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Kinetic equation and nonequilibrium entropy for a quasi-two-dimensional gas
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A kinetic equation for a dilute gas of hard spheres confined between two parallel plates separated a distance
smaller than two particle diameters is derived. It is a Boltzmann-like equation, which incorporates the effect of
the confinement on the particle collisions. A function S(t) is constructed by adding to the Boltzmann expression
a confinement contribution. Then it is shown that for the solutions of the kinetic equation, S(t) increases
monotonically in time, until the system reaches a stationary inhomogeneous state, when S becomes the equilibrium
entropy of the confined system as derived from equilibrium statistical mechanics. From the entropy, other
equilibrium properties are obtained, and molecular dynamics simulations are used to verify some of the theoretical
predictions.
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Fluids confined between two parallel plates are intermediate
between fluids in two and three dimensions. The confinement
can strongly influence the physical properties of the system as
compared with the three-dimensional bulk behavior and also
with the two-dimensional limiting case. In the last decades, the
study of confined fluids has attracted a great deal of attention,
mostly focused on equilibrium and phase transition properties
[1–6]. On the other hand, although it is true that in some cases
the dynamical behavior has been addressed [7,8], few nonequi-
librium results seem to be well established in the context of
a general theory. Recently, the interest in the slit geometry
with two parallel, hard plates of a single-component system
of hard spheres, with a separation between the two plates
smaller than two particle diameters, has largely increased,
due to a series of experimental observations in systems of
macroscopic particles [9–12]. Although it is quite sure that the
inelasticity of collisions, inherent to the macroscopic character
of the spheres, and the subsequently needed energy injection
to reach and maintain a steady state play a crucial role in
many of the observed features [13–15], it is clear that before
considering the consequences of these factors, the idealized
system of elastic hard spheres must be addressed. The central
issue is whether it is possible to formulate a macroscopic,
hydrodynamic-like theory to describe the two-dimensional
dynamics of the system when observed from above or from
below and, if the answer is affirmative, which is the form
of the equations and the expressions of the coefficients ap-
pearing in them. Kinetic theory and nonequilibrium statistical
mechanics provide the adequate framework to address these
issues.

The present work deals with the formulation of a kinetic
equation for a quasi-two-dimensional system of N hard
spheres of diameter σ in the low-density limit, with the same
degree of validity and accuracy as the Boltzmann-Enskog
equation, that lies at the heart of the theory of the nonequi-
librium behavior in many relevant applications of statistical
mechanics [16,17]. Its extension to higher densities starting
from the pseudo-Liouville equation and the formulation of
an empirical kinetic equation in the spirit of the Enskog
approximation [18] is straightforward. The system is confined
between two large, formally infinite parallel plates located at
z = 0 and z = h,σ < h < 2σ . This particular geometry allows
us to fix in a biunivocal way the position of two particles at

contact by means of their z coordinates and the polar angle
ϕ around the z axis, as sketched in Fig. 1. It is assumed
that in the low-density limit, the one-particle distribution
function f (r,v,t) of the gas can be considered as constant
over displacements of the order of the diameter σ in any
direction parallel to the walls, i.e., in the x-y plane. On the
other hand, the same cannot be expected to hold in the z

direction, since the confinement imposed by the plates occurs
over a distance smaller than σ and the isotropy of the dynamics
of collisions is broken. Moreover, it must be emphasized that
the relevant dimensionless parameter defining the low-density
limit in which the equation applies is not the three-dimensional
one but the (effective) two-dimensional density. Then, using
the Stosszahlansatz or molecular chaos hypothesis, i.e., as-
suming that there are no correlations between the dynamical
states of particles before collisions, and the usual argu-
ments leading to the Boltzmann-Enskog equation [19], one
gets

∂f

∂t
+ v · ∂f

∂ r
= J [r,v|f ], (1)

where the collision term J is given by

J [r,v|f ] ≡ σ

∫
dv1

∫ h−σ/2

σ/2
dz1

∫ 2π

0
dϕ |g · σ̂ |

× [θ (g · σ̂ )f (x,y,z1,v
′
1,t)f (r,v′,t)

−θ (−g · σ̂ )f (x,y,z1,v1,t)f (r,v,t)]. (2)

Here, g ≡ v1 − v,r ≡ {x,y,z},θ is the Heaviside step func-
tion, σ̂ (z − z1,ϕ) is the unit vector along the line joining
the centers of the two particles at contact, and v′ and v′

1
are the velocities of the two hard spheres after the collision.
Upon deriving the above equation, it has been assumed that
no external force is acting on the system. Moreover, the
walls confining the system are considered to be hard and at
fixed positions. In this case, their effect can be described by
means of boundary conditions to the kinetic equation [20].
Let us mention that, in principle, Eq. (1) can be general-
ized for an arbitrary separation of the two parallel plates,
although the mathematical description becomes much more
involved.

