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Abstract  

Coordination languages were motivated by an ever-increasing need for producing highly-reusable 
components, which can be partially achieved by implementing them in a way that is independent of 
the way they interact. Isolating interaction from computation, persistence and other concerns enhances 
modularity, thus promoting reusability and understandability. In this paper, we concentrate on a lan- 
guage aimed at describing the simultaneous coordination of a number of entities, which is a problem we 
are usually faced with when we have to programme bank transfers, purchases with debit cards, auctions, 
and so on. This language relies on the novel multiparty interaction model. 

1 Introduct ion  

Object-oriented languages such as Java or C++ are not adequate enough to model distributed systems 
because aspects such as distribution, synchronisation or replication do not usually fit into the scope of 
a class. In fact, much of the complexity and brittleness of existing systems stems from the way the 
implementation of these aspects ends up in spaghetti code that causes many problems when it needs to 
be maintained manually. In order to deal with these cross-cutting aspects, a number of researchers began 
working on several approaches that allow programmers to describe each aspect in an ad hoc language 
[KLM+97]. Aspects can then be compiled and merged to obtain an executable piece of code by means of 
a tool called weaver. 

Recently, isolating coordination from computation has been paid much attention because it benefits 
from enhancing modularity, understandability or reusability, but also from being the best way to solve 
problems such as the inheritance anomaly. Many coordination languages have been proposed [PA98], but 
they usually rely on the client/server model, thus emphasising a number of entities exchanging binary 
messages and a specific protocol for dealing with the details concerning the achievement of such a global 
goal. Unfortunately, sometimes, the effort needed to design, test, implement, and debug this protocol is 
much bigger than the effort needed to implement the rest of the application. 

This motivated several researchers to introduce multiparty interaction constructs into languages for 
the description of distributed systems [JS96]. Unfortunately, the languages that incorporate this powerful 
construct are usually intended to describe both functionality and coordination, thus producing components 
that are highly dependent on the environment in which they are intended to be integrated. We think 
that aspect-orientation is the key to describe the coordinated behaviour separately from computation, 
persistence or other implementation aspects so that functional code can be kept clean. 

Our proposal consists of a language called CAL that is aimed at increasing the level of abstraction of 
a program by considering the concurrent behaviour of components as an aspect where multiparty inter- 
actions are the sole means for synchronisation and communication. Figure 1 sketches our aspect-oriented 
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Figure 1: A framework for aspect-oriented multiparty coordination. 

proposal to specifying the behaviour of a distributed system. The coordination aspect is specified in CAL, 
computat ion is described in a programming language, e.g., Java, and a weaver combines both sources into a 
piece of code that  can then be compiled and executed on top o f a  middleware layer, e.g., CORBA. The code 
generated by the weaver is not spaghetti  code, but  layered code composed of a wrapper that  encapsulates 
the details concerning coordination of the operations defined in the computational  aspect. 

The rest of the paper is organised as follows: section 2 introduces the multiparty interaction model, 
section 3 overviews CAL, section 4 analyses other authors '  work, and, finally, section 5 shows our conclusions 
and the work we are planning on doing soon. 

2 Multiparty Interactions 

Several authors have focused on coordination primitives that  model synchronous interactions amongst an 
arbitrary number of asynchronous entities. This form of coordination is usually referred to as the multiparty 
interaction model, and it is very adequate for describing problems such as bank transfers, purchases with 
debit cards, tax payments and so on because, in these problems, we need to coordinate simultaneously a 
number of entities that  interact in order to achieve a common goal: transferring money from an account 
to another by means of a cash point or a point-of-sales terminal, reaching a virtual agreement, and so on. 

A multiparty interaction consists of a set of actions aimed at exchanging information simultaneously 
amongst a number of entities. Obviously, each of the entities participating in a mult iparty interaction 
must  be ready to execute its corresponding actions so that  it can occur. An a t tempt  to participate in 
an interaction delays an entity until every participant is ready to execute it, and after the interaction is 
carried out, the participating entities continue their parallel, asynchronous executions. 

In the following sections, we introduce some basic notation and show how mult iparty synchronisation 
and communication work by means of classical, well-known examples. 

