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Abstract: This work describes an efficient implementation in terms of computation time and resource
usage in a Field-Programmable System-On-Chip (FPSoC) of a Finite Control Set Model Predictive
Control (FCS-MPC) algorithm. As an example, the FCS-MPC implementation is used for the current
reference tracking of a two-level three-phase power converter. The proposed solution is an enabler
for using both complex control algorithms and digital controllers for high switching frequency
semiconductor technologies. An original HW/SW (hardware and software) system architecture
for an FPSoC is designed to take advantage of a modern operating system, while removing time
uncertainty in real-time software tasks, and exploiting dedicated FPGA fabric for the most complex
computations. In addition, two different architectures for the FPGA-implemented functionality are
proposed and compared in order to study the area-speed trade-off. Experimental results show the
feasibility of the proposed implementation, which achieves a speed hundreds of times faster than the
conventional Digital Signal Processor (DSP)-based control platform.

Keywords: field-programmable gate array (FPGA); field-programmable system-on-chip (FPSoC);
finite control set (FCS); model predictive control (MPC); voltage source inverter (VSI)

1. Introduction

Voltage source inverters (VSI) are an industry standard for power conversion, and are extensively
applied in different fields such as renewable energy integration, motor drives, or energy storage [1–4].
The general trend for these applications is the search for new and more ambitious control methods,
and the use of new devices that allow higher switching frequencies with reduced power losses.
Nonetheless, these improvements usually translate into a greater computational demand on
control platforms.

Among all the types of control schemes proposed for these converters, Finite Control Set Model
Predictive Control (FCS-MPC) has been developed in previous research [5–8], leading to an improved
dynamic response and the capability to achieve simultaneous control targets. This result has led to
growing attention for this type of control in the field of power electronics [9–11].

One of the main challenges hindering the penetration of these control strategies in the industry is
indeed the great computational burden that they represent for most conventional digital platforms [12].
When it comes to digital control platforms, Microprocessors and Digital Signal Processing (DSPs)
systems have become the standard in the field of power electronics [13]. This is due to their low cost,
low consumption, well-known programming methods, and the presence of many dedicated peripherals
that offer specialized and integrated solutions for the usual power electronics applications [14].
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Nonetheless, the need for ever-increasing performance of digital systems calls for the exploration of
new digital platforms that are capable of facing the high computational complexity of new control
algorithms like FCS-MPC [12,15].

In addition to this, the introduction of wide band-gap semiconductors based on materials like
Silicon Carbide (SiC) or Gallium Nitride (GaN) is allowing the development of power electronics
applications with much higher switching frequencies (in the range of hundreds of kilohertz) [16],
in comparison to conventional silicon-based semiconductors. This allows the arrival of new,
high-performance power converters with reduced size that are capable of achieving very high quality
output voltages and currents. These characteristics represent great advantages for many industries
like aeronautics [17,18]. Nonetheless, they represent an important challenge for any control platform
that would need to perform the required calculations in a much shorter period of time [19,20].

Field-Programmable Gate Array (FPGA) devices are becoming considered in state-of-the-art
applications in the field of power electronics [21]. Works with FPGA-based control have been published
through the years [15,22–24]. In these designs, FPGAs are usually used as external peripherals that
generate the switching signals for the converter or help the DSP with some calculations. Beyond these
research efforts, DSP and microcontrollers are still the main players in power electronics applications.

Some of the main difficulties when it comes to the growth of FPGA-based control architectures
in this field are the proficiency requirement for designers in hardware description languages (HDL)
and the need to establish a communication channel between the FPGA and the rest of the digital
hardware [25]. To solve these issues, the arrival of new technologies like High-Level-Synthesis
(HLS) tools that allow the compilation of high level programming languages into HDL have made
FPGA devices a more accessible solution for designers [26,27]. Allowing working at a higher level
of abstraction, HLS has also helped to greatly reduce the required time-to-market of these solutions,
at the expense of increasing the area consumption compared to HDL designs [28–31].

In addition to this, the arrival of FPSoC platforms that combine the calculation power of FPGA
fabric with the high-level solutions of hard processing systems are greatly helping the introduction of
these digital platforms in power electronics applications [28,32]. These platforms offer a wide range
of powerful resources combined with the advantages of System-on-Chip platforms such as reduced
size and consumption and better reliability and performance. The availability of all these resources
in a single chip presents great opportunities to reduce the execution times of control algorithms
by parallelizing tasks and using the programmable logic to accelerate calculations. Also, the usual
bottleneck that would appear in the digital communication of these components is reduced due to
the availability of low latency interface solutions in a SoC. These features make FPSoCs promising
platforms for the control implementation of applications in the field of power electronics, especially
with the arrival of the aforementioned high switching frequency semiconductor technologies based
on Wide Band-gap materials. However, designing for these platforms compounds the complexity
of FPGA technology with the intricacies of multiprocessor parallel programming and the design of
efficient HW/SW interfaces to transfer data.

