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Abstract—This paper proposes a fully distributed robust 

state-estimation (D-RBSE) method that is applicable to 

multi-area power systems with nonlinear measurements. We 

extend the recently introduced bilinear formulation of state 

estimation problems to a robust model. A distributed bilinear 

state-estimation procedure is developed. In both linear stages, 

the state estimation problem in each area is solved locally, with 

minimal data exchange with its neighbors. The intermediate 

nonlinear transformation can be performed by all areas in 

parallel without any need of inter-regional communication. 

This algorithm does not require a central coordinator and can 

compress bad measurements by introducing a robust state 

estimation model. Numerical tests on IEEE 14-bus and 118-bus 

benchmark systems demonstrate the validity of the method. 

 
Index Terms—Factorized state estimation, robust state 

estimation, distributed state estimation. 

I. INTRODUCTION 

TATE estimation (SE) is conventionally performed at 

individual regional control center with very limited 

interaction between control centers. With the 

deregulation of electricity markets, growing quantities of 

power are transferred over tie-lines [1]. Meanwhile, to reduce 

unnecessarily excessive operation cost [2] and hedge the 

uncertainty of renewable energy generation [3], regional 

independent system operators (ISO) should coordinate with 

other ISOs though the interconnected networks. Recently, 

many regional markets, such as NYISO [4], ISO-NE[5], PJM 

[6], and MISO [7] are actively developing coordination 

schemes and procedures. This type of coordination should 

base on compatible network models for each area, so a fully 

distributed multi-area state estimation is needed. Since no 

coordinators exist above the ISOs, this computation 

framework is intended to solve the compatible real-time 

states while preserving information privacy of subsystems.  

Distributed SE has been extensively studied under 

decomposition-coordination framework [8]-[10]. Recently, 

fully distributed SE methods were proposed, which do not 

need any central coordination. Alternating direction method 

of multipliers (ADMM) has been used in [11] to formulate a 

distributed SE for linear system. Although linear 

measurements can be incorporated using synchronized 

phasor measurement units (PMUs), their deployment is 

 
Manuscript received XX, 2015. This work was supported in part by the 

National  Key Basic Research Program of China (2013CB228205), in part 

by the National Science Foundation of China (51477083). 
W. Zheng,W. Wu, B. Zhang are with the State Key Laboratory of Power 

Systems, Department of Electrical Engineering, Tsinghua University, 

Beijing 100084, China (e-mail: wuwench@tsinghua.edu.cn). A. 
Gomez-Exposito is with the Department of Electrical Engineering, 

University of Seville, Seville, Spain (e-mail: age@us.es). 

  

currently limited and SE still relies significantly on nonlinear 

measurements. Therefore, distributed SE that can handle 

nonlinear measurements is of greater value for practical 

application. The Auxiliary Problem Principle (APP) has been 

utilized in[12], whereby each agent solves its own 

sub-problem and communicates only with its neighboring 

units. An approximate algorithm based on the optimality 

condition decomposition has been proposed in[13], however, 

methods of this kind assume local observability and their 

convergence is not always guaranteed. Note that these early 

distributed algorithms [11]-[13] do not deal with the 

non-convexity issue of nonlinear SE. Since convexity is a 

prerequisite for guaranteed convergence of most distributed 

algorithms, semidefinite relaxation (SDR) and ADMM are 

combined in [14] to provide a distributed algorithm for 

tree-connected control areas with guaranteed convergence. 

Bilinear state estimation (BSE) has been proposed in 

[15]-[18]  as an alternative to the conventional SE based on 

Gauss-Newton method. The burden of traditional iterative 

linearization process has been significantly relieved by the 

non-iterative BSE scheme, which decomposes the original 

nonlinear SE model into two linear stages accompanying a 

nonlinear transformation with the help of intermediate 

variables. 

In this paper, the BSE proposed in [16][18] is extended to 

handle multi-area power systems in presence of bad data.  

