
Efficiency of the solution representations for the hybrid
flow shop scheduling problem with makespan objective∗

Victor Fernandez-Viagas1†, Paz Perez-Gonzalez1, Jose M. Framinan1

1 Industrial Management, School of Engineering, University of Seville,

Camino de los Descubrimientos s/n, 41092 Seville, Spain, {vfernandezviagas,pazperez,framinan}@us.es

January 13, 2020

Abstract

In this paper we address the classical hybrid flow shop scheduling problem with
makespan objective. As this problem is known to be NP-hard and a very common
layout in real-life manufacturing scenarios, many studies have been proposed in the
literature to solve it. These contributions use different solution representations of
the feasible schedules, each one with its own advantages and disadvantages. Some of
them do not guarantee that all feasible semiactive schedules are represented in the
space of solutions –thus limiting in principle their effectiveness– but, on the other
hand, these simpler solution representations possess clear advantages in terms of
having consistent neighbourhoods with well-defined neighbourhood moves. There-
fore, there is a trade-off between the solution space reduction and the ability to
conduct an efficient search in this reduced solution space. This trade-off is deter-
mined by two aspects, i.e. the extent of the solution space reduction, and the quality
of the schedules left aside by this solution space reduction. In this paper, we analyse
the efficiency of the different solution representations employed in the literature for
the problem. More specifically, we first establish the size of the space of semiactive
schedules achieved by the different solution representations and, secondly, we address
the issue of the quality of the schedules that can be achieved by these representations
using the optimal solutions given by several MILP models and complete enumera-
tion. The results obtained may contribute to design more efficient algorithms for
the hybrid flow shop scheduling problem.

Keywords: Scheduling, Hybrid Flow shop, MILP, complete enumeration,
Makespan, solution representation, review, flowshop
∗Preprint submitted to Computers & Operational Research. DOI:10.1016/j.cor.2019.05.002
†Corresponding author. Email: vfernandezviagas@us.es

1

1 Introduction

Flow shop scheduling is one of the most studied problems in Operations Research (see e.g. the

reviews by Framinan et al., 2004; Ruiz and Maroto, 2005; Fernandez-Viagas et al., 2017). In this

setting, n jobs are processed across m single-machine stages, where each job follows the same

route of stages. However, the flow shop layout may result in overloading some stages (Fernandez-

Viagas and Framinan, 2017) so, in many real-life scenarios, parallel machines –usually assumed

to be identical– are placed in these stages to increase the throughput and to balance the workload

(Naderi et al., 2010). Scheduling in such flow shop layout with parallel machines in each stage

is traditionally labelled as the Hybrid Flow shop Scheduling (HFS) problem. Given its practical

interest, it is not surprising that the HFS problem has been widely studied by researchers (see

e.g. the reviews by Ruiz and Vázquez-Rodríguez, 2010 or Ribas et al., 2010).

As the aforementioned reviews can attest, the most employed objective is the minimisation of

the maximum completion time of the jobs (makespan). Since the HFS problem with makespan

objective is known to be NP-hard for two stages and at least one stage with two machines (Gupta,

1988), or for a single-stage with three or more machines (Rinnooy Kan, 1976), many approximate

algorithms have been proposed to address it (see e.g. Fernandez-Viagas et al., 2018a; Dios et al.,

2018; Chung et al., 2017; Zhong and Shi, 2018 and Ying and Lin, 2018 for the most recent

contributions). These algorithms usually represent a semiactive feasible schedule in the HFS

problem in the form of one or several sequences of jobs across machines, in some cases with a

policy to assign the jobs to the machines in the stages.

While it is clear that every feasible semiactive schedule in the HFS problem can be represented

unequivocally e.g. by giving the sequence in which each job is processed on each machine for each

stage, many contributions in the HFS problem literature employ solution representations that do

not guarantee that all feasible semiactive schedules of the HFS problem can be represented. For

instance, some works restrict the space of solutions in the HFS problem to semiactive schedules

that can be represented by a sequence of jobs per stage plus a given policy to assign jobs to the

machines in each stage (e.g. to assign the jobs to the first available machine in the stage). Clearly,

this type of solution representation limits the search of the best schedule to a subset of schedules

2

within the HFS problem solution space, which, in principle, would reduce the effectiveness of

this representation to obtain high-quality solutions. On the other hand, using a simpler solution

representation has obvious advantages in terms of having consistent neighbourhoods with well-

defined neighbourhood moves, so there is a trade-off between the solution space reduction and the

ability to conduct an efficient search in this reduced solution space. This trade-off is determined

by two aspects, i.e. the extent of the solution space reduction, and the quality of the schedules

left aside by this solution space reduction. Clearly, if a solution representation achieves a large

reduction of the solution space without leaving outside most of the high-quality schedules, then

this solution representation can be considered as efficient. Conversely, solution representations

that do not substantially reduce the solution space of the HFS problem or leave outside high-

quality schedules, cannot be regarded as efficient. Despite the importance of the representation

of the solutions in the performance of both approximate and exact approaches, to the best of our

knowledge, no analysis has been performed so far in the literature and the following important

research questions are still open:

• Which representation of the solutions, job sequencing rules and machine assignments have

been addressed in the literature?

• How far from the optimum we are if we use simpler representation of the solutions?

• How much does the different job sequencing rules and machine assignments influence in

the quality of solutions?

• Is it possible to improve the results by combining different solution representations?

• How are the solutions of each representation distributed (i.e. number/percentage of solu-

tions within a given distance of the best/worst solution of the problem)?

To tackle these challenges, in this paper, we analyse the efficiency of the solution representa-

tions for the HFS problem with makespan objective. More specifically, we first establish the size

of the space of semiactive schedules achieved by the different solution representations employed

in the literature, together with another possible representation that, to the best of our knowledge,

it has not been employed so far. Secondly, we address the issue of the quality of the schedules

3

that can be achieved by the different solution representations. This is done via computational

evaluation of the best results obtained by the different solution representations employed in the

literature. The results obtained may contribute to design more efficient algorithms for the HFS

problem.

The remainder of the paper is organised as follows: In Section 2 we give the formal description

of the problem, while in Section 3 we classify the different solution representations employed in

the literature, together with their corresponding assignment and sequencing rules. We then define

four subproblems representing the solution spaces of the most widely-employed representations.