In this paper, the implementation of an FCS-MPC algorithm for an FPSoC is carried out.
In particular, this work is implemented in a Xilinx Zynq 7000 FPSoC [33]. This platform offers a
programmable logic side which is interconnected to two ARM cores that can also work in parallel.
A simple case of current reference tracking for the two-level VSI is chosen to keep the focus in the
configuration of the FPSoC platform, specially the FPGA implementation of the algorithm. A HW/SW
design for this FPSoC platform is presented and experimentally validated. Two HW implementations
for the control algorithm are also presented and compared, with special emphasis in the area-speed
trade-off. Finally, the FPSoC implementation is also compared with a conventional DSP solution to
highlight the advantages of the proposal in terms of speed.
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2. System Model and FCS-MPC Controller

2.1. System Equations

In an FCS-MPC strategy, the values of the system state variables in future instants need to be
calculated. These values can be predicted using a mathematical model that describes the behavior of
the VSI, represented in Figure 1. System variables for the inverter are found in Table 1.

o,

o,
o,

R

R

R

Figure 1. Three-phase two-level inverter with RL (resistive-inductive) load diagram.

Table 1. System variables and parameters.

Variable Description

vabc = [va vb vc]T VSI output voltage vector in abc-frame

vdq = [vd vq]T VSI output voltage vector in dq-frame

io,abc = [io,a io,b io,c]T Output load current vector in abc-frame

io,dq = [io,d io,q]T Output load current vector in dq-frame

L Load Inductance

R Load Resistance

vdc DC-Link Voltage

w System angular frequency

The system dynamic equations in the dq-frame are the following,

vdq = L
dio,dq

dt
+ J ω L io,dq + R io,dq (1)

where J =

[
0 −1
1 0

]
and vdq, io,dq ∈ IR2. Here, vdq = vdc Sdq, where Sdq ∈ IR2 is the switching state of

the inverter expressed in the dq-frame.
In state-space representation, this model can be summarized with the expression

dx
dt

= Ax + Bu (2)

y = x (3)

where x = io,dq; u = vdq; A = −
[

R
L I2x2 + Jω

]
; B = 1

L I2×2. Here, I2×2 is the identity matrix with
2 × 2 dimension.

2.2. Control Algorithm

Using the discrete state space representation of the continuous model presented in Section 2.1 as
basis, the FCS-MPC algorithm is applied in each sampling interval. First, measurements are obtained
and variables are transformed to the dq-frame. The output voltage generated by the VSI can be known
from the measurement of the dc-link voltage and the currently applied switching state. When all
the values for the state variables and the inputs of the system are known, a prediction for the next



Energies 2020, 13, 1074 4 of 16

sampling interval (k + 1) can be calculated. This first prediction is performed to compensate for the
digital implementation delay [34].

Then, an Exhaustive Searching Algorithm (ESA) is applied to check all the possible switching
states in the k + 1 interval, which are the input to the system. For the proposed FCS-MPC scheme
and the VSI in this application, the control input can be considered as a discrete variable with a finite
number of possible values. In particular, there are eight possible switching states, where two of them
are identical. Computing predictions for the possible switching states in the k + 1 interval, the possible
values for the system state variables in the instant k + 2 are found. The optimal switching state for
the k + 1 interval can be chosen and stored to be applied in the k + 1 instant. The selection of the
optimal switching state is based in the evaluation of a cost function that can be formulated to take
many factors into account. In this case, as the target will be to accomplish the tracking of an output
current reference, the first term in the cost function consists in the calculation of the error in the output
current. Also, a switching limiting term is considered in the cost function. The goal of this term is to
penalize the switching effort of the FCS-MPC algorithm. Therefore, a possible switching state that
might be optimal according to the first term may be discarded due to the additional cost introduced by
the second term. As a consequence of the algorithm formulation, the resulting switching frequency
is not a fixed value, as the same switching state can be the optimal in consecutive sampling instants.
Thus, the cost function is designed as

g = ‖i∗o,dq(k + 2)− ip
o,dq(k + 2)‖2

2
+ λ1‖S(k + 1)− S(k)‖2

2 (4)

where i∗o,dq is the dq-frame current reference in the sampling interval k + 2; ip
o,dq is the dq-frame current

prediction for the sampling interval k + 2; and S(k), S(k + 1) ∈ IR3 are the switching states in the
sampling intervals k and k + 1, respectively. The parameter λ1 is a weighting factor which adjusts the
importance of the second term in the cost function [9,10]. Higher values provide a greater penalization
of the switching effort over the current tracking error. In consequence, they will generate a lower
switching frequency in average.