2.1 Basic Notat ion  

The notation we use to describe our examples is very similar to the notat ion we use in CAL. It comes from 
IP [FF96], which is a language aimed at describing distributed systems that  is also amenable to formal 
reasoning. The most important  statement is the interaction statement,  which is of the form a{comm_ztat}. 
a is referred to as the name of the interaction this statement tries to engage, and comm_stat is an optional 
communication statement intended to transfer information from one entity to another when multiparty 
synchronisation takes place. In IP, an entity that  participates in an interaction has access to the state 
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of other entities participating in the same interaction. This mechanism is not well-engineered, but it is 
enough to describe how multiparty communication works without taking into account too much syntactic 
burden. 

" " Si]. Guards We also use guarded non-deterministic choice statements that are of the form [~i=1 G, --~ 
are of the form B&int.stat, where B is a boolean expression and the rest is an interaction statement. A 
guard is said to be passable, i.e., the statements beyond the arrow can be executed, as long as B holds and 
a is enabled, i.e., all of the entities participating in it are ready to engage it. If B = true, it can be left 
out together with its corresponding ampersand. Guarded non--deterministic choices can be repeated until 
none of the boolean expressions in the guards holds, and the notation we use is .[D~=iG/~ S/]. 

Non--determ~nistic choice statements ~ la Disjktra of the form [0i"__lB/ ~ S/I, and loops of the form 
,[~=lBi --~ S/] are also provided. They can be used to make local decisions or computations not involving 
coordination. 

2.2 Mult iparty  Synchronisat ion  

We illustrate multiparty synchronisation by means of the dining philosophers problem, which is a well- 
known multi-process synchronisation problem that consists of five philosophers sitting at a table who do 
nothing but think and eat. There is a single fork between each philosopher, and they need to pick both forks 
up in order to eat. This problem is the core of a large class of problems where an entity (the philosopher) 
needs to acquire a set of resources (the forks) in mutual exclusion, e.g., a point-of-sales terminal trying to 
have access to two bank accounts to transfer funds. 

The obvious solution to this problem, using two-party interactions, consists of picking up forks in 
sequence. Nevertheless, a problem arises if each philosopher grabs the fork on his/her right, and then waits 
for the fork on his/her left to be released. In this case, a deadlock has occurred, and all philosophers will 
starve. If we used multiparty interactions, each philosopher would pick up his/her two forks at the s~me 
time so that no deadlock may arise. 

behaviour Philosopher/ :: 
* [  get_forki{} 

ea% ; re l_forki{};  ~hink 
] 

behaviour Forki : : 
*[ 

g e t J o r ~ { }  
[] 

getlor~+~{} 
] 

rel_fork/{} 

rel_forki+1{} 

Ph~osophe~ i 

Fork3 ~ FForkl 

Philosopher 3 Philosophe~ z 

Figure 2: A solution to the dining philosophers problem. 

Figure 2 shows a solution to this problem using three-party interactions where one philosopher and two 
forks collaborate together. The behaviour of the philosophers is described by scripts Philosopheri, and 
the behaviour of the forks by scripts Forki (i -- 1, 2 , . . . ,  n). Philosopheri eternally tries to get his/her 
associated forks by participating in the three-party interaction get_forks~ together with Fork/and Fork~_1 
(we assume that index arithmetic is cyclic, i.e., 1 - 1 = n and n% 1 = 1). Thus, acquiring a set of resources 
is specified as synchronising with the corresponding entities in an interaction. After Philosopher/ has 

ACM SIGPLAN Notices 26 V. 35(12) December 2000 



picked his/her forks up, he or she eats, releases the forks, spends some more time thinldng, and the whole 
process is repeated again. 

2.3 M u l t i p a r t y  C o m m u n i c a t i o n  

We illustrate the notion of multiparty communication by means of the leader election problem, which is a 
multi-process communication problem that consists of a number of processes that are able to execute an 
algorithm, but there is no a priori candidate to run it. Therefore, an election under the processes needs 
to be held. The criterion they use to select a leader is quite simple: each of them is supposed to have a 
different natural weight wi in the system, e.g. its net address, and the leader is the process Pi satisfying 

= m a x  l_<j<, 
The usual solution to this problem, using two-party interactions, consists of arranging the processes in 

a unidirectional ring where only pairs of neighboring processes can exchange their weights and calculate a 
local maximum. These maximums are propagated in the ring so that after n -  1 rounds the global maximum 
has been calculated. The problem here is that synchronizing the whole set of processes so that each one 
passes its local maximum at the right moment is quite tricky. If we used multiparty communication, all of 
the processes would synchronise and have access to the weights other processes have simultaneously. 