The size of the solution spaces of these subproblems is addressed in Section 4, while in Section 5

we propose four mixed integer linear programming (MILP) models to solve them. In Section 6

the quality of the solution of these subproblems and related solution representations is evaluated.

Finally, the conclusions are discussed in Section 7.

2 Problem description and notation

In a HFS problem, there is a set N with n jobs and a set M of m stages, where each stage

i is composed of mi identical parallel machines, ∀i ∈ M. Let pij be the processing time of

job j in stage i. Due to technological constraints, the processing of each job across the stages

cannot be altered, so all jobs follow the same order across stages. The HFS problem then

consists in finding a schedule (i.e. a set of starting times for each job on each machine) that

minimises the makespan or maximum completion time among the jobs, i.e. Cmax. This problem

is usually denoted as FHm, ((PMk)mk=1)||Cmax by Ruiz and Vázquez-Rodríguez (2010), and by

HFm||Cmax or FFm||Cmax by Graham et al. (1979).

Among the feasible schedules that could be obtained for the problem, we will focus on semi-

active schedules (see e.g. Pinedo, 1995 for a formal definition), as it is clear that right-shifting

some jobs in the Gantt chart would not improve the makespan. Given a (semiactive) schedule,

let us denote by Cij the completion time of job j in stage i, by Ci the maximum completion time

in stage i and Cj the completion time of job j in the last stage. Consequently, the makespan

can be defined as follows: Cmax = maxiCi = maxj Cj = maxij Cij .

4

3 Background: Solution Representation

Different solution representations for the HFS problem have been used in the literature. To iden-

tify and classify them, we have reviewed the main contributions on the topic. More specifically,

we started from the reviews by Ruiz and Vázquez-Rodríguez (2010); Ribas et al. (2010), and

conducted an exhaustive review on the Scopus database, not only for the problem under consid-

eration, but also for more constrained HFS problems when the representation of the solution is

not influenced by the constraints as e.g. pre-emption. From this review, the following solution

representations have been identified:

• R1: Here we group solution representations that contain all feasible semiactive schedules

of the problem. These are:

– RS1 , where a solution is represented by
∑m
i=1mi sequences of jobs, each sequence

giving the order in which the jobs are processed on each machine in the shop. RS1 is

used by e.g. Nowicki and Smutnicki (1998); Belkadi et al. (2006). It is clear that one

solution in RS1 unequivocally defines a feasible semiactive schedule in a HFS problem,

and that RS1 contains all feasible semiactive schedules.

– RR1 , where a solution is represented by a decimal number for each job in each stage.

The integer part of this decimal number indicates the machine where the job is

assigned, while the sequence of the jobs in each stage is obtained by ordering the

fractional parts of the decimal numbers of that stage. RR1 is used e.g. by Buddala

and Mahapatra (2018); Niu et al. (2009); Naderi et al. (2009). It is also clear that

one solution in RR1 unequivocally defines a feasible semiactive schedule, and that RR1

contains all feasible semiactive schedules.

• R2: Here we classify solution representations that do not unequivocally define a feasible

semiactive schedule in the HFS problem, but to do so, some assignment rule of jobs to

machines (denoted as DA in the following) has to be specified. InR2, a solution is typically

represented by a set ofm sequences, each one composed of n jobs. Each sequence represents

the order of the jobs on each stage i ∈ {1,m}, i.e. a job j must start its processing in

5

stage i not later than job k if job j precedes job k in the sequence of stage i. This

solution representation is used e.g. by Fernandez-Viagas et al. (2018a); Kouvelis and

Vairaktarakis (1998); Koulamas and Kyparisis (2000); Vairaktarakis and Elhafsi (2000);

Lee and Vairaktarakis (1994).

Clearly, a semiactive feasible schedule is defined by the combination of one solution in R2

plus a given assignment rule DA, so we denote as R2(DA) the so-obtained set of feasible

schedules. However, not every feasible semiactive schedule in the HFS problem may be

represented in this way.

• R3: Here we classify solution representations that require a specific rule to sequence the

jobs between stages (denoted in the following as DS), in order to unequivocally define

a feasible schedule in the HFS problem. A solution is typically represented by a unique

sequence of jobs and the machine assignment of each job in each stage. A semiactive

feasible schedule is therefore defined by the combination of R3 plus a given schedule rule

DS , so we denote as R3(DS) the so-obtained set of feasible schedules. Note that, as with

R2, not every feasible semiactive schedule in the HFS problem may be represented in

this way. Although we are not aware that this representation has been used to solve the

problem under consideration, we include it and test its efficiency in Section 6.

• R4: Here we classify solution representations that, in order to unequivocally define a

feasible schedule in the HFS problem, require a given assignment rule of jobs to machines

(DA) and a rule to sequence the jobs between stages (DS). These solution representations

are:

– RF4 , where a solution is represented by a single sequence of n jobs that denote the

order of the jobs in the first stage (forward approach, see Soewandi and Elmaghraby,

2001; Pan et al., 2014; Cui and Gu, 2014 for some examples).

– RB4 , where a sequence is given to represent the inverse sequence of jobs (beginning

with the last stage and finishing with the first one) (backward approach, see e.g.

Wang et al., 2013; Pan et al., 2014; Xu et al., 2013).

6

Clearly, a semiactive feasible schedule is defined by one solution in R4 plus a machine

assignment rule DA and a job sequencing rule DS , so we denote as R4(DA,DS) the so-

obtained set of feasible schedules. As in R2 and R3, not every feasible schedule can be

defined by a combination of a solution in R4 plus some given machine assignment and job

sequencing rules.

Regarding the job sequencing rules (DS) found in the literature, we note the following:

• FIFO (see e.g. Brah and Loo, 1999; Liao et al., 2012; Pan et al., 2014; Xu et al., 2013;

Lahimer et al., 2013; Oguz et al., 2004). This rule sorts the jobs in stage i (with i > 1) in

non-decreasing order of their completion times in stage i−1. Since ties may occur (i.e. two

jobs have the same completion time on the previous stage) and no tie-breaking mechanism

is described in these references, we assume that ties are broken taken the first tie found.

• FIFO(iLS) (Wang et al., 2013). Similarly to the FIFO rule, FIFO(iLS) sorts jobs in stage

i according to non-decreasing completion times in stage i− 1. However, in case of ties, the

jobs with higher remaining processing times are chosen first (i.e. sum of the processing

times ∀i′ > i).