3. Digital Design

This section presents the proposed HW/SW design for the selected FPSoC platform. The Xilinx
Vivado software is used to design the hardware and software applications [35].

3.1. Configuring FPSoC Resources

As explained in Section 1, the target platform for this work is a Xilinx Zynq 7000 FPSoC running
on a Zedboard evaluation kit [36]. Care must be taken to distribute tasks between the different
resources available in this platform. Basically, the system is composed of a dual-core ARM Cortex-A9
processing system (PS) that can run up to 667 MHz and an Artix-7 FPGA-based programmable logic
(PL). Shared memory resources, such as DDR3 Memory and On-Chip Memory (OCM), are available to
share information between the FPGA side and the two processors. The data sharing process between
the components is handled by a low latency AXI interface [37].

In this implementation, three main tasks are executed periodically: First, measurements of the
electrical magnitudes are sampled in every control interval. An external analog-to-digital converter
(ADC) is used for this purpose. Specifically, the 12-bit, 16 sequential channels, SAR, Texas Instruments
ADS7953 [38]. Communications between the ADC and the control platform are based on the SPI
protocol. Therefore, management of the ADC through the SPI protocol becomes one of the main tasks to
be performed by the system. When all the measurements are available, the second task can be executed,
which is the control algorithm itself. Finally, a third task consisting of external communications, which
permit the interaction and data transfers from and to the system, has to be performed. The way these
three main tasks are addressed is not trivial, as critical tasks like measurements and control algorithm
calculations require real-time execution, not ensured by an operating system in general. External
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communications are not a critical task, thus being able to take advantage of an operating system-based
solution without suffering its drawbacks.

To solve this, the structure depicted in Figure 2 is proposed. One of the ARM cores executes
a baremetal application that has access to the SPI peripheral and handles communication with the
external ADC. A different design alternative would be to implement a custom peripheral in the
programmable logic to handle the SPI communications. This option would be interesting if many
parallel ADCs were used in this application, as the FPGA would be capable of implementing many of
these SPI blocks in parallel. The decision to use the built-in peripheral in the ARM processor was made
to highlight the usefulness of an FPSoC system compared to just an FPGA. Not everything must be
designed in the hardware by the programmer, as peripherals included in the SoC can be used, which is
usually a simpler solution for the designer and does not occupy extra resources in the FPGA. Also,
only one SPI interface is used in this application, which the built-in SPI peripheral is perfectly capable
of handling.

The CPU in charge of the baremetal application is interrupted by means of its private interruption
channels by a signal from the FPGA. This event triggers the execution of an interrupt service routine
where readings from the ADC are performed. When measurements are completed, they are written
to specific registers in the shared DDR3 memory through an AXI4-Lite protocol implemented in one
of the two 32-bit Master AXI ports available. This interface allows low latency and high bandwidth
communications between the PS and the PL. These memory registers are then directly wired to internal
signals in the FPGA.

Read ADC

R/W Memory

END

MPC Algorithm

Store Gate Signals

END

DQ Transform

Prediction k+1

Prediction k+2

Optimal State

START
AGPFM1 (Baremetal)RAM0 (Linux)RA

R/W Memory

Apply Gate Signals

Ext. Communications

Ext. Commands

Figure 2. Flowchart of the general implementation.

After this, the control algorithm must be calculated. This task is performed by the FPGA.
All calculations in the algorithm are performed as fixed point operations; this is because using floating
point arithmetics in a FPGA design is much more demanding when it comes to power and resources
consumption [39]. 16-bit word length is used for the calculations of the implemented algorithm.
Our quantization error is mostly defined by the 12-bit measurements that can be obtained from the
system with the selected ADC. 16-bit fixed-point variables are used to have enough overhead in the
calculations, avoiding the introduction of extra errors. The stability and accuracy of the algorithm
is tested through MATLAB simulations, before the VHDL implementation for the FPGA. For these
simulations, a C-code version of the algorithm is also executed using 16-bit integers. The basic
methodology is to internally work with every variable in the algorithm within a desired integer scale,
and latter obtain their real number correspondence by re-scaling, only when needed for graphical
representation. Using 16-bit variables allows an efficient use of the 32-bit bus width used for memory
sharing, as two variables may exactly fit in one register.