Each of the three steps is further decoupled over different 

areas, yielding a fully distributed robust bilinear state 

estimation (D-RBSE) with guaranteed convergence thanks to 

ADMM. For the two linear stages, each area solves its 

regional SE subproblem, sends the latest boundary states to 

its neighboring areas, and iterates in this way until 

convergence; the interleaved nonlinear transformation can be 

processed within each area in parallel without any need of 

inter-regional communication. This D-RBSE is applicable 

for power systems with arbitrary network configuration and 

nonlinear measurements. It also has higher efficiency and 

guaranteed convergence compared with existing methods. 

The remainder of the paper is organized as follows. In 

Section II, power system state estimation model is briefly 

reviewed. Section III describes the robust bilinear state 

estimation (RBSE). A fully distributed algorithm to solve 

multi-area RBSE is described in Section IV. Section V details 

the results of several numerical tests to investigate the 

performance of D-RBSE. Section VI concludes the paper. 

II. POWER SYSTEM STATE ESTIMATION 

The measurement model for power systems is[19]: 

 ( ) z h x e   (1) 
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where h(x) denotes a vector of functions describing error-free 

measurements of state variables x, and e denotes the vector of 

measurement errors, which is generally assumed to be 

(0, )N   and uncorrelated. 

Exactly-known magnitudes (such as zero injection 

constraints) should be satisfied by the estimators. Since 

considering these as very accurate measurements with very 

large weightings will bring about numerical problems [19], 

such constraints are added explicitly to the estimation model 

as follows: 

 ( )e eh x z    (2) 

where ze = 0 for zero injected power. 

 The least square SE model can be formulated as  
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min ( ) [ ( )] [ ( )]
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e e
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s t
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x z h x z h x
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In practice, real-time measurements may be corrupted by 

data contamination, instrument failure and asynchronous 

meter measurements [19]. In the context of the 

cyber-physical smart grid, bad data may result not only from 

unintentional metering faults, but also malicious cyber-attack 

[20]. In the presence of bad data, a more detailed 

measurement model is given by[20][21]  

 ( )  z h x o e   (4) 

where o denotes the unknown bad data vector with its entry 

o(i) being non-zero only if z(i) is a bad datum. 

 A robust SE method, with capability to compress bad 

measurements, may be formulated as[11] ,[21]-[23]: 
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where λ is a positive parameter. 

III. ROBUST BILINEAR STATE ESTIMATION 

Note that (5) is a non-convex problem and very difficult to 

solve. However, the non-convexity of the measurement 

equations can be handled by using bilinear state estimation 

[18]. 

A. First Linear Stage 

For every branch connecting buses i and j, we may define 

the following pair of variables: 

 cosij i j ijK V V    (6) 

and 

 sinij i j ijL V V    (7) 

where 
ij i j    .  

In addition, the squared voltage magnitude vector  

 2

i iU V   (8) 

is included in the intermediate state vector y, which consists 

of 2b N  variables, i.e., 

 { , , }i ij ijU K Ly .  (9) 

Conventional measurement equations can then be linearly 

expressed in terms of y, i.e., 
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and 
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 2( )m

i i UV U   .  (12) 

 The optimization problem in this stage amounts to the 

following compact form: 
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where fo  represents the bad data vector in the first linear 

stage, and E is the counterpart of B for exact-injection 

measurements. 

B. Intermediate Nonlinear Transformation  

The intermediate vector u is composed similarly to y, and 

contains 2b N variables; it is defined as follows: 

 2lni iV   ,  (14) 

 
ij i j      (15) 

and 

 
ij i j    .  (16) 

The elements of vector u are given by 

 { , , }i ij ij  u   (17) 

and can be explicitly expressed in terms of y as follows: 

 lni iU   , (18) 

 2 2ln( )ij ij ijK L     (19) 

and 

 arctan( )
ij

ij

ij

L

K
  .  (20) 

 These three equations (18)-(20) constitute the nonlinear 

transformation  

 * *( ) uu f y .  (21) 

The transformation of weighting matrices in the two linear 

stages mentioned in [18] can be replaced by some 

approximation methods in distributed manner. But numerical 

results have shown that when using robust SE model, (13) 

and (27) is satisfactory for engineering practice without the 

transformation of weighting matrices. 