• Q(SPT) (Allahverdi and Al-Anzi, 2006; Barman, 1997; Brah and Wheeler, 1998; Jayamo-

han and Rajendran, 2000; Han et al., 2018; Fernandez-Viagas et al., 2018a; Hunsucker

and Shah, 1992). Jobs are first ordered in each stage according to non-decreasing order

of their completion times in the previous stage. After that, when a job should be placed

in any machine of a stage, the job with shortest processing time (SPT) among the jobs in

the queue (in case that there are more jobs which could be placed in that time) is chosen.

Conversely, let Q(LPT) denote when the job with the largest processing time (LPT) is

chosen (Brah and Wheeler, 1998; Fernandez-Viagas et al., 2018a; Hunsucker and Shah,

1992).

• Q(PT+WINQ+AT) (Holthaus and Rajendran, 1997; Jayamohan and Rajendran, 2000).

Analogously to the Q(SPT) rule, this rule chooses the job in the queue of a stage according

to the PT+WINQ+AT rule (for the problem under consideration, this rule sorts the jobs

7

according to non-decreasing sum of the processing time in that stage and the completion

time in the previous stage).

• Q(rand) (Soewandi and Elmaghraby, 2001; Brah and Wheeler, 1998; Fernandez-Viagas

et al., 2018a). In this case, a random job in the queue of a stage is chosen when a job

should be placed in any machine of that stage.

• Q(MWRF) and Q(LWRF) (Brah andWheeler, 1998; Hunsucker and Shah, 1992). Similarly

to the previous rule, in this case the job in the queue with the most and least processing

times remaining is selected for Q(MWRF) and Q(LWRF), respectively.

• Q(MTWF) and Q(LTWF) (Brah and Wheeler, 1998). In this case, the job with the most

and least total processing times in the shop is selected for Q(MTWF) and Q(LTWF),

respectively.

• Q(LIFO) (Brah and Wheeler, 1998; Hunsucker and Shah, 1992). In this rule, the job to

be inserted in a machine is selected from the queue according to the LIFO rule.

• PERM (see e.g. Wang et al., 2013; Xu et al., 2013) This rule uses the same sequence of

jobs in each stage, which is typically applied for the flow shop layout (i.e. with mi = 1 ∀i).

Regarding the assignment of jobs to machines (DA):

• FAM: Jobs are assigned to the machines following the First Available Machine (FAM rule).

It is the most common assignment used in the literature (see e.g. Acero-Dominguez and

Paternina-Arboleda, 2004; Brah, 1996; Brah and Loo, 1999; Soewandi and Elmaghraby,

2001; Paternina-Arboleda et al., 2008; Pan et al., 2014; Oguz et al., 2004)1.

• iPS (Jin et al., 2006; Wang et al., 2013; Xu et al., 2013): Specifically designed for the RF4

representation using the same sequence in each machines (i.e. using PERM rule), jobs are

assigned to the first machine that becomes available. In case of ties, the rule chooses the

machine with the lowest idle time after the new inserted job (if there is still some tie, the

machine with the lowest idle time before the new inserted job is chosen).
1Note that a rule that assigns a job to the machine which would finish that job first is tantamount to

FAM, as identical parallel machines are considered.

8

• LBM: This rule is typically used to assign jobs to the second stage in 2-stage hybrid flow

shops. Jobs are assigned to the stages following the Last Busy Machine rule (LBM) (see

e.g. Kouvelis and Vairaktarakis, 1998; Koulamas and Kyparisis, 2000; Vairaktarakis and

Elhafsi, 2000; Lee and Vairaktarakis, 1994). Since this rule can only be used for a 2-stage

HFS problem, it would be not considered further.

Table 1 summarises the review on solution representations. As already discussed, the op-

timal solution for the HFS problem can be only guaranteed by using the R1 type of solution

representation. However, the solution space in this representation is much larger than that of

R4 (see Section 4), being this fact one of the reasons for which R4 has been widely used. Since

most references employ R4 combined with some variant of FIFO for job sequencing and FAM for

machine assignment, it would be of interest to analyse other spaces of solutions that lie between

R1 (where no assignment and no sequencing rules are used) and using R4 with FIFO and FAM.

More specifically, we define the following subproblems:

• P1 denotes the problem of obtaining the solution with the lowest makespan within the

space of solutions defined by R1. Clearly, solving P1 is tantamount to obtain the best

feasible semiactive schedule for the HFS problem.

• P2 denotes the problem of obtaining the solution with the lowest makespan within the space

of solutions defined by R2(FAM). In P2, no job sequencing rule is given and, clearly, the

optimal solution of P2 is a (possibly non optimal) solution of P1. This subproblem contains

all solutions in P1 where jobs are assigned using the most-used machine assignment rule

(FAM).

• P3 denotes the problem of obtaining the solution with the lowest makespan within the space

of solutions defined by R3 and using FIFO as job sequencing rule. So this subproblem

contains all solutions in P1 where the jobs are sequenced according to the most-employed

job sequencing rule (FIFO). Furthermore, it has been mentioned that several tie-breaking

rules and variants of FIFO have been used in the literature. In order to explore the

efficiency of this approach regardless the tie-breaking rule employed, we consider all the

9

Reference R DS DA

Niu et al. (2009)

RR
1 — —Buddala and Mahapatra (2018)

Naderi et al. (2009)
Su et al. (2014)
Nowicki and Smutnicki (1998) RS

1 — —Belkadi et al. (2006)
Fernandez-Viagas et al. (2018a)

R2 — FAMAcero-Dominguez and Paternina-Arboleda (2004)
Paternina-Arboleda et al. (2008)
Kouvelis and Vairaktarakis (1998)

R2 — FAM and LBMKoulamas and Kyparisis (2000)
Vairaktarakis and Elhafsi (2000)
Lee and Vairaktarakis (1994)
Hunsucker and Shah (1992)

RF
4 FIFO FAM

Brah and Loo (1999)
Cui and Gu (2014)
Dios et al. (2018)
Fernandez-Viagas et al. (2018a)
Lahimer et al. (2013)
Oguz et al. (2004)
Oguz and Ercan (2005)
Jouglet et al. (2009)
Liao et al. (2012)
Xu et al. (2013)
Pan et al. (2017)
Santos et al. (1996)
Serifoglu and Ulusoy (2004)
Brah and Wheeler (1998)
Pan et al. (2014)
Brah and Wheeler (1998)