The programmable logic side also implements a hardware counter that governs the system’s
timing and which is used to interrupt the CPU every sampling interval. The firing pulses are stored in
the FPGA when the optimal switching state is selected and applied at the beginning of the next sample
interval. A simple Finite-State Machine (FSM) implemented in the FPGA is in charge of operating the
system, executing commands sent through a graphical user interface running in a PC.
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The other ARM core available in the system takes care of communications. To make full use of the
system, a Linux distribution supplied by Xilinx, called Petalinux [40], is compiled and built making
the necessary customizations to work along with the other CPU with no problems. This configuration
is called “Asymmetric Multiprocessing” (AMP) and allows each core to run independent software
stacks and executables [41]. Beyond the guidelines proposed in [41], special care must be taken when
configuring the devicetree of the Petalinux OS. Default compilations supplied by Xilinx are made
aware of peripherals included in the SoC. In particular, modifications to reserve exclusive access for
ARM1 (baremetal application) to the software side GPIOs and one of the SPI controllers were necessary
in this case. Detailed instructions to compile and modify the Petalinux OS can be found in [42].

By running AMP with both a Petalinux OS in CPU0 and a baremetal application in CPU1, this
platform becomes a great embedded solution that combines the flexibility of low-level baremetal
applications to easily control peripherals and high level solutions provided by an operating system.
In particular, an application executes in the Petalinux OS to communicate through TCP/IP protocol,
transferring data using an Ethernet connection to the user interface executed in a PC. This user interface
is built in order to allow the monitoring of the system and sending commands to the FSM implemented
in the FPGA.

3.2. FPGA Implementation

In this case, an HDL-based solution is carried out to perform the control algorithm. A block
diagram of the proposed hardware design is offered in Figure 3. This diagram includes the FSM block
and the counter described in Section 3.1, together with the rest of the designed blocks.

dq Tranfs.

Control Algorithm

FPSoC

Pred. k+1

BRAM
sin,cos

Pred. k+2

ARM wrapper

Finite State Machine (FSM)

Counter
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A
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State Enable
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thetak1

idq

o_valid

idqk0 k1

Ext. 

S(k)

optim_

state

S(k)

Comms.
PC

ADC

SPI

Figure 3. Block diagram of the proposed architecture.

The first step in the design is to include a wrapper block (“ARM Wrapper”) for the processing
system (PS) in the hardware design. In this wrapper, the Zynq PS from the intellectual property
cores (IP) library in Vivado must be added alongside all the auxiliary I/O blocks that can be used to
interconnect PS ports with FPGA signals. Within this wrapper we define a customized peripheral,
created using Vivado’s IP tools, which will be used to solve the data sharing between the PS and PL.
This peripheral consists of a series of 32-bit memory registers that are associated to specific addresses
in shared memory space, so they can also be read and written by applications executed in the ARM.
This peripheral is accessed from both the PL and the PS through an AXI4-Lite interface [37].

As it was described in Section 3.1, the FPGA has access to every measurement once they are
written to the shared memory. In this application, the FPGA notices this event by toggling a bit of a
register in memory (“Flag”), which triggers a chain of operations until the optimal switching state for
the next sampling interval is achieved.
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These operations can be organized in three main blocks that must work sequentially as the
calculations of the previous block are needed for the next one. These three blocks are shown in Figure 3.
They are from first to last: Clarke and Park’s transformation (“dq Transf.”, see Figure 4 for more
details), Prediction to k + 1 (“Pred. k+1”), and Prediction to k + 2 (“Pred. k+2”). A valid data signal
(“o_valid”) is propagated through the datapath to indicate that output data from each block is ready.

Transformation and Prediction to k + 1 blocks are performed in order to obtain the dq-frame
representation of the system variables and to compensate for the digital delay, respectively.