bohaviour Pi : : 
/* Local variables */ 
{ wi: natural; lead/: boolean } 

wi := a weight; 
Elect{ 

lead/  := "i = m a x { v l ,  . . . ,  wn};  
}; 
[ lead/  ~ etcectt~e algorithm ] 

tliiiii i 

N 

Temporary 
~ Global Combined 

J Consult --- • i 
~ 7 " .  Global State 

- . := maxlwl, 

Update Local - -  
States 

Figure 3: A solution to the leader election problem. 

An immediate solution to this problem is shown in figure 3. Here, the multiparty interaction Elect 
synchronises all of the processes, allowing them to exchange information and decide which one has to 
be assigned to the role of leader. When several processes synchronise and interact, a temporary global 
combined state is built by combining the local states of the processes participating in that interaction so 
that they can read information in the state of other participants. This way, each process synchronising on 
Elect can read the weights the other processes have, compute the maximum in parallel, compare it to its 
own weight and store the result of this comparison in its local variable leadi. After interacting, the one 
that finds itself having the maximum weight executes the appropriate algorithm. 

This multiparty communication scheme was incorporated into IP [FF96], but it obviously suffers from 
several drawbacks because a process having access to the local state of another process is not well- 
engineered. It is not dangerous because processes are allowed to modify only their own state, but a 
process needs to know what is the name of the variable that has the piece of information it needs. Thus, a 
process definition cannot be modified without taking into account what processes depend on its variables. 
In CAL, we have improved this basic communication scheme by providing each interaction with a set of 
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slots processes participating in it can use to exchange information. 

3 A G l a n c e  at  C A L  

CAL is a language aimed at describing coordination pat terns amongst  a number of entities in a way that  
is independent from computat ion or other aspects, which are supposed to be coded in a programming 
language such as Java. Coordination patterns are not dependent  on the components  they coordinate, so 
that  they can be easily reused. 

In this section, we glance at CAL and describe its main features by means of the well-known debit--card 
system, which is one of the basic behaviour patterns in a distr ibuted electronic commercial  system. Such 
a system is composed of a set of point-of-sales terminals, and a number of computers that  hold customer 
accounts and merchant  accounts. This is a problem that  can be clearly described by means of mult ipar ty  
interactions because a th ree-par ty  interaction needs to be carried out when a clerk inserts a debit card 
into a terminal in order to transfer funds from a customer's  account to a merchant 's  account. 

Figure 4 shows a description of the debi t -card  system in CAL, and its components  are analysed in the 
following subsections. 

3.1 Describing I n t e r a c t i o n s  

Interactions are defined by means of the following syntax: 

interaction <name> [<participant descriptions>] 
(<slot descriptions>) 

where <read/umite permissions> 

Each interaction is given a different name, a number  of participants, a number  of slots, and some 
read/wri te  permissions. In the example in figure 4, an interaction called transfer has been defined, and 
it is a three-par ty  interaction that  coordinates a terminal that  plays the role term and two bank accounts 
that  play the roles source and destination. This interaction is intended to be the channel by means of 
which a terminal and two bank accounts can coordinate so that  funds can be transferred from the source 
account to the destination account. 

Interactions are equipped with a local s tate  that  is composed of several slots. In our example, interaction 
transfer has two slots called sum and approval, sum is used to store the amount  of money to be 
transferred, and approval is a flag that  indicates whether  the source account can transfer such a sum to 
the destination account. These slots make up a local state that  simulates the temporary  global combined 
state in IP, being the most important  difference that  a participant does not need to have access to the 
local state of other participants in order to get the information it needs. 

The read/wri te  permissions state which participant in an interaction can read and /o r  write each slot. 
In our example, the terminal  is responsible for storing the sum to be transferred in slot sum, whereas it 
only reads slot approval in order to display an adequate message on its screen; the account playing the 
role source can read slot sum in order to decide whether  it can transfer such a sum, and it can write slot 
approval so that  it can store its decision; finally, the destination account can read both slots, but it is not 
allowed to write any of them. 