RF
4 Q(rand) FAMFernandez-Viagas et al. (2018a)

Soewandi and Elmaghraby (2001)
Hunsucker and Shah (1992)

RF
4 Q(SPT) FAM

Jayamohan and Rajendran (2000)
Han et al. (2018)
Brah and Wheeler (1998)
Allahverdi and Al-Anzi (2006)
Fernandez-Viagas et al. (2018a)
Barman (1997)
Hunsucker and Shah (1992)

RF
4 Q(LPT) FAMBrah and Wheeler (1998)

Fernandez-Viagas et al. (2018a)
Holthaus and Rajendran (1997)

RF
4 Q(PT+WINQ+AT) FAMJayamohan and Rajendran (2000)

Fernandez-Viagas et al. (2018a)
Wang et al. (2013) RF

4 FIFO(iLS) FAM
Hunsucker and Shah (1992) RF

4 Q(MWRF) FAMBrah and Wheeler (1998)
Hunsucker and Shah (1992) RF

4 Q(LWRF) FAMBrah and Wheeler (1998)
Brah and Wheeler (1998) RF

4 Q(MTWF) FAM
Brah and Wheeler (1998) RF

4 Q(LTWF) FAM
Wang et al. (2013) RF

4 PERM iPSXu et al. (2013)
Pan et al. (2014)

RB
4 FIFO FAMXu et al. (2013)

Wang et al. (2013)

Table 1: Summary of solution representations and assignment/sequencing rules of Section
3

10

Figure 1: Different subproblems identified.

solutions that can be obtained in case of ties. We denote this job sequencing rule as FIFO∗

and then, the space of solutions is denoted as R3(FIFO∗).

• P4 denotes the problem of obtaining the solution with the lowest makespan within the

space of solutions defined by RF4 (FAM,FIFO∗), which are the most widely employed

machine assignment and job sequencing rules.

The relationship between the subproblems is illustrated in Figure 1. For these subproblems,

we:

1. Determine the size of their space of solutions, which is addressed in Section 4. By doing

so, we formally state the size of the solution space for each subproblem.

2. Determine the structure of solutions by using the complete enumeration of all solutions.

With this analysis, we obtain the distribution of solutions of each problem and assess how

easy or difficult is to find good solutions there.

3. Determine the quality of the optimal solution for each of these subproblems with respect to

the optimal solution of the HFS problem. To do so, we develop a MILP model for each one

of these problems, and use them to solve small and medium instances. The MILP models

11

are described in Section 5. Furthermore, we explore additional solution spaces that can be

constructed using other sequencing and assignment rules to fully assess the efficiency of

the different solution representations using complete enumeration. This experimentation

is carried out in Section 6.

4 Structure of the solutions: Size of the solution

space and complete enumeration

In this section we state the size of the solution space of the four subproblems identified and

explain the methodology used to completely define the structure of the subproblems. Regarding

the former, the number of total solutions for each subproblem can be defined as follows:

• Subproblem P1. The size of the solution space of P1 is given by the following expression

(see Urlings et al., 2010):

|P1| = (n!)m
m∏
i=1

(
n+mi − 1
mi − 1

)
(1)

• Subproblem P2. The size of the solution space of P2 is given by

|P2| = (n!)m (2)

since a sequence of n jobs has to be specified for each stage i.

• Subproblem P3. The size of the solution space of P3 is given by

|P3| = (n!)
m∏
i=1

mn
i (3)

since each job of the sequence can be assigned to any of the mi machines of stage i (all

possible machine assignment).

12

• Subproblem P4. The size of the solution space of P4 is given by

|P4| = n! (4)

since only a sequence of jobs is considered.

Regarding the methodology to evaluate the quality of the solutions of these subproblems,

we use complete enumeration of the solutions. This methodology has been commonly used

in the literature to analyse the structure of the solutions and/or compare different subproblems

(see e.g. Perez-Gonzalez and Framinan, 2009; Fernandez-Viagas and Framinan, 2017; Dios et al.,

2018). Basically, the methodology generates all solutions of the problem evaluating their objective

functions. In a first iteration, all solutions are run searching the best and worst solution. Once

these solutions are identified, specific indicators of the structure of the solutions can be obtained

in a second iteration: frequency curve, ARPD of all solutions, etc (see Section 6.2).

5 MILP models

In this section, the subproblems defined in Section 3 are modelled as Mixed Integer Linear

Programming (MILP) models. More specifically, the following four MILPs model are stated

and described in this section to find the optimal solutions of each one of the previously defined

subproblems:

1. Model 1: MILP model which obtains the optimal solution of P1, i.e. in the space of

solutions of R1.

2. Model 2: MILP model which obtains the optimal solution of P2, i.e. in the space of

solutions of R2(FAM). With this model, we enforce that the FAM rule is applied to

assign jobs to machines.

3. Model 3: MILP model which obtains the optimal solution of P3, i.e. in the space of

solutions of R3(FIFO∗). In this case, the model sequences the jobs between stages using

the FIFO∗ rule and analyse every possible assignment of jobs to machines.

13

4. Model 4: MILP model which obtains the optimal solution of P4, i.e. in the space of

solutions of R4(FAM,FIFO∗). The model then incorporates both FAM and FIFO∗

rules.

The four models use the following common variables:

• Cij continuous variable which indicates the completion time of job j at stage i.

• Xijk binary variable equals 1 if job k is processed before job j at stage i, and 0 otherwise.

• Yilj binary variable equals 1 if job j is processed at stage i on machine l, and 0 otherwise.

• Cmax continuous variable which indicates the makespan.