C. Second Linear Stage 

The terms u and x can be expressed in blocked form as 

follows: 

 * [ , , ]T T T T

b bu α α θ   (22) 

and 

 [ , ]T T Tx α θ   (23) 

where the sub-index b represents the set of branch variables. 

 When bus voltage measurements from PMUs are 

available, the phase angle can be directly incorporated into 

u* as well: 

 * [ , , , ]T T T T T

b bu α α θ θ   (24) 

The branch components of u can be expressed in terms of x 

as follows: 

 T

b α A α   (25) 

 T

b rθ A θ    (26) 

where A is the well-known branch-to-node incidence matrix, 

and 
rA  represents the reduced matrix obtained by 

eliminating the reference angle in A. 

 The following compact optimization problem must be 

solved at this stage: 

 * *

1

1
min ( , ) [ ] [ ]

2

s s s T s sJ      x o u Cx o u Cx o o  (27) 



where so  is a vector containing the bad data in the second 

linear stage. 

IV. EFFICIENT FULLY DISTRIBUTED ALGORITHM 

In this section, we describe the efficient fully distributed 

algorithm used to solve the RBSE. The structure of the RBSE 

problem is exploited to expedite the distributed algorithm by 

decomposing the two linear stages into independent 

calculations for each area, and deriving closed-form solution 

for sub-problem in each iteration of the ADMM. 

A. Decomposition in the First Linear Stage 

Consider an inter-connected system consisting of R areas. 

The a-th area supervises bus set Na, internal branch set Ea. 

Measurements za and f

ao are sub-vectors of z and o
f
,  

respectively, according to the partition. Due to the coupling 

of tie-lines between areas in the optimization problem in (13), 

the branch variables Kij and Lij over the tie-lines have to be 

shared by neighboring areas connected by them. Let 

, , , ,{ | N } { , | ( , ) E }a a i a a ij a ij a a bU i K L i j     y  denote the 

local copies of y in area a respectively. Using the variable 

splitting technique, the first linear stage can be transformed 

equivalently into following form: 
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s.t. 
, ,a a e a a E y z   (29) 
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Particular attention should be paid to consensus 

constraints(30), which implies coupling across areas over 

tie-lines. Fig. 1 demonstrates an example of coupling across 

areas. Different areas are coupled in a way of consensus to 

the global state variables, as shown in Fig. 1.  

The ADMM described in[11],[23]-[25] is employed to 

decompose problem described by (28)-(30) per area by 

relaxing all the coupling constraints. The corresponding 

augmented Lagrangian function is defined as follows: 
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where ηa,ij and γa,ij  are the Lagrangian multipliers 

corresponding to constraint (30), Rf  is a constant 

penalty parameter. Note that the global Lagrangian was 

decoupled spatially in (31).  
 

 

Fig. 1 Illustrative example of area decoupling in the first linear stage. Yellow 

zone indicates coupling over tie-lines between areas. 

 

By applying the ADMM technique, the problem in (28)

-(30) can be split into R independent problems, i.e., one per 

area. The t-th iteration of the distributed algorithm can be 

written as follows: 
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However, it is clear that updating global state vector y in 

(33) requires central coordination. Therefore, a distributed 

algorithm that does not require central coordination is 

devised here by eliminating the global vector y. The 

algorithm is further accelerated by deducing the closed-form 

solution in each ADMM iteration. And the cycles in (32)-(34) 

are equivalent to the following iterations (a sketch of proof is 

available in appendix): 
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and 
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where ,
ˆ

B aG  is the constant augmented gain matrix 
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ˆ
aB  is an constant matrix  
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and [ ]
  denotes the thresholding operator 
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which is required for the l-th entry in (36). 

