwise, a recursive search is performed in the
subgraph whose root is the left child of R. If a consolidation
le ft is found there, it recursively tries to find out a new con-
solidation of left with a tuple in the subgraph whose root
is the right child of R. If such a consolidation if found, then
it is returned because it is the most consolidated tuple that
has been found; else, left is returned. If no consolidation
is found while examining the left subgraph of R, then the
right subgraph is also explored. If no consolidation is found,
then null is returned.

4.3 Offer cancellation processing

Ar we stated before, when an object commits to an in-
teraction, the offers it made give up being valid. So, the
information related to them must be removed from the con-
solidation graph.

For example, assume that participant p; in Figure 1 com-
mits to another interaction. Then, the tuple [p1, (g.), ()]
must be removed from the consolidation graph in Figure 2.
If this tuple was just removed from the graph, it would result
in an inconsistent state since the tuple [p;, g1, ()] would have
one only descendant. Every tuple in the consolidation graph
has either two or zero descendants, since the © operator is
a binary operator.

Figure 4 shows a routine called ProcessCancel(P,G). This
Toutine is the entry-point to the a-solver offer cancellation
algorithm. Parameters P and G are the participant whose
offers are canceled and the current consolidation graph, re-
spectively. The ProcessCancel routine iterates over the set
of leaves of graph G having object P in consolidated state
(in other words, the offers made by P), and calls routine
Delete(T, R) on each one. Its parameter T represents the
offer being deleted. The deletion algorithm consists of (i) re-
placing every parent of the tuple being deleted by the other
descendant of the parent (we assume that Brother(T,p) re-
turns the other descendant that p of tuple T') and (ii) calling
a recursive routine Rebuild(T) (Figure 5) which recursively
re—consolidates the ancestors of tuple T'.

The full cancellation process for the offers of p; is sketched
in Figure 6. The only leaf having p; in consclidated state is
[p1, (q1), ()], so this tuple is passed to routine Delete as argu-
ment T. This algorithm first (1) replaces tuple [p1, g1, ()] by
its other descendant, the tuple [(p1), g1, ())- Since this would
left the graph into an inconsistent state, the Rebuild rou-
tine reconsolidates (2) the tuple [(), (), r1] with [(p1), q1, ()],
giving a tuple [(p1), g1, 71] which replaces [p1, g1, r1]. Finally
(3), the tuple [p1, (g1), ()] is deleted.

It is worth noting that the new root [(p1), q1,71) which
replaces [p1,q1,71] it is not an enablement. In other words,
the consolidation graph has lost an enablement as a con-
sequence of the cancellation. This is what we expected to
happen, because p; has cancelled its offers because it com-
mitted to another interaction. When one enablement of an
interaction executes, every conflicting enablement of other
or even the same interaction must be refused. In our exam-
ple, the enablement [p;,q1,71] has been refused.

The ProcessOf fer and the CancelO f fer algorithms are
formally proven to be correct in [8]. The correctness proof
for the ProcessOf fer algorithm relies on proving that the
Search algorithm always finds the most consolidated tuples
for the input tuple T'. We can easily prove that if the input
tuple T can consolidate with a root of the graph, the result
is the most consolidated tuple for that root. And if the con-
solidation with the root is not possible, it can be recursively
proven that the Search algorithm finds the most consoli-
dated tuple under that root. Then, since a tuple having
every role consolidated is an enablement, and since every
root in the graph is processed, we can prove that the al-
gorithm finds out every enablement originated by an offer.
The correctness proof for the CencelOf fer algorithm relies
on proving that it only affects the tuples containing infor-
mation about the cancelled offer.

4.4 Optimizing ProcessOf fer

Figure 3 shows the basic enablement detection algorithm.
The basic Search algorithm shown in this figure can be op-
timized in three ways, without loss of correctness.

It is worth noting the costs that those optimizations im-
ply. The first optimization is just an algorithmic criterion,

381

ProcessOffer (T: Tuple; G: Graph): Set of Tuple
enablements: Set of Tuple
roots: Set of Tuple
C: Tuple

enablements ¢«
roots « Roots(G)
add T to G as an unconnected leaf

for every R in roots do
€ ¢« Search (T, R)
if (C is not mmnll) and
(every role in C is consolidated then
enablements enablements U (C}
end if
end for

return emablements
end ProcessOffer

Search (T: Tuple; R: Tuple): Tuple
result: Tuple;
left, right: Tuple;

if T and R can consolidate then
result &« T O R
let result be the parent tuple of both T and R
elae
if T is not a leaf then
left + Search (T, leftChild(R))
if left is not mull then
right ¢« Search (left, rightChild(R))
result « (right is not null ? right : left)
else
right ¢« Search (T, rightChild(R))
rasult « (right is not null ? right : null)
end if
else
result « null
end if
end if

return result
end Search

Figure 3: a—solver enablement detection algorithm.