5.1 Model 1 to solve P1 (Naderi et al., 2014)

minimize Cmax

subject to
∑

l∈Mi

Yilj = 1 i ∈M, j ∈ N (M1.1)

Cij ≥ Ci−1,j + pij i ∈M− {1}, j ∈ N (M1.2)

Cij ≥ Cik + pij −M · (3−Xijk − Yilj − Yilk) i ∈M, l ∈Mi, j ∈ N , k ∈ N|k > j (M1.3)

Cik ≥ Cij + pik −M ·Xijk −M · (2− Yilj − Yilk) i ∈M, l ∈Mi, j ∈ N , k ∈ N|k > j (M1.4)

Cmax ≥ Cmj j ∈ N (M1.5)

Cij ≥ 0 i ∈M, j ∈ N (M1.6)

Xijk ∈ {0, 1} i ∈M, j ∈ N , k ∈ N|k > j (M1.7)

Yilj ∈ {0, 1} i ∈M, l ∈Mi, j ∈ N (M1.8)

Equations (M1.1) enforce that each job is processed only in one machine on each stage. The

completion times of each job are defined in constraints (M1.2), (M1.3), and (M1.4): On the one

hand, set of constraints (M1.2) ensures that the ith operation of a job starts to be processed

after its previous operation; on the other hand, constraints (M1.3) and (M1.4) assure that it is

14

not possible to process two jobs in the same machine at the same time, and that a job cannot

be processed before the completion time of each previous job at the same machine. M is a

large number. Constraints set (M1.5) defines the makespan. Finally, sets of constraints (M1.6),

(M1.7), and (M1.8) define the variables of the model.

5.2 Model 2 to solve P2

minimize Cmax

subject to
∑

l∈Mi

Yilj = 1 i ∈M, j ∈ N (M2.1)

Cij = Ci−1,j + pij + hij i ∈M− {1}, j ∈ N (M2.2)

Cij = Cik + pij −M · (3−Xijk − Yilj − Yilk) + h
′
iljk i ∈M, l ∈Mi, j ∈ N , k ∈ N − {j} (M2.3)

Xijk +Xikj = 1 i ∈M, j ∈ N , k ∈ N − {j} (M2.4)

hij ≤M · Vij i ∈M, j ∈ N (M2.5)

h
′
iljk +M · (3−Xijk − Yilj − Yilk) ≤M

′
· (1− V

′
iljk) i ∈M, l ∈Mi, j ∈ N , k ∈ N − {j} (M2.6)∑

l∈Mi

∑
k∈N−{j}

V
′

iljk ≥ 1−M · (1− Vij) i ∈M, j ∈ N (M2.7)

Cij − pij +M · (1−Xijk) ≥ Cik − pik i ∈M, j ∈ N , k ∈ N − {j} (M2.8)

Cmax ≥ Cmj j ∈ N (M2.9)

Silj +M · (2−Xijk − Yilk) = Cik + h
′′
iljk i ∈M, l ∈Mi, j ∈ N , k ∈ (N ∪ dummy)− {j} (M2.10)

h
′′
iljk ≤M

′
· V

′′
iljk i ∈M, l ∈Mi, j ∈ N , k ∈ (N ∪ dummy)− {j} (M2.11)∑

k∈(N∪dummy)−{j}

V
′′

iljk = 1 i ∈M, l ∈Mi, j ∈ N (M2.12)

Silj ≤ Sirj +M · (1− Yilj) i ∈M, l ∈Mi, r ∈Mi, j ∈ N (M2.13)

Cij , hij ≥ 0 i ∈M, j ∈ N (M2.14)

Xijk ∈ {0, 1} i ∈M, j ∈ N , k ∈ (N ∪ dummy)− {j} (M2.15)

Yilj ∈ {0, 1} i ∈M, l ∈Mi, j ∈ N (M2.16)

h
′
iljk, h

′′
iljk ≥ 0 i ∈M, l ∈Mi, j ∈ N , k ∈ (N ∪ dummy)− {j} (M2.17)

Vij ∈ {0, 1} i ∈M, j ∈ N (M2.18)

V
′

iljk, V
′′

iljk ∈ {0, 1} i ∈M, l ∈Mi, j ∈ N , k ∈ (N ∪ dummy)− {j} (M2.19)

As compared to Model 1, this model does not use symmetry for variable Xijk. In addition, we

enforce the use of semiactive sequences to represent the influence in the results of the different

15

sequences between stages. Otherwise, a job could be enforced to finish later and therefore,

another job would be assigned according to the FAM rule. The following new variables have

been added to the model:

• Silj continuous variable which indicates the completion time of each machine l before

inserting job j in stage i

• hij , h
′
iljk, h

′′
iljk, slack variables.

• Vij , V
′
iljk, V

′′
iljk binary variables which bound the previous slack variables.

The set of constraints (M2.1) and (M2.9) are the same as (M1.1) and (M1.5) of Model 1,

respectively. Constraints set (M2.2) transforms the set of constraint (M1.2) of Model 1 into an

equality constraint by adding a slack variable (denoted as hij). Constraints (M2.3) (equivalent

to constraints (M1-3) and (M1.4) of Model 1) assure that a job cannot be processed before the

completion time of each previous job at the same machine. Slack variable h′iljk is introduced to

transform these inequality constraints into equality constraints. Constraints set (M2.4) ensures

that either job j precedes job k in machine i or job k precedes job j in that machine. Set of

constraints (M2.5), (M2.6), and (M2.7) assure the considerations of only semiactive schedules.

The purpose of introducing the slack variables hij and h
′
iljk is that a job must start either exactly

after its previous operation (i.e. contraints M2.2 with hij = 0) or exactly after the previous job

in the same machine (i.e. contraints M2.2 with h′iljk = 0 for some l and k). More specifically,

either hij = 0 (and set M2.2 is Cij = Ci−1,j + pij) or both h
′
iljk = 0 and 3−Xijk−Yilj −Yilk = 0

for some l and k (i.e. set of constraints M2.3 is Cij = Cik + pij for at least one value of k,

∀i, j). By means of the binary variables Vij and V
′
iljk, the constraints (M2.7) enforce that if

hij > 0 then h
′
iljk = 0 for some l and k, and the opposite. M

′ is a big number bigger than

M (M ′
>> M). Constraints (M2.8) assures that the starting time of job k at stage i must be

lower than the starting time of job j at that stage if job k precedes job j at that stage. Set

of constraints (M2.10), (M2.11), and (M2.12) fully define Silj variable, i.e. they linearise the

expression Silj = max{Cik : k verifies Xijk = 1&Yilk = 1}. Note that an artificial job (denoted

dummy) is added to be able to model a job without predecessors. Finally, constraints (M2.13)

16

with previous constraints (M2.8) fully model the FAM rule, they assure Silj using that a job j

is assigned to machine l which firstly become available.