3.2 Describing B e h a v i o u r s  

Each interaction requires a number of participants, and they must behave the right way. 
following syntax to describe behaviour patterns: 

We use the 
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interaction transfer[termas Terminal; source, destination as Account] 
(in~ sum. boolean approval) 

where 
term writes sum. reads approval; 
source writes approval, reads sum; 
destination reads approval, sum; 

behaviour Terminal requires 
void 
int 
OID 
OID 
void 

Wait_For_Sale () ; 
Get_Price() ; 
Get_Customer~Account () ; 
Get_Merchant_Account () ; 

Report_Result (boolean done) ; 

*[ true --~ 
Wait_For_Sale ( ) ; 
/, Try to engage interaction 'transfer' together with customer's 

account as source and merchant's account as destination */ 

transfer[-. Get_Customer_Account(). Get_Merchant_Account()] { 
sum = Get_Price O ; 
Report_Result (approval) ; 

} 

behaviour Account requires 
void Charge(int sum); 
void Pay_In(int sum) ; 
boolean Authorize_Payment (int sum) ; 

*[ /* Behave as a source account: Try to engage interaction 'transfer' 

together with any terminal or destination account */ 
transfer[*. -. *] { 

approval = Authorize_Payment(sum); 
[approval -~ Charge(sum);]; 

} --~ skip; 
[] 
/* Behave as a destination account: Try to engage interaction 

'transfer' together with any terminal or source account */ 
transfer[*. *. -] { 

[approval -~ Pay_In(sum) ;] ; 
} --~ sk ip ;  

] 

Figure 4: A description of the debit-card system in CAL. 
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behaviour <name> requires 
interaction <required interac%ions> 
<required opera%ions> 

<beha~iour s S a t e m e ~ >  

Each one is given a different name, and requires a number of interactions to be available in the system, 
and a number of operations to be implemented by the entities onto which it can be mapped.  In the example 
in figure 4, two behaviour patterns are described: Terminal, that  describes the behaviour of a terminal, 
and Account, that  describes the behaviour of a bank account, both  as debtor and creditor. 

Pat tern  Terminal requires five operations to be implemented by the entities that  can behave the way it 
describes: Wait_For_Sale, that  encapsulates the details concerning waiting for a new sale and interactions 
with the clerk initiating it, Get.Price, that  can be invoked after a new sale has been initiated and reports 
its price, Get_Customer..Account and Get_Merchant.Account, that  provide references to the customer's 
account and the merchant 's  account, and Report..Result, that  can be invoked to report  whether a transfer 
has been done or not. Pa t te rn  Account requires three operations: Charge, to withdraw money from an 
account, Pay.In, to pay money into it, and Authorise._Payment, that  decides whether  an account can 
afford a payment or not. 

The operations required by a behaviour pat tern are the operations whose execution is coordinated by 
means of mult iparty interactions. In order to model how a terminal or an account cooperate, we use the 
statements we described in section 2, being the only difference with regard to the interaction statement.  In  
CAL, they are of the form a[idl, id2,..., id,]{comm_stat}, where idl, id2, . . . ,  idn identify the entities with 
which the entity executing such a statement is interested in cooperating. There are two special identifiers 
that  are denoted by "-" and "*". The former refers to the entity executing this interaction statement,  and 
the latter to any entity. 

Therefore, the behaviour of a terminal can be summarised as follows: it is an infinite loop where it 
first waits for a new sale operation to begin and then tries to engage interaction transfer together with 
the entity that  models the customer's account and the merchant 's account. If this interaction is fired, the 
terminal participating in it executes then its communication code, which consists of storing the sum to 
be transferred in slot sum, and displaying a message on its screen to inform the clerk if the transfer was 
carried out. 

The behaviour of an Account also consists of an infinite loop where engaging in interaction transfer is 
offered twice simultaneously: either as a source account or a destination account. If the interaction where 
an account plays the first role is fired, it checks whether it can afford the charge, stores the result in slot 
approval and updates its balance accordingly. If the interaction in which it plays the other role is fired, it 
simply reads slot approval and then updates its balance accordingly. 