The next aim of this Rapid Communication is to show that
an H theorem, similar to the Boltzmann result, but leading to an

2470-0045/2016/94(4)/040103(4) 040103-1 ©2016 American Physical Society

https://doi.org/10.1103/PhysRevE.94.040103


RAPID COMMUNICATIONS
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FIG. 1. Collision between two hard spheres in a quasi-
bidimensional confined system. The collision vector σ̂ is univocally
determined by the coordinates z,z1, and the azimuth angle ϕ.

inhomogeneous steady state, is valid for the kinetic equation
(1), describing a confined gas. This result furnishes an example
of the explicit proof of approach to inhomogeneous equilib-
rium of a strongly confined gas, hence bridging microscopic
dynamics and macroscopic irreversibility. A nonequilibrium
entropy is defined by

S(t) = −kBH (t), (3)

where kB is the Boltzmann constant and H (t) = Hk(t) +
Hc(t), with the “kinetic part” Hk having the Boltzmann form

Hk(t) ≡
∫

d r
∫

dv f (r,v,t)[ln f (r,v,t) − 1] (4)

and the “confinement contribution” Hc being

Hc(t) ≡ 1

2

∫
d r

∫
d r1 n(r,t)n(x,y,z1,t)θ (σ − |r1 − r|).

(5)
In the last expression, n(r,t) is the local number density defined
in the usual way:

n(r,t) ≡
∫

dv f (r,v,t). (6)

The definition of Hc(t) can be justified on the basis of a local
equilibrium approximation for the general nonequilibrium N

particle distribution function of the system [21,22], keeping
only contributions up to the second virial coefficient. This
corresponds to taking the pair correlation function of the
system equal to unity, but keeping the finite size of the particles
in the description of the collision term. It is worth emphasizing
that here the relevance of the size of the particles in the kinetic
equation does not follow in principle from a density correction,
but it appears as a consequence of the strong confinement of
the system. For a homogeneous nonconfined system, Eq. (5)
reduces to

Hc
hom = Nn

2πσ 3

3
, (7)

that is just the second viral correction to the equilibrium
entropy of a gas of hard spheres [23]. Let us insist that Eq. (3)
is just a definition, valid for any arbitrary state defined by a
solution of the kinetic equation and, therefore, it does not imply
any approximation. Using a series of manipulations usual in

hard-sphere dynamics [19], the time derivative of Hk can be
expressed as

∂

∂t
Hk = σ

2

∫
dx

∫
dy

∫ h−σ/2

σ/2
dz

∫ h−σ/2

σ/2
dz1

∫
dv

×
∫

dv1

∫ 2π

0
dϕ θ (−g · σ̂ )|g · σ̂ |ff1 ln

f ′f ′
1

ff1
,

(8)

with f ≡ f (r,v,t),f1 ≡ f (x,y,z1,v1,t),f ′ ≡ f (r,v′,t), and
f ′

1 ≡ f (x,y,z1,v
′
1,t). Upon deriving the above expression, it

has been used that the term coming from free flow vanishes if
one considers walls such that the flux of any property vanishes
at them and that, for instance, periodic boundary conditions
are considered in the x and y directions. Now the inequality
x(ln y − ln x) � y − x, valid for x,y > 0, is employed. The
equality sign only holds for x = y. After some straightforward
algebra it is obtained

∂

∂t
Hk � I (t), (9)

I (t) ≡ 2πσ

∫
dx

∫
dy

∫ h−σ/2

σ/2
dz

∫ h−σ/2

σ/2
dz1

× n(r,t)n(x,y,z1,t)(z1 − z)uz(x,y,z1,t), (10)

where the local velocity field u(r,t) defined by

n(r,t)u(r,t) ≡
∫

dv vf (r,v,t) (11)

has been introduced. Equation (9) has some similarities with
the one obtained in [21,22] in the context of the Enskog
equation (for a nonconfined fluid). The evolution equation
for the confinement contribution to the entropy of the gas is
derived by means of the continuity equation

∂

∂t
n(r,t) = − ∂

∂ r
[n(r,t)u(r,t)], (12)

that follows directly from the kinetic equation (1). The result is
∂Hc(t)/∂t = −I (t), being I (t) the same as given by Eq. (10).
Consequently, ∂tH (t) � 0 or

∂S(t)

∂t
� 0. (13)

Assuming as usual that the number density and the energy
density are finite, it is easily shown that the expression of
the entropy S, Eq. (3), is bounded from above [24] and,
therefore, the distribution function tends towards a steady
value in the long-time limit. In the steady state S must have a
time-independent value and this only happens if the equality
sign applies in Eq. (9), i.e., if

ln f + ln f1 = ln f ′ + ln f ′
1. (14)