5.3 Model 3 to solve P3

minimize Cmax

subject to
∑

l∈Mi

Yilj = 1 i ∈M, j ∈ N (M3.1)

Cij = Ci−1,j + pij + hij i ∈M− {1}, j ∈ N (M3.2)

Cij = Cik + pij −M · (3−Xijk − Yilj − Yilk) + h
′

iljk i ∈M, l ∈Mi, j ∈ N , k ∈ N − {j} (M3.3)

Xijk +Xikj = 1 i ∈M, j ∈ N , k ∈ N − {j} (M3.4)

hij ≤M · Vij i ∈M, j ∈ N (M3.5)

h
′

iljk +M · (3−Xijk − Yilj − Yilk) ≤M
′
· (1− V

′

iljk) i ∈M, l ∈Mi, j ∈ N , k ∈ N − {j} (M3.6)∑
l=1∈Mi

∑
k=1N

V
′

iljk ≥ 1−M · (1− Vij) i ∈M, j ∈ N (M3.7)

Ci−1,j +M · (1−Xijk) ≥ Ci−1,k i ∈M− {1}, j ∈ N , k ∈ N − {j} (M3.8)

Cmax ≥ Cmj j ∈ N (M3.9)

Cij , hij ≥ 0 i ∈M, j ∈ N (M3.10)

Xijk ∈ {0, 1} i ∈M, j ∈ N , k ∈ N − {j} (M3.11)

Yilj ∈ {0, 1} i ∈M, l ∈Mi, j ∈ N (M3.12)

Vij ∈ {0, 1} i ∈M, j ∈ N (M3.13)

V
′

iljk ∈ {0, 1} i ∈M, l ∈Mi, j ∈ N , k ∈ N − {j} (M3.14)

h
′

iljk ≥ 0 i ∈M, l ∈Mi, j ∈ N , k ∈ N − {j} (M3.15)

This model is identical to the first nine constraints of Model 2 with the exception that it

replaces the set of constraints (M2.8) by (M3.8), to use the FIFO sequencing rule to extend

sequences between stages. More specifically, this set ensures that job k is sequenced before job j

at stage i if the completion time of j is greater or equal than the completion time of k at stage

17

i− 1. Note that as the MILP looks for the optimal solution, FIFO∗ rule is guaranteed.

5.4 Model 4 to solve P4

minimize Cmax

subject to
∑

l∈Mi

Yilj = 1 i ∈M, j ∈ N (M4.1)

Cij = Ci−1,j + pij + hij i ∈M− {1}, j ∈ N (M4.2)

Cij = Cik + pij −M · (3−Xijk − Yilj − Yilk) + h
′
iljk i ∈M, l ∈Mi, j ∈ N , k ∈ N − {j} (M4.3)

Xijk +Xikj = 1 i ∈M, j ∈ N , k ∈ N − {j} (M4.4)

hij ≤M · Vij i ∈M, j ∈ N (M4.5)

h
′
iljk +M · (3−Xijk − Yilj − Yilk) ≤M

′
· (1− V

′
iljk) i ∈M, l ∈Mi, j ∈ N , k ∈ N − {j} (M4.6)∑

l∈Mi

∑
k∈N−{j}

V
′

iljk ≥ 1−M · (1− Vij) i ∈M, j ∈ N (M4.7)

Cij − pij +M · (1−Xijk) ≥ Cik − pik i ∈M, j ∈ N , k ∈ N − {j} (M4.8)

Ci−1,j +M · (1−Xijk) ≥ Ci−1,k i ∈M− {1}, j ∈ N , k ∈ N − {j} (M4.9)

Cmax ≥ Cmj j ∈ N (M4.10)

Silj +M · (2−Xijk − Yilk) = Cik + h
′′
iljk i ∈M, l ∈Mi, j ∈ N , k ∈ (N ∪ dummy)− {j} (M4.11)

h
′′
iljk ≤M

′
· V

′′
iljk i ∈M, l ∈Mi, j ∈ N , k ∈ (N ∪ dummy)− {j} (M4.12)∑

k∈(N∪dummy)−{j}

V
′′

iljk = 1 i ∈M, l ∈Mi, j ∈ N (M4.13)

Silj ≤ Sirj +M · (1− Yilj) i ∈M, l ∈Mi, r ∈Mi, j ∈ N (M4.14)

Cij , hij ≥ 0 i ∈M, j ∈ N (M4.15)

Xijk ∈ {0, 1} i ∈M, j ∈ N , k ∈ (N ∪ dummy)− {j} (M4.16)

Yilj ∈ {0, 1} i ∈M, l ∈Mi, j ∈ N (M4.17)

h
′
iljk, h

′′
iljk ≥ 0 i ∈M, l ∈Mi, j ∈ N , k ∈ (N ∪ dummy)− {j} (M4.18)

Vij ∈ {0, 1} i ∈M, j ∈ N (M4.19)

V
′

iljk, V
′′

iljk ∈ {0, 1} i ∈M, l ∈Mi, j ∈ N , k ∈ (N ∪ dummy)− {j} (M4.20)

This model is identical to Model 2 with the exception that it adds the inequalities as (M3.8) of

Model 3, now denoted (M4.9).

18

6 Evaluation of the quality of the solution represen-

tations

In this section, we show the computational results of our experimentation. All methods have

been coded in C# under Visual Studio in an Intel Core i7-3770 with 3.4 GHz, 16 GB RAM,

and with Microsoft Windows 8.1 64 bit. The instances of the problems used are detailed in

Subsection 6.1. In Subsection 6.2, we analyse the structure of solutions of the problem under

consideration, P1, and of the three P2, P3, and P4 reduced problems. Finally, in Subsection 6.3,

computational results in small-medium set of instances are presented to compare the presented

MILP models and different representations of the solutions and rules.

6.1 Sets of instances

In this section, we generate two different sets of instances, denoted as β1, and β2. β1 is a set of

small instances used to compare the different complete enumeration of the problem, depending

of the representation of the solutions used. β2 benchmark is a set of small-medium instances to

compare the MILP models and different combinations of assignment and sequencing rules for

R4. The composition of both benchmarks is detailed as follows:

• β1: Regarding the number of jobs and stages, the following combinations are considered

(n ×m ∈ {3 × 2, 3 × 3, 3 × 4, 4 × 2, 4 × 3, 4 × 4, 5 × 2, 5 × 3, 6 × 2}). Note that a higher

number of jobs and/or stages cannot be considered due to the huge number of solutions

in the P1 problem (see Section 4 for more details). Regarding the number of machines per

stage, three different approaches are used (τ ∈ {0, 1, 2}) following a similar procedure as

Fernandez-Viagas et al. (2018a).