The implementation of these blocks is straightforward as they consist solely of a series of arithmetic
operations. In our fixed-point algorithm, these operations are reduced to a series of simple sums,
subtractions and multiplications between 16-bit integer numbers. To calculate sine and cosine functions
for the corresponding phase angle, many different alternatives are at the designer’s disposal. IP cores
that implement CORDIC algorithms are available in the Xilinx IP library. This option is discarded
because of the extra latency introduced in the calculations by this method and because of the extra need
for FPGA logic resources. Another option could be the use of a polynomial approximation of these
functions, which could simplify the calculation of these trigonometric functions to a series of more
simple calculations, but FPGA logic resources should also be spent on these calculations. The proposed
solution in this paper is the use of RAM block resources. In particular, a RAM block with 4095 16-bit
values is implemented (“BRAM sin,cos”). Several simulations were run through Matlab/Simulink to
achieve the minimum number of values to be stored in memory that does not translate into a noticeable
degradation of the resulting waveforms due to loss of accuracy. This block is fed with a 12 bits binary
radians angle, which corresponds with the phase for the k + 1 sampling interval, therefore obtaining
sine and cosine values for k + 1 (“sin, cosk1”). For the k sampling interval, sine and cosine (“sin, cosk0”)
are obtained introducing a one step digital delay as shown in Figure 4 .

Sync.
Signals Clarke

Update
  theta

Park
o_valid o_valid

sin,cosk0 k0

thetak1

iabc iαβk0
iabc k0
sin,cosk1
Flag

k0
o_valid
idq
sin,cos

k0

Figure 4. Block diagram of the hardware design for transformation block (dq Transf).

With this solution, we infer a block RAM to store these values, instead of using other types of FPGA
resources that would be preferably saved for other tasks. Coding guidelines for RAM blocks proposed
in [43] must be followed to achieve this. Note that logic slices can also be inferred by the synthesis
tool to store data (this is known as “distributed RAM”). Therefore, following the [43] guidelines, it is
necessary to help the synthesizer select the required type of resource for our memory block.

The remaining operations can be expressed as a set of sums and multiplications that can be
performed as a combinational circuit within each block. A synchronous flip-flop in the output of each
block ensures synchronization of the datapath between blocks. The latency for the implemented blocks
allows for the calculation of each one of these blocks in one clock cycle, when a 10 ns period clock is
used. This ensures the availability of the results for the operation of the following block in the next
clock cycle.

The implementation of the k + 2 prediction is not so immediate. The optimal state (“optim_state”)
must be selected by minimizing the cost function (4). This optimization is performed by an ESA, which
computes the necessary predictions for the k + 2 instant and their associated cost. Then, the value
of the cost function for every possible candidate state is compared so the minimum can be selected.
It is the need for this iteration what causes the high computational burden in the control algorithm,
as the number of calculations grow exponentially as the number of prediction horizons increases. Two
possible solutions are discussed here.
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3.2.1. Parallel Prediction

In this case, a completely parallel implementation for the k + 2 prediction will be described.
As depicted in Figure 5, this approach consists of dividing every iteration of the loop that checks every
possible state into hardware blocks that are in charge of calculating one prediction for one given state.
Therefore, if eight predictions must be made for k + 2, there will be eight identical blocks. Every block
calculates the value for the cost function. A combinational comparator reads these values and selects
the optimal switching state. Due to the architecture for this method, there is no need for pipelining and
synchronous flip-flops placed in the output of every calculation block can be eliminated. This avoids
the wait for a clock cycle after each block, decreasing calculation time. Opposed to that, all calculation
blocks are inferred as combinational circuits whose results are propagated until a final optimal state
for the next sampling interval is achieved.

k+2 Prediction
for State ‘0’

END

START

k+2 Prediction
for State ‘1’

k+2 Prediction
for State ‘n’

Cost Comparison
  Optimal State

Figure 5. Flowchart of the Parallel Field-Programmable Gate Array (FPGA) Implementation for
the Exhaustive Searching Algorithm (ESA).

This is the fastest solution when it comes to calculation time, but a great area consumption is
expected from this implementation. Further statistics can be found in Section 5.

3.2.2. Sequential Prediction

In opposition to the previously described solution, a completely sequential design for the k + 2
prediction with only one prediction block could be adopted. Now, a pipeline structure that controls the
access to the aforementioned block is necessary to ensure its availability and the validity of the results.
This method is implemented with an FSM which is responsible of sequentially checking every possible
state by feeding the state to be calculated to the k + 2 prediction block. Unlike the parallel solution,
synchronous processes must be used to synchronize results with the clock signal. A flowchart for this
method can be seen in Figure 6.

     NextState = ‘0’

Calculate k+2 Prediction

for NextState

END

START

Read k+2 Cost for NextState

     Check if Optimal State

     ¿NextState < ‘8’?
No

     NextState ++

Figure 6. Flowchart of the Sequential FPGA Implementation for the ESA.
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With this solution, area consumption can be greatly reduced by decreasing the number of blocks
to just one. Also, a comparator block with eight inputs is not necessary now since one of the states in
the FSM can be used to compare every cost to the current optimal cost. The main drawback of this
implementation is the longer time required to compute every prediction.