 , , ,
ˆ ˆ ˆˆ , ,t t t t

a a i a ij a ijU K Ly  is a sparse auxiliary vector with the same 

structure of  , , ,, ,t t t t

a a i a ij a ijU K Ly  , except that only branch 

variables over tie-lines are defined as (38) while other 

elements remain zero in ˆ t

ay . 

In the t-th iteration, the primal residual vector can be 

defined as 

  ,

, , , , ,

1
, | ( , ) , ,

2

f t t t t t

a ij b ij a ij b ij a b aK K L L i j b a       r  (42) 

which quantifies the mismatch between the area and its 

neighbors at the border between them. 

 The dual residual vector is defined as 

  , 1 1

, , , , ,, | ( , ) , ,f t t t t t

a ij a ij a ij a ij a b aK K L L i j b a        d   (43) 

which describes the stability of the iteration process.  

The convergence of the first stage can be checked by a 

sufficiently small residual [23]  
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B. Local Transformation in the Intermediate Nonlinear 

Transformation 

Similar to the partition of y, the intermediate vector u can 

be also separated into sub-vectors for different areas, i.e., 

    , , , ,| N , | ( , ) Ea a i a a ij a ij a a bi i j       u .  (45) 

As shown in previous section, the local vectors ua, ya between 

different areas overlap over tie-lines for the purpose of 

convergence of the first stage. However, since the mismatch 

over tie-lines is sufficiently small after the convergence (as 

shown in (42)), the overlapping variables over tie-line are not 

necessary any more.  

To avoid redundancy, branch variables Ka,ij, La,ij, αa,ij, θa,ij 

over tie-lines are uniquely assigned to one area (e.g., the area 

with a smaller index) rather than shared by two adjacent areas. 

To this end, the set of tie-lines is revised as follows: 
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and the local vectors have also been modified accordingly: 
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Now that local vectors are completely decoupled, the 

nonlinear transformation can also be implemented in a fully 

distributed fashion: 

 
, ,lna i a iU   , (48) 
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K
  .  (50) 

Note that neither the input data nor the output data are 

coupled across buses, as shown in Fig. 2. And therefore, the 

local transformation can be performed at each area in 

parallel. 

 
Fig. 2 Illustrative diagram of area decoupling in nonlinear transformation  

(suppose a<b). 

C. Decomposition in the Second Linear Stage 

In this stage, the input “measurements” u have been 

separated into non-overlapping local “measurements” {ua}, 

but the branch measurements, e.g., αa,13, θa,13, are related to 

the other end of the tie-line, e.g. bus 3, that lie outside area a. 

To tackle this challenge, the boundary buses in areas with 

larger index, e.g., area b, have to be shared by its neighboring 

areas, e.g., area a, and the corresponding bus set is defined: 

    , ,N̂ | ( , ) , | ( , ) ,BB

a a b a bi i j a b j i j a b       (51) 

Since the state variables in this stage are all nodal variables, 

the global state variables at each bus can be represented in 

vector form ( , )T

i i i x , and local state variables 
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can then be decomposed as follows: 
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Different from those in the first stage, the consensus 

constraints (53) reflect coupling at boundary buses. It can be 

observed by comparing the illustrative diagram Fig. 3 and 

Fig. 1 that inter-regional coupling in this stage has transferred 

from branch variables over tie-lines to nodal variables at 

boundary buses. 

 
Fig. 3 Illustrative example of area decoupling in the second linear stage. 

Yellow zone indicates coupling over boundary buses. 

 

The problem (52)-(53), which is similar to the problem in 

the first stage apart from the zero injection constraints(29), 

can also be solved by the distributed ADMM solver. The 

procedure is tantamount to the following iterations: 
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and 
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where 
,

ˆ
C aG  is the constant augmented gain matrix 
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ax and ˆ t

ax . Mi denotes 

the set of indices of areas that contain bus i in its extended 

boundary bus set N̂BB

a , i.e., 

  ˆM | NBB

i aa i    (59) 

and mi its cardinality. Residual in the second stage ,s t  can be 

defined in the same way as that in the first stage. 