– τ = 0: Instances with 3 machines in each stage with the exception of a unique stage

with 2 machines (see e.g. Carlier and Néron, 2000; Kouvelis and Vairaktarakis, 1998

for similar approaches);

– τ = 1: Instances with 3 machines in each stage (see e.g. Naderi et al., 2009);

19

– τ = 2: Instances with random number of machines in each stage between 1 and 3

(see e.g. Liao et al., 2012; Pan et al., 2014; Dios et al., 2018 which also uses uniform

distribution to generate the number of machines).

10 instances are generated for each combination of these parameters with processing times

uniformly distributed between 1 and 99. By doing so, a total of 270 instances are generated.

• β2: This set of 360 small-medium instances is generated by combining all the values of

n ∈ {6, 7, 8, 9, 10, 11} and m ∈ {2, 3, 4, 5}. Regarding the number of machines per stage,

the same procedures as in β1 is applied (τ ∈ {0, 1, 2}). For each combination of these

parameters, 5 instances are generated and the processing times are generated using a

uniform distribution [1, 99].

6.2 Structure of the solution space

In this section, we analyse the quality of all solutions for the P1, P2, P3, and P4 problems by a

complete enumeration of all solutions (see e.g. Perez-Gonzalez and Framinan, 2009; Fernandez-

Viagas and Framinan, 2017; Dios et al., 2018). Regarding the size of the solution space of each

subproblem, the expressions have been explained in Section 4. An example of this size of the

solution space of each subproblem is performed next for the set β1 of small instances. Table 2

shows such number of solutions. We can observe, in the example, the huge differences between

the different approaches, as e.g. the number of solution of P1 and P4 in instance n = 5, m = 3,

and τ = 1 are 16,003,008,000 and 120, respectively. Thereby, once the difference between the

size of the different subproblems have been established, we analyse the quality or structure of all

these solutions for each subproblem.

20

n m τ P1 P2 P3 P4
3 2 0 1440 36 1296 6
3 2 1 3600 36 4374 6
3 2 2 489.6 36 367.8 6
3 3 0 86400 216 34992 6
3 3 1 216000 216 118098 6
3 3 2 46872 216 20601 6
3 4 0 5184000 1296 944784 6
3 4 1 12960000 1296 3188646 6
3 4 2 1138924.8 1296 194404.2 6
4 2 0 43200 576 31104 24
4 2 1 129600 576 157464 24
4 2 2 13363.2 576 7764 24
4 3 0 15552000 13824 2519424 24
4 3 1 46656000 13824 12754584 24
4 3 2 2654208 13824 322332 24
4 4 0 5598720000 331776 204073344 24
4 4 1 16796160000 331776 1033121304 24
4 4 2 811855872 331776 24769656 24
5 2 0 1814400 14400 933120 120
5 2 1 6350400 14400 7085880 120
5 2 2 432000 14400 189696 120
5 3 0 4572288000 1728000 226748160 120
5 3 1 16003008000 1728000 1721868840 120
5 3 2 1124928000 1728000 46621008 120
6 2 0 101606400 518400 33592320 720
6 2 1 406425600 518400 382637520 720
6 2 2 173612160 518400 156423672 720

Table 2: Example of the number of solutions using β1

21

Figure 2: Structure of the solutions in average for all instances of β1. x-axis indicates the
RDI value, while y-axis indicates the number of solutions (in percentage) for this value.

The structure of solutions as an average for all instances of benchmark β1 is shown in Figure

2. In this figure, the number of solutions is shown (in percentage) against the value of RDI

indicator (RDI = OF−Min
Max−Min · 100, see e.g. Fernandez-Viagas et al., 2018b; Yu et al., 2018, where

Max and Min are the worst and best value found in the P1 problem, original HFS problem),

i.e. we measure the distance between the best solution (value 0) and the worst solution (value

100) of P1. An empirical cumulative distribution function of these values is shown in Figure 3.

From these curves, we observe that is more difficult to find a good solution in P1, then in P3,

P2, and finally P4. Although, there are few solutions to explore in P4 as compared to P1, the

quality of these solutions is significantly better and we find many solutions close to the optimal

solution of the HFS problem. Thereby, for instance, 79.33% of the solutions are lower than 10

(i.e. an objective function, OF , which satisfies OF−Min
Max−Min · 100 ≤ 10) in the P4 problem, while

this percentage decreases to only 5.96% and 27.62% for P1 and P3. Furthermore, more than

95% and only 13.27% of the solutions are found in 20 in P4, and P1, respectively.

The Average Relative Percentage Deviation (ARPD) using the best solution, BestPi(I), in

each instance I ∈ β1 –denoted as ARPD(best), see Eq. (5)– and using the ARPD of all solutions

–ARPD(all), see Eq. (6) where OF jP i refers to the Cmax of the j-th solution of a total of T

22

explored solutions– are shown in Table 3, both with respect to the optimal solution provided

for the P1 problem. In this table, we also show the average CPU time (in seconds) and the

number of solutions T . We can observe the huge different in these values between the P1 and P4

problems (e.g. the CPU times is 0.00 s and 2105.69 s for P4 and P1, respectively). In addition,

the best solution provided for P4 has an ARPD only 0.36 higher than in P1. Regarding P2, and

P3, both have values of ARPD very similar to P1 analysing much less solutions (especially in

the case of P2 with an average CPU time of 0.50 s as compared to 2105.69 s of P1).

ARPDPi(best) =
∑
I∈β1

BestP i(I)−BestP 1(I)
BestP 1(I)
|β1|

· 100 (5)

ARPDPi(all) =
∑
I∈β1

∑T
j=0

OF j
P i(I)−BestP 1(I)
BestP 1(I)

|β1| · T
· 100 (6)

Figure 3: Cumulative distribution function

23

P1 P2 P3 P4

ARPD(best) 0.00 0.00 0.03 0.36

ARPD(all) 74.15 17.71 31.04 8.00

CPU time (s) 2105.69 0.50 227.18 0.00

Solutions (T) 1674450484.27 289836.00 139556401.64 116.67

Table 3: Structure of the solutions. Average values

6.3 Quality of the solutions

In this subsection, we compare the quality of the optimal solutions for different solution spaces.