Obviously, a mult iparty interaction delays an entity that  tries to read a slot that  has not been ini- 
tialized yet, e.g., a terminal that  executes the statement Report_Result(approval) is delayed until the 
source account participating in the same interaction has written slot approval. Thus, the communication 
statements can be viewed as s tatementsl that  are executed in a critical region where no race conditions can 
occur. We think that  this approach is %uitable to describe problems where several entities need to agree 
and collaborate simultaneously in order to solve a problem because we do not need to design a specific 
protocol to avoid race conditions. On the contrary, it is implicitly included in the multiparty interaction 
mechanism. 
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class bRnl~Account { 
private int balance; 

pub l i c  void  u p d a t e B a l a n c e ( i n t  sum) { 
ba lance  += sum; 

) 

pub l i c  boolean  ge tBa lance ( )  { 
r e t u r n  ba lance ;  

} 

map behaviour Account onto class bR~kAccount where 

Charge(sum) ffi updateBalance(-sum) ; 
Pay_In(sum) = updateBalance (+sum) ; 

Authorize_Payment(sum) ffi (getBalance() >= sum); 

Figure 5: Mapping for behaviour Account onto class BankAccount. 

3.3 M a p p i n g  B e h a v i o u r s  o n t o  O b j e c t  C l a s s e s  

Behaviour patterns are abstract because they describe how an entity that implements a set of operations 
cooperates with others. These operations are also abstract, and they usually need to be adapted when we 
want to map a behaviour onto an object class. 

CAL provides a simple mechanism for adapting operations, and it is shown in figure 5. In this example, 
behaviour Account has been mapped onto a Java class called bankAccount, but it does not provide the 
operations this pattern requires. For instance, there is not an operation for deciding whether charging a 
sum is affordable. Fortunately, the expression getBalance 0 >= sum implements it. 

4 Related  Work 

There are several coordination languages aimed at coordinating a number of entities so that they can 
achieve a common goal, but they usually rely on the client/server model. We think that this model might 
not be adequate in some cases because a protocol is usually needed in order to coordinate the activity of a 
number of entities so that they can achieve their common goal. The programmer is responsible for ensuring 
that the entities involved in such cooperative activities do not interfere with or suffer interference from 
other entities. Designing such protocols is sometimes more time and effort consuming than implementing 
local computations. The multiparty interaction model has been paid much attention because it can deal 
with such situations in a simple, elegant way, and this is the reason why we bet on it. 

Other authors have proposed coordination techniques based on event notification protocols. For in- 
stance, in [MHSA99] a model for coordination called Coordinated Roles is presented. It is based on event 
notification protocols that allow to detect events that occur in active objects. In this model, a behaviour 
pattern is organised as a hierarchy of coordination components that are responsible for coordinating the 
activities of several computational or coordination components. Events can occur when an object receives 
a message, when it begins or finishes processing a message or when an abstract state is reached, and coor- 
dination components may control the sequences of events that can occur, thus describing a coordination 
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protocol. Furthermore, a coordination component may delay one of the components it coordinates until  a 
certain event occurs, thus synchronising it with other components. 

Proposals such as [Fr¢96] or [Arb96] have some similarities with the one we have described above. 
They are usually based on defining coordinating components that  coordinate the activities of a number 
of objects. Our proposal diverges from such approaches in the sense that  we describe coordination as an 
aspect that  can be mapped  onto entities as if it was a wrapper. Furthermore, mult iparty communication is 
also a simple yet powerful mechanism we can use to exchange information amongst coordinated entities. 

5 Conclus ions  and Future Work 

In this paper, we have explored the multiparty interaction model, the aspect-oriented paradigm and how 
programming distributed systems may benefit from both. Separating computat ion from coordination 
promotes reuse, improves comprehension, and eases maintenance and evolution of software. 

The main drawback of our proposal is tha t  the mapping between behaviour pat terns and object classes 
is one-onto-one. Thus, related patterns can not be developed, improved or maintained separately. For 
instance, we cannot describe patterns for debtor accounts and creditor accounts separately, but  it would 
be desirable. Currently, we are working on composing and specialising behaviour patterns, but  our results 
are not concluding, yet. 

We have implemented CAL using Java and a CORBA Service for dealing with mult iparty interaction. 
Its main drawback is that  it is not fault-tolerant. Unfortunately, very little research has been carried out 
in this field. [ZS99] is the only article we know that  presents a general scheme for implementing fault-  
tolerant mult iparty interactions in a distributed object-oriented environment. We are working so that  we 
can incorporate the ideas in this article into our CAL prototype. 
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