Finally, when the optimal switching state for the next control interval is obtained, this state is
stored in a register until the counter, in charge of the system timing, signals the end of the control
interval. The block “Firing Pulses” ensures the synchronization of the gate signals, and feeds the
system with its current state (“S(k)”).

4. Experimental Results: Verification of the Proposed Implementation

This section is dedicated to the verification of the actual performance for the designed controller
running in the Zedboard evaluation kit, which can be seen in Figure 7. Experiments are carried out
with a two-level three-phase inverter connected to a fixed RL load. Parameters of the system for these
experiments are shown in Table 2.

Figure 7. Zedboard evaluation module (a) for Zynq 7000 SoC with custom daughter board for sensors
level shifter (b), ADS7953 interface board (c), and fiber optics board for gate signals (d).

Table 2. System variables and parameters.

Variable Description

Sampling Frequency Fs 40 kHz

Reference Current Frequency F 50 Hz

Load Inductance L 20 mH

Load Resistance R 30 Ω

DC-Link Voltage vdc 140 V

Switching Limiting Factor λ1 0

As it can be seen in Figure 8, the designed controller for both implementations achieves
steady-state operation with fast dynamic response and low distortion when the reference amplitude
for the abc-frame output currents is changed from 1 A to 2 A. Results for the parallel method appear
in Figure 8a,b and in the sequential method, so that the equivalency of both implementations can be
checked. Measurements for the spectrum magnitude achieved in the output currents are also made
with the Fluke 434 Series II power quality analyzer. The resulting THD is 0.7% for both methods. Also,
the average switching frequency is 7 kHz (with switching limiting term equal to zero). This value is
measured by counting the number of switch events in one grid cycle (20 ms). Finally, calculation times
for the implemented algorithm in the FPGA are measured. This information is obtained by toggling
a digital output port in the FPGA when calculations for the algorithm start and end. The achieved
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calculation times are 50 ns for the parallel design and 400 ns for the sequential implementation.
As expected, the behavior of both implementations is the same when the output current quality and
control performance are considered. Nonetheless, calculation time is reduced by a great margin with
the parallel implementation, when compared to the sequential design.
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(a) Parallel Implementation.
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(b) Sequential Implementation.

Figure 8. Experimental results: Output currents in abc and dq-frame. At t = 40 ms, the reference
amplitude for the abc-frame current changes from 1 A to 2 A.

5. Area, Calculation Time, and Consumption discussion

In this section, different statistics for the proposed hardware designs are analyzed. A comparison
between the parallel and the sequential implementations is carried out to check the main differences
between both proposed solutions. The availability of different resources in the Artix-7 FPGA give
designers the flexibility to decide in what proportion they are used by configuring synthesis settings.
Among these resources, we can find configurable logic blocks (CLB), DSP cells, and RAM blocks.

A CLB is the basic logic block resource to implement logic operations in an FPGA design.
In Xilinx’s Artix-7 FPGAs, these blocks are composed of two slices. There are two different types of
slices: SLICEL and SLICEM. SLICEL can only be used to implement logical and arithmetic operations.
SLICEM can also be used as data storage (“distributed RAM”). Within these slices there are logic
elements like Look-up tables (LUT), which implement combinatorial logic and flip-flop registers
(FF cells), allowing clock synchronization to implement sequential logic [44]. These resources are
automatically inferred by the synthesis tool for most basic operations.

DSP blocks (DSP48E1 in Artix-7 Xilinx FPGAs) are dedicated slices for the implementation
of arithmetic operations [45]. They are intended for intense digital signal processing applications.
Without DSP blocks, designs for these types of applications would quickly run out of other resources
like LUTs or FF Cells. By default, the synthesizer infers DSP blocks for operations such as multiplication,
multiplication–addition, multiplication–subtraction, and multiplication–accumulate. Different options
for the synthesis tool may be used to alter this default behavior [43].

BRAM are memory resources provided in the Artix-7 FPGAs that allow data storage of up to
36 Kb [46]. Inferring these resources to store large amounts of data reduces the consumption of CLB
resources that may be used for logic operations.

In the utilization reports, we will measure the area consumption in terms of utilized LUT, FF Cells,
DSP blocks, and BRAM. A greater number of utilized resources means a higher area consumption
for the FPGA implementation. A hierarchical utilization report is offered in Table 3 for the parallel
design and in Table 4 for the sequential design. Vivado default settings are used for this first approach.
For the k + 2 prediction block, resource consumption for auxiliary blocks (like a secondary FSM for
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the sequential method, or a comparator for the parallel method) are included. Resources for other
secondary blocks are offered under the term “Miscellaneous”. Also note that most of the resource
utilization by the ARM wrapper block are fixed by proprietary designs provided by Xilinx in their
IP cores.