ProcessCancel (P: Object, G:Graph)

for every leaf p ip graph G having P consolidated do
Delete (p)
end for

end ProcessCancel

Delete(T: Tuple)
brother: Tuple

for every p in Parents(T) do
brother « Brother (T, p)
Replace (p, brother)
for every grandparent in Paremts(p) do
Rebuild (grandparent)
end for
end for
delete T from G

end Delete

Figure 4: a—solver cancellation function.

Rebuild (T: Tuple)
parents: Set of Tuple
left, right: Tuple

left « leftChild (T)

right « rightChild (T)

Replace (T, left O right)

for every p in Parenta(T) do
Rebuild (p)

end for

end Rebuild

Figure 5: Recursive rebuild after deletion.

10: 0ir]y

Figure 6: Cancellation of offers from p; in the graph
in Figure 2.

having no cost on memory usage. The second optimizations
require two boolean and one integer attributes for every tu-
ple, and one offer counter. The third optimization requires
the use of indexing functions, that are usually implemented
by means of hash tables or similar data structures. Since
in some theoretical scenarios this can amount to an impor-
tant memory consumption, we have implemented it as an
optional feature, allowing the operator to decide when it
should be performed or when it should not.

4.4.1 Search Stop

The first optimisation we can apply relies on the fact that
in the Search algorithm, when it tries to consolidate the
input tuple T with a R tuple in the graph, and every role in
consolidated state in R fails to consolidate with its partner
in T, there is no tuple R’ descendant of R that could be
consolidated with T'. Then, no more recursion is needed to
process the descendants of T'.

For example, let us assume that the input tuple T =
[p1,(q1),(71), (s1)] is being checked for consolidation with
a tuple B = [(),q2,72, 52]. Tuple R has consolidated g2, 2
and s; in roles ¢, /£ and S respectively. But those three fail
to consolidate with (g¢), (1) and (s.). So, it can be proven
that there is no tuple among the descendants of R that can
be consolidated with T

4.4.2 Avoiding re—processing of nodes

The second optimization we propose relies on the fact that
the consolidation graph consists of a number of binary trees
sharing nodes. Since a node can be reached from more than
one root, it may be processed more than once. But, note
that in algorithm Search a tuple in the graph can be checked
for consolidation (i) with the input tuple R or (ii) with a

382

consolidation of the input tuple T with another tuple in the
graph. This happens when a consolidation is found in the
graph while processing the left subtree of a tuple, and then a
consolidation for it is searched in the right subtree of the tu-
ple. So, we can label every tuple in the graph with a boolean
T —checked flag that is set to true when the tuple is checked
with the T imput tuple. The Search algorithm, when is
searching a consolidation for the 7" input tuple, checks the
T —checked flag of every tuple about to be processed, ig-
noring the tuples (and its descendants) having this flag set
to true. Furthermore, it can be proven that if no consol-
idation was found under a tuple when processing an offer,
regardless of tuple being processed (T or a comsolidation
of T with other tuple), no consolidation can be found in a
subsequent processing. So, we can label every tuple with
a empty boolean flag that is set to true when the tuple is
processed and no consolidation is found under it. When a
tuple with emnpty = true is about to be processed, it can be
ignored since no consolidation can be found.

Labeling every tuple with attributes has an important
drawback, because they must be initialized before every of-
fer is processed. This requires that the whole graph must
be traversed, and that is precisely what we need to avoid.
A solution to this problem is to label every tuple with an
age integer attribute, and using an offer counter that is up-
dated with every offer processed. When a tuple is going to
be processed by the Search algorithm, its age attribute is
compared with the offer counter. If its age value is smaller.
than the offer counter, that is the first time that the tu-
ple is being processed for the current offer, so its attributes
T—checked and emply wmust initially be set to false. If
its age attribute equals the offer counter, that means that
the tuple has already been visited along the current offer
processing, so its T—checked and empty attributes must
be taken into account. Note that when the offer counter
is about to overflow, it must be reset to zero, and the full
graph must be traversed to reset every tuple age attribute.
But, if we use 32 or 64 bits for the counters, this is not a
problem in practice.

4.4.3 Starting Search on advantageous nodes

Finally, the Search algorithm can be optimized making
that the search process begin in nodes as close as possible
to tuples in the graph that consolidates with the input tuple
T, instead of beginning the search from the roots of the
graph. This optimization relies on the principle that if a
T input tuple is like [p1,...] any tuple that consolidates
with it must be like [(p1),...] or [(),...] We can prove
that when a process of a p participant under role P is being
processed, if the search begins (i) in the tuples that reguire
the participant p under role P and (ii) in the tuples that
accept any participant under role P, such that there iz no
other tuple above it in the graph that requires or accepts the
p participant under role P, the correctness of the Search
algorithm is preserved.