Note that in both linear stages, only communication among 

neighboring areas is required. The data required to exchange 

are the states of tie-lines or boundary buses, which amount to 

only a few float data for each area.  

V. SIMULATION RESULTS 

The validity of centralized BSE has been discussed 

previously in[16][18]. In this section, three numerical 

experiments were conducted on interconnected test systems 

of different scales to examine the performance of D-RBSE. 

The first experiment was carried out on a two-area IEEE 

14-bus system to illustrate the solution process, and to verify 

the solution quality in detail. The second test was performed 

using a three-area IEEE 118-bus system to demonstrate 
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statistical accuracy of D-RBSE in quantities of scenarios Bus 

1 is set as reference bus for all the three systems. For the latter 

system, a full measurement set is configured. Configurations 

of test systems are listed in Table I and detailed data are all 

referred to [26]. 

 
TABLE I CONFIGURATIONS OF THREE TEST SYSTEMS 

System Areas Units Int. Lines Tie-lines 

14-Bus 2 5 6 3 
118-Bus 3 54 174 12 

 

The SE algorithms were developed in Matlab R2013b 

using sparse matrix representations, and the simulations were 

carried out using a personal computer with an Intel Core 

i3-370M processor running at 2.4 GHz (4 GB RAM). 

Measurement noise is simulated as independent zero-mean 

Gaussian with standard deviation 0.004 p.u. and 0.002 p.u. 

for power measurements and voltage magnitude 

measurements, respectively[16]. Bad data are simulated by 

adding Gaussian-distributed errors with a very large standard 

deviation (100 times larger than that of measurement noise) 

to the corresponding true value. λ is empirically set as 1.34, ρ
f
 

= 1.0, ρ
s
 = 0.1, and the tolerance for convergence was ε = 

5.0×10
-4

. 

To assess the accuracy of the estimated state, the 

performance metric here is the average absolute difference 

between the true value and estimated states: 

 
1

1 true

VS V V
N

    (60) 

and 

 
1

1

1

trueS
N

   


  (61) 

where V and θ denote the estimated results, while trueV  and 
true  represent the true value. 

A. Two-Area IEEE 14-Bus Interconnected System 

A case study was carried out on an IEEE 14-bus 

interconnected system. As is shown in Fig. 4, the system is 

divided into two areas connected via three tie-lines. 

Measurements consist of voltage magnitudes at all buses, 

power flows across all branches (but “from” terminal only), 

power injections at all buses. Measurements are corrupted on 

branch power flow over tie-line (5, 6), power injection at 

boundary bus 5, and voltage magnitude at internal bus 14. 

 
Fig. 4  Two-area IEEE 14-bus interconnected system. Branch (corrupted) 

measurements are depicted by green squares (red circles).  

 

1) Convergence. 

To illustrate convergence of the ADMM iterations, 

residuals in both stages are depicted in Fig. 5(a). Clearly, the 

overlapping borders of two areas converged approximately 

with a linear rate in 20 iterations (18.3 msec), yielding a final 

estimation precision of ~1.0×10
-4

 in comparison to the true 

value. 

 
Fig. 5 Evolution of ADMM iterations in IEEE 14-bus system. (a) Residuals 

in both stages; and (b) estimation errors of magnitude and phase angle 

 

2) Accuracy analysis. 

Fig. 6 further provides detailed comparison of the 

estimation results with different solution methods. True value 

of all states is depicted as purple “+”. Influenced by the bad 

data, results of weighted least square (WLS) estimation, 

marked as black squares, stray far away from the true value. 

The convergence of D-RBSE guarantees that its results (blue 

“×”) are identical to those of their counterparts (red circle) in 

the centralized RBSE. Thanks to the robust model, influence 

of bad data has been suppressed, and the results of both 

distributed and centralized RBSE are very close to true value. 