Table 3. Hierarchical utilization for parallel method.

Block LUT FF Cells BRAM DSP Cells

ARM wrapper 2032 3390 0 0
Counter 90 48 0 0

dq Transformation 321 161 0 14
BRAM (sin,cos) 5 1 2 0
k + 1 Prediction 70 33 0 26
k + 2 Prediction 2618 257 0 160

FSM 6 6 0 0
Firing Pulses 2 9 0 0

Miscellaneous 14 53 0 0

Total 5158 3958 2 200
(%) 9.70% 3.70% 1.43% 90.91%

Table 4. Hierarchical utilization for sequential method.

Block LUT FF Cells BRAM DSP Cells

ARM wrapper 2035 3390 0 0
Counter 88 48 0 0

dq Transformation 161 161 0 16
BRAM (sin,cos) 5 1 2 0
k + 1 Prediction 70 33 0 26
k + 2 Prediction 181 45 0 28

FSM 6 6 0 0
Firing Pulses 2 9 0 0

Miscellaneous 14 53 0 0

Total 2562 3746 2 70
(%) 4.82% 3.51% 1.43% 31.82%

As it can be seen, sequential implementation reduces FPGA resources consumption at the expense
of a greater calculation time. In consequence, power consumption and temperatures are also reduced
with the sequential alternative. Reduction in FPGA resources allows the same architecture to be
implemented in a more affordable FPGA. In addition, there is more room to increase the complexity of
the control algorithm with a higher number of states or more prediction horizons.

Another interesting fact that can be appreciated in the implementation results is the high usage
of DSP Cells. Many multiplications are calculated during the FCS-MPC algorithm, so this behavior
is expected. Nonetheless, as the usage of DSP Cells gets closer to the FPGA limit for this specific
resource, the synthesizer decides to perform some of these operations with LUT resources. Therefore, a
comparison between both designs is not so straightforward. For this reason, another implementation is
performed by forcing the synthesizer to infer LUT resources to perform all these operations. Restricting
the synthesis process to force no usage of DSP cells, a better and easier to extrapolate measurement of
the area consumption for both designs can be obtained. This is also helpful to extrapolate the resource
consumption of the proposed design to FPGAs with no DSP cells. Results for this implementation
are offered in Table 5 for the parallel design and in Table 6 for the sequential design. High area
optimization directive was used in this case.

Finally, to put into perspective the achieved calculation times in both proposed designs, the same
algorithm implemented in the FPGA was also implemented in a DSP. Particularly, the Texas
Instruments, Delfino C2000 TMS320F28335 digital signal microcontroller was used. Executing
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the same algorithm with a 150 MHz clock, and compiling the application with all the compiler
optimizations configured for maximum speed, a 12 µs calculation time for the FCS-MPC algorithm
was achieved, which is 30 times the calculation time than the slowest proposed FPGA design and
240 times the calculation time when compared to the fastest proposed design, as it can be seen in
Table 7. The execution time is not accounting the need for external communications. This fact benefits
the FPSoC solution, as one of the ARM cores executes this task in parallel, as the other core runs critical
tasks for the control algorithm. In the DSP, there is no such possibility and some time must be allocated
to execute non-critical tasks. Thus, the achievable sampling frequency with a DSP-based solution is
much more limited. Note that the FPGA design has been tested with a 100 MHz clock.

Table 5. Hierarchical utilization for parallel method. No Digital Signal Processing (DSP) cells.

Block LUT FF Cells BRAM DSP Cells

ARM wrapper 1994 3510 0 0
Counter 83 48 0 0

dq Transformation 3099 161 0 0
BRAM (sin,cos) 5 1 2 0
k + 1 Prediction 5747 33 0 0
k + 2 Prediction 35,859 257 0 0

FSM 5 6 0 0
Firing Pulses 2 9 0 0

Miscellaneous 11 53 0 0

Total 46,805 4078 2 0
(%) 87.95% 3.82% 1.43% 0%

Table 6. Hierarchical utilization for sequential method. No DSP cells.