5. SELECTION ALGORITHMS

Once an enablement has been found by the enablement
detection algorithm, it must have a chance to be executed.
A selection algorithm must ensure exclusion, deciding thus
whether each enablement must be selected or refused. An
enablement that does not conflict with others should be se-
lected immediately. On the other hand, if an enablement is

rejected, that is because it conflicts with another one that
has already been selected.

Note that since an enablement is determined by a fixed set
of participants, the enablement selection problem is analo-
gous to the problem of interaction selection in a static in-
teraction model. since a-seolver is well-encapsulated into
both routines ProcessCancel and ProcessOf fer, it could
work together with any selection algorithm that fulfills the
following requirements:

e Coordinators of interactions do not need to be aware
one another.

e Participants in an interactions do not need to be aware
one another

If coordinators of interactions do not need to be aware
one another, there is no problem in that new interactions
(enablements) do appear at run—time, since there is no need
nor possibility of communication among them. On the other
hand, since participants do not necessarily know at compile—
time the other participants that are going to participate with
them, it is very important that the algorithm do not need
the participants to be aware one another.

We have developed an algorithm with fulfills those re-
quirements, an that have been successfully integrated with
a—solver. This algorithm is called a-core, and constitutes
together with ar—solver the implementation of o that we de-
veloped for the framework that provides CAL run-time sup-
port. A sketch of a—core can be found at [7], and the full
description and proofs of correctness can be found at [8].

6. PERFOMANCE

We have implemented the algorithms ProcessOf fer and
ProcessCancel described at section 4, and have perform
some tests in order to measure their performance. The sce-
nario we have used in our tests is depicted in Figure 7.

Figure 7: Scenario for testing a-solver.

This scenario consists of an interaction J with five roles
P, @, R, S and T, and 25 participants, offering five of them
to participate under each role in the interaction: partici-
pants Py,...,P; offer to participate under rol P, partici-
pants @1, - .., Qs offer to participate under rol @, and so omn.
We have used a five-party interaction because is accepted
that greater cardinality interactions have little practical ap-
plications [3].

As a measure of our algorithms performance, we have
measured the average number of times that the consolida-

383

tion operation © is computed amongst two tuples, every
time that an offer or a cancellation is processed.

6.1 Perfomance of ProcessOf fer

To measure how the algorithm ProcessOf fer performs,
we have run five tests T1,...T5. Test T1 is the worst case
for the algorithms, since every participant accepts that ev-
ery role in the interaction can be played by any other par-
ticipant. So, 5° = 3,125 enablements are found. In tests
T3, Ta, ... participants make their offers more and more re-
strictive, imposing a restriction on the participant that must
play role P, Q, ... and 50 on, being Ts the best case since ev-
ery participant restricts that every role in the interaction
must be played by ancother concrete participant. So, the
number of enablements found in test T3...T; are respec-
tively 54, 5%, 52 and 5.

Since the third optimization proposed on ProcessOf fer
proposed in section 4.4 algorithm has been implemented as
optional, we have run twice every test 77 ...T5: once with
the optimization enabled, and once with this optimization
disabled. This permits to compare how good the optimiza-
tion is. The increase of memory usage due to the optimiza-
tion has never been greater than 15%.

Averape Nk of Crmmlidation per (Tir L]
- A ——
s AN “ =

\ A _ap 30 5y
am \ 3 I
w \C -
am— = 2
bl - — 9
n n n 'n ™ n B n n
ge Number of C d per
Ensblemenl
20
as ~
m /L
» L
1a [
. P —
ol—_
™ 7 n u =

Figure 8: ProcessOf fer algorithm performance.

The first plot in Figure 8 shows the average number of
consolidation operations computed per offer in each run.
We can appreciate that the number of operations computed
decreases dramatically when the test is run with the opti-
mization enabled. The second plot shows the relationship
amongst the number of operations computed with and with-
out the optional optimization. The improvement due to the
optimization increases as the restrictions imposed by the
participants are more restrictive, since they provide more
information useful to determine where the search process
should begin.

Nevertheless, the results of test T} in first plot may seem
poor. Is executing an average of 470 or 156 consolidation
operations per offer a good performance? Yes, indeed it is,
because we should also take into account the average number
of enablements found per offer. The third plot in Figure 8
shows the average number of consolidation operations com-
puted per enablement found, as much in the test with and

without the optional optimization. This gives us the cost
of finding an enablement. So, in test T the average cost of
finding an enablement is less than four consolidation oper-
ations if the optional optimization is not enabled, and less
than two otherwise. It is very important noting that the
cost of finding an enablement decreases as the number of
enablements that can be found increases.