Table II describes the suppression of bad data in both internal 

and boundary regions. 

 
Fig. 6 Comparison of estimated states with different solution methods. 

 
TABLE II SUPPRESSION OF BAD DATA IN THE IEEE 14-BUS  SYSTEM 

Measurement 
True 

value 

Meas.  

value 

WLS D-RBSE 

Est.  

results 

Est.  

error 

Est.  

results 

Est.  

error 

Bus 5, Pi -0.0773  0.0387 -0.0303  0.0470  -0.0793  0.0020  

Bus 14, Vi 1.0360 1.1396 1.0492 0.0132  1.0362  0.0002  

Line (5,6), Pij 0.4405  0.3137  0.4304 0.0101  0.4404  0.0001  

B. Three-Area IEEE 118-Bus Interconnected System 

The IEEE 118-bus, with the same partition as Fig. 4 in[27], 

was tested next. Here, the bad data percentage is in the range 

of 0%-5%. For each scenario, the estimation errors SV and Sθ 

are averaged over 100 randomly-generated scenarios. In each 

scenario, corrupted measurements are randomly located in 

internal areas, boundary buses and tie-lines. 
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Fig. 7  Comparison of estimation errors between WLS+LNRT and 

D-RBSE in the IEEE 118-bus system versus the percentage of bad data for (a) 
SV; and (b) Sθ. 

Fig. 7 shows state estimation errors of WLS with largest 

normalized residual tests (LNRT), depicted in red continuous 

lines, and D-RBSE (dashed black line). When there were no 

bad data, WLS, WLS+LNRT and D-RBSE exhibited almost 

identical results. In presence of 5% bad data, the performance 

of WLS deteriorates significantly, yielding an accuracy of 

~10
-1

, while both WLS+LNRT and D-RBSE can suppress the 

influence of bad data. However, D-RBSE performs slightly 

better than WLS+LNRT. Besides, the implementation of 

fully distributed LNRT is not straightforward. 
 

 
Fig. 8 Evolution of ADMM iterations in IEEE 118-bus system in presence of 
5% bad data. (a) Residuals in both stages; (b) per area estimation error of 

magnitude and (c) phase angle. 

 

When 5% of the measurements are corrupted, the 

corresponding convergence curve and error curves are 

plotted in Fig. 8. D-RBSE converges in 25 iterations with a 

final accuracy of ~1.0×10
-4

 in magnitude and ~3.0×10
-4

 in 

angle, while distributed SDP-based SE in [14] converged 

after about 20 iterations (215.6 msec) within an accuracy of 

~10
-2

 given bad data-free measurements (but please note that 

the metric is 2-norm there). Voltage magnitude converges 

within 5 iterations. But phase angle converges slower than 

magnitude, because in the second linear stage, there are 

almost no nodal information of phase angles except a single 

reference angle in area 1, which is transmitted to areas 2 and 

3 in the form of boundary states. Due to fluctuating boundary 

angle, areas 2 and 3 converge in a rate slower than area 1. 

However, in case of installing a set of PMUs, the second 

stage improves significantly its efficiency with more nodal 

information of phase angle. 

VI. CONCLUSION 

We described an extension of the centralized bilinear state 

estimation scheme to create a distributed robust bilinear state 

estimation method that is applicable to interconnected power 

systems with nonlinear measurements. In the two linear 

stages, the SE problem is decomposed into areas, where each 

area solves its own local SE problem with minimal data 

exchange among neighboring areas. The intermediate 

nonlinear transformation in between can be performed by 

every area independently without the need of inter-regional 

communication. Simulation results using benchmark 

networks with different scale show that D-RBSE is resilient 

and efficient even in the presence of bad data, with a very 

small communication overhead. The algorithm can be further 

accelerated by incorporating PMUs bus voltage 

measurements. This method can be extended for unbalanced 

distribution networks and it is the future works.  
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