Block LUT FF Cells BRAM DSP Cells

ARM wrapper 2000 3510 0 0
Counter 87 48 0 0

dq Transformation 3100 161 0 0
BRAM (sin,cos) 5 1 2 0
k + 1 Prediction 5740 33 0 0
k + 2 Prediction 6309 76 0 0

FSM 5 6 0 0
Firing Pulses 2 9 0 0

Miscellaneous 14 53 0 0

Total 17,262 3897 2 0
(%) 32.45% 3.65% 1.43% 0%

Table 7. Calculation time for proposed methods.

Magnitude Parallel Sequential TMS320F28335

Calculation Time [ns] 50 400 12000
Total On-Chip Power [W] 1.713 1.704 N/A
Junction Temperature [oC] 44.8 44.7 N/A

6. Experimental Results: High Sampling Frequency Evaluation

To better illustrate the capabilities of the proposed solution, additional experiments are shown
in this section. The idea is to demonstrate the benefits that can be achieved by being able to increase
the sampling frequency at which the control algorithm is executed. The sequential solution proposed
in this work is used for the experiments presented in this section, as both solutions achieve the same
results, as demonstrated in Section 4. In these experiments, we use the switching effort term to obtain a
desired steady-state average switching frequency (Favg

sw ). The corresponding tuning parameter used in
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each experiment λ1 is specified in each figure. First, two experiments limiting the switching frequency
to Fs = 40 kHz are provided to compare these results with higher sampling frequency experiments.

As can be seen in Figure 9, the steady-state performance for the current error tracking is
deteriorated and the harmonic distortion is increased as the switching effort is more penalized in the
experiment. In Figure 10, the same experiment is repeated for a sampling frequency of 80 kHz and
140 kHz. Note that for an equal average switching frequency, a higher sampling frequency can improve
the results of the generated currents while maintaining the same switching effort, i.e., the switching
losses remain identical while improving the FCS-MPC performance.

(a) Fs = 40 kHz. Average switching frequency Favg
sw is

limited at 5 kHz with λ1 = 0.007. THD= 0.9%
(b) Fs = 40 kHz. Average switching frequency Favg

sw is
limited at 3 kHz with λ1 = 0.015. THD= 1.1%

Figure 9. Experimental results at sampling frequency Fs = 40 kHz: Output currents in abc and
dq-frame. At t = 40 ms, the reference amplitude for the abc-frame current changes from 1 A to 2 A.

(a) Fs = 80 kHz. Average switching frequency Favg
sw is

limited at 5 kHz with λ1 = 0.0059. THD= 0.6%
(b) Fs = 80 kHz. Average switching frequency Favg

sw is
limited at 3 kHz with λ1 = 0.011. THD= 0.9%

(c) Fs = 140 kHz. Average switching frequency Favg
sw is

limited at 5 kHz with λ1 = 0.00425. THD= 0.5%
(d) Fs = 140 kHz. Average switching frequency Favg

sw is
limited at 3 kHz with λ1 = 0.0071. THD= 0.8%

Figure 10. Experimental results at high sampling frequency: Output currents in abc and dq-frame.
At t = 40 ms, the reference amplitude for the abc-frame current changes from 1 A to 2 A.

7. Conclusions

In this paper, an FCS-MPC strategy implementation for an FPSoC platform has been developed
and validated as proof of all the possibilities that these platforms offer for new power electronics
applications. First, a new general HW/SW architecture for the programming of the FPSoC resources has
been proposed. This architecture takes full advantage of all the possibilities of the system by efficiently
distributing the execution of all the necessary tasks. Also, two methods for the implementation
of the control algorithm in the FPGA have been discussed and compared. Their advantages and
drawbacks have been contrasted when it comes to variables like calculation time or area consumption.
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Both proposals were proven to be feasible solutions. Each of them could be better suited depending on
the application and system restrictions and requirements. For the two proposed alternatives, the results
show that in order to facilitate the adoption of complex control algorithms with a high bandwith
and Wide Band-gap semiconductors in most modern power electronics designs, migrating from
conventional DSP platforms to new FPSoC devices is as a really interesting approach, as calculation
times can be greatly reduced. As proof of the benefits of this reduction, the proposed design is
tested with additional experiments with sampling frequency values that are unattainable by the DSP
counterpart. It is demonstrated that for identical switching frequencies (switching losses remaining the
same), the steady-state performance of the FCS-MPC is improved by reducing the harmonic distortion
of the resulting output currents.

Future works will be focused in the development of new designs that combine the advantages
from both types of designs, optimizing the area–speed trade-off. Testing the capabilities of the proposed
implementation with more complex control strategies and with new power converter prototypes based
in modern semiconductor technologies for high switching frequency applications will also be the focus
of the authors’ attention.
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