6.2 Perfomance of CancelOf fer

To measure how the algorithm CancelO f fer performs, we
have run again the same five tests T1,...Ts from previous
section, cancelling every offer after each run.

Avarngs Nambay af Consolidutiens and Rafused Aversge Numther of Cixscfitafiors
Ensbisments par Cancellatinn - Bt o P
[w—an. —a— Aor. G nices |
1aom \ 7
Ny [} t
TR ‘ A
-.:\ a 4
n e E] T Z s
\-.\ 2w w7 v :
-, ——————— :
! ~ 1 i
- M i
L1
n n n T ™ n 7 o] H ™

Figure 9: CancelOf fer algorithm performance.

The first plot in Figure 9 shows the average number of
consolidation aperations computed per cancellation, and the
average number of enablements refused each time. As in
the ProcessOf fer algorithm, the numbers in test T9 may
seem excessively high. But once again, we should take into
account the number of enabiements refused by every can-
cellation. The second plot in the Figure shows the average
number of consolidation operations computed per enable-
ment refused. This is the cost of refusing an enablement.
As for ProcessOf fer algorithm, we can see how the cost
of refusing an enablement decreases as the number of en-
ablements increases. We can find the explanation for this
effect in the consolidation graph topology. When there are
many enablements in the graph, frequently many of those
enablements share leaves nodes. When an offer having many
enablements as ancestors in the graph is canceled, the cost
of refusing those enablements is smaller that if the tuple had
one or none enablements as ancestors.

7. CONCLUSIONS

In this paper, we have described the algorithms we have
developed to implement the CAL interaction model, focus-
ing on the problem of enablement detection. This is an
open multiparty model useful for applications that require
coordination amongst entities that are not fixed beforehand.
Although the problem of finding all the sets of entities that
agree to coordinate through an interaction has a high com-
putational cost, our algorithms performs quite well since it
behaves more efficiently as the complexity increases.

Our enablement detection algorithm can cooperate with
any selection algorithm that fulfills some conditions. We
think that this is an important feature, because it leaves an
open door to deal with other problems related to selection,
such as fairness.

APPENDIX
A. REFERENCES

384

[1] R. Bagrodia. Process synchronization: Design and
performance evaluation of distributed algorithms. [EEE
Transactions on Sofiware Engineering,
15(9):1053-1065, Sept. 1989.

R. Corchuelo, J. Pérez, and M. Toro. A Multiparty
Coordination Aspect Language. ACM SIGPLAN,
35(12):24-32, Dec. 2000.

N. Francez and I. Forman. Interacting processes: A
multiparty epproach to coordinated distributed
programming. Addison—Wesley, 1996.

Y. Joung. A comprehensive study of the complexity of
multiparty interaction. In Proceedings of the 19"
Annual ACM Symposium on Principles of
Programming Languages POPL’92, pages 142-153.
ACM Press, Jan. 1992.

Y. Joung and S. Smolka. A completely distributed and
message-efficient implementation of synchronous
multiprocess communication. In P.-C. Yew, editor,
Proceedings of the 1 9% International Conference on
Parallel Processing. Volume 3: Algorithms and
Architectures, pages 311-318, Urbana-Champaign,
Illinois, Aug. 1990. Pennsylvania State University Press.
Y. J. Joung and S. A. Smolka. Strong interaction
fairness via randomization. In Proceedings of the 16
International Conference on Distributed Computing
Systerns, pages 475-483, Hong Kong, May 1996. IEEE
Computer Saciety Press.

J. Pérez, R. Corchuelo, D. Ruiz, and M. Toro. A
framework for aspect—oriented multiparty coordination.
In New Developments in Distributed Applications and
Interoperable Systemns, pages 161-174. Kluwer
Academic Publishers, 2001.

J. A. Pérez. Un Framework Orientado a Aspectos para
la Descripcién del Comportamiento Coordinado.
Aplicacidn a los Sistemas Multiorganizacionales. PhD
thesis, Facultad de Informidtica y Estadistica. Dpto. de
Lenguajes y Sistemas Informdticos. Universidad de
Sevilla, 2001.

Y. Tsay and R. Bagrodia. A real-time algorithm for fair
interprocess synchronization. In Proceedings of the 12tk
International Conference on Distributed Computing
Systemns, pages 716-723, Washington, D.C., USA, June
1992. IEEE Computer Society Press.

[2]

(3

4

el

(7]

8]

(9