Proceeding similarly to what is done for the usual Boltzmann
equation [16,19], it is found that the only physically relevant
steady solution of the kinetic equation for the kind of boundary
conditions we are considering is given by

fst (r,v) = n(z)ϕMB(v), (15)
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FIG. 2. Density profile along the direction perpendicular to the
plates in a confined quasi-two-dimensional system of hard spheres.
The symbols are simulation results, while the dashed line is the
theoretical prediction given by Eq. (17). The dimensionless density
plotted is n2(z) ≡ n(z)σA and z ≡ (2z − σ )/2σ . The simulation data
have been averaged over time, once the system is in the stationary
state.

where ϕMB(v) is the Maxwellian velocity distribution,

ϕMB(v) =
(

m

2πkBT

)3/2

e
− mv2

2kB T , (16)

with T being the temperature, and n(z) a density profile in the
z direction that is identified by substituting Eq. (15) into the
Boltzmann equation (1), with the result

n(z) = N

Ab
exp

[
a

(
z − h

2

)2
]
. (17)

Here A is the area of each of the two parallel plates, a ≡
πN/A,

b =
√

π

a
erfi

[√
a

(
h

2
− σ

2

)]
, (18)

and erfi(x) = −i erf(ix) denotes the imaginary error function
of x. Note that n(z) contains all the powers of the two-
dimensional density through its dependence on a. To lowest
order in the density, Eq. (17) agrees with the low-density
limit of the expression derived in Refs. [3] and [25] starting
from the equilibrium BGY hierarchy for a system of hard
spheres in the presence of an external potential. Let us stress
that the kinetic equation (1) does not admit a homogeneous
time-independent solution. To check the accuracy of the above
theoretical prediction, molecular dynamics simulations of a
system of 500 hard spheres have been performed. The two
confining plates are squares separated a distance h = 1.9σ , and
their area A is such that Nσ 2/A = 0.19. Figure 2 displays the
shape of the density profile along the z direction. Although the
density is not very low, the agreement between the theoretical
prediction (dashed line) and the simulation results (symbols)
can be considered as quite satisfactory.

In the steady state, the entropy can be rewritten as

Sst = Sid
st + Sex

st , (19)

where Sid
st is the ideal gas entropy

Sid
st = NkB

(
3

2
ln T − ln n0 − 3

2
ln

m

2πkB

+ 5

2

)
, (20)

with n0 ≡ N/A(h − σ ), and the expression of the excess
entropy reads

Sex
st = −NkB

(
ln

h − σ

b
+ Nπσ 2

2A

)
. (21)

Again, the low-density limit of this expression coincides with
the low-density limit of the result reported in Ref. [25]. The
force per unit of area exerted on the plates in the steady state
is

p ≡ T

A

(
∂Sst

∂h

)
N,T ,A

= n(z = σ/2)kBT , (22)

and the force per unit of length in the direction parallel to the
walls has the form

� ≡ T

(
∂Sst

∂A

)
N,T ,h

= kBT

[
3N

2A
− h − σ

2
n(z = σ/2) + N2πσ 2

2A2

]
. (23)

The simplicity of Eq. (22) reflects an ideal gas behavior in
the transversal direction, consistently with the behavior found
in the limit of extreme confinement h → 0 [4]. In the same
limit, � can be interpreted as the surface tension of a reference
hard-disk system [4]. To avoid misunderstandings, it is worth
noting that the second term on the right-hand side of Eq. (23)
reduces to N/2A to lowest order in the density, then leading
to the expected expression of � as kBT N/A.

In summary, the original Boltzmann ideas still remain valid
in describing the kinetics and the approach to equilibrium
in confined quasi-two-dimensional gases of hard spheres.
The definition of entropy used is, perhaps, the simplest
generalization of the original Boltzmann expression which
leads to the right equilibrium entropy of a dilute confined
gas, and it has been shown that it obeys an H theorem. The
kinetic equation reported here opens the way for the derivation
of hydrodynamic-like macroscopic equations for the system,
and to investigate the transition from three-dimensional to
two-dimensional hydrodynamics. Moreover, and in relation
with the experiments with macroscopic spheres mentioned
at the beginning, the only modification needed to apply the
kinetic equation to the case of inelastic hard spheres refers to
the collision rule, i.e., the expressions of the post-collisional
velocities in terms of the pre-collisional ones and the scattering
angle. In the last years, a general nonequilibrium statistical
theory has been developed for inelastic hard spheres [26,27]
that can be easily adapted to the present case.
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