More specifically, we compare the MILP models in Section 5, and the main combinations of

solution representations in R4 with DS and DA (see Table 1) by complete enumeration of all the

solutions. The MILP models are solved using Gurobi 7.02 solver with 1500 seconds as stopping

criterion, while the algorithms for complete enumeration are coded in C# (with Visual Studio

2010).

The following approaches have been tested using the MILP models:

• OS1: Optimal solution of P1 (i.e. FHm, ((PMk)mk=1)||Cmax). This solution is obtained

by solving Model 1.

• OS2: Optimal solution of P2 by solving Model 2.

• OS3: Optimal solution of P3 by solving Model 3.

• OS4: Optimal solution of P4 by solving Model 4.

In addition, the optima of the solution spaces of some combinations of R4 –found by per-

forming the complete enumeration of all solutions– with different machine assignment and job

sequencing rules are tested:

• OS5: Best solution in the solution space defined by RF4 (FAM,FIFO). Note that this (as

well as the following variants of FIFO) differs from OS4 in that all possibilities for the ties

are considered in the latter (i.e. RF4 (FAM,FIFO∗)).

24

• OS6: Best solution in the solution space defined by RF4 (FAM,FIFO(iLS)).

• OS7: Best solution in the solution space defined by RF4 (FAM,Q(SPT)).

• OS8: Best solution in the solution space defined by RF4 (FAM,Q(LPT)).

• OS9: Best solution in the solution space defined by RF4 (FAM,Q(PT +WINQ+AT)).

• OS10: Best solution in the solution space defined by RF4 (FAM,Q(MWRF)).

• OS11: Best solution in the solution space defined by RF4 (FAM,Q(LWRF)).

• OS12: Best solution in the solution space defined by RF4 (FAM,Q(MTWF)).

• OS13: Best solution in the solution space defined by RF4 (FAM,Q(LTWF)).

• OS14: Best solution in the solution space defined by RF4 (FAM,Q(LIFO)).

• OS15: Best solution in the solution space defined by RF4 (FAM,PERM).

• OS16: Best solution in the solution space defined by RF4 (iPS, PERM).

• OS17: Best solution in the solution space defined by RB4 (FAM,FIFO).

These combinations encompass all combinations for DA and DS found in the literature for

R4 (see Table 1), with the exception of using the FIFO∗ and FIFO(rand) rules for job sequenc-

ing, which does not provide a unequivocal schedule. The complete enumeration of different

combinations for other solution representations is not feasible even for small problem sizes.

Finally, we include two spaces of solutions that have not been employed in the literature.

The idea behind is to assess the potential improvement that can be obtained by solving P1 (i.e.

using R1) with respect to the best solutions that can be obtained with the most common solution

representation adopted in the literature, i.e. RF4 (FAM,FIFO). These approaches are:

• OS18: Best solution provided by Model 1 by forcing the sequence in the first stage to be

OS5 (note that the sequences in the rest of the stages are not fixed).

• OS19: Best solution provided by Model 1 if the sequence in each stage is OS5. More

specifically, Model 1 is solved fixing the sequence in all stages as the solution given by OS5

25

(note that OS5 obtains a unique sequence at the beginning of the shop, and sequences in

the other stages are obtained by using the FIFO rule).

The computational results in terms of ARPD are shown in Table 4 (regarding MILP models,

only the values when the models find an optimal solution are used in the table). Regarding

average CPU times (in seconds), they are shown in Table 6. Finally, the number of optimal,

feasible and no solutions found are summarised in Table 5.

Parameter OS1 OS2 OS3 OS4 OS5 OS6 OS7 OS8 OS9 OS10 OS11 OS12 OS13 OS14 OS15 OS16 OS17 OS18 OS19
n = 6 0.00 0.00 0.02 0.41 0.62 0.45 0.77 0.71 0.54 0.42 1.31 0.42 1.30 0.37 1.87 0.85 0.45 0.15 0.26
n = 7 0.00 0.00 0.00 0.38 0.35 0.34 0.71 0.84 0.43 0.26 1.33 0.37 0.96 0.27 1.28 0.68 0.40 0.10 0.27
n = 8 0.00 0.00 0.00 0.24 0.41 0.40 0.89 0.81 0.44 0.49 1.63 0.47 1.36 0.42 1.61 0.60 0.38 0.18 0.34
n = 9 0.00 0.00 0.01 0.07 0.39 0.36 0.59 0.66 0.47 0.30 1.10 0.32 1.09 0.31 1.75 0.68 0.52 0.19 0.27
n = 10 0.00 0.00 0.02 0.00 0.15 0.15 0.47 0.40 0.21 0.20 1.10 0.18 0.90 0.15 1.39 0.68 0.21 0.08 0.13
n = 11 0.00 0.00 0.01 — 0.32 0.31 0.88 0.70 0.39 0.43 1.22 0.43 1.28 0.19 1.73 0.87 0.33 0.12 0.17
m = 2 0.00 0.00 0.00 0.12 0.14 0.09 0.36 0.09 0.22 0.09 0.36 0.10 0.27 0.09 0.76 0.38 0.14 0.04 0.04
m = 3 0.00 0.00 0.00 0.20 0.29 0.22 0.48 0.50 0.39 0.27 0.97 0.27 0.84 0.29 1.43 0.61 0.34 0.12 0.17
m = 4 0.00 0.00 0.01 0.73 0.52 0.50 1.24 1.20 0.56 0.49 2.18 0.56 1.95 0.35 1.73 0.84 0.56 0.18 0.36
m = 5 0.00 0.00 0.03 0.68 0.54 0.53 0.80 0.96 0.48 0.55 1.62 0.53 1.53 0.41 2.50 1.08 0.49 0.22 0.38
τ = 0 0.00 0.00 0.01 0.30 0.37 0.37 0.49 0.63 0.38 0.39 0.84 0.35 0.80 0.27 1.84 0.86 0.51 0.08 0.22
τ = 1 0.00 0.00 0.02 0.29 0.48 0.40 0.65 0.38 0.57 0.34 0.74 0.36 0.70 0.40 2.45 0.93 0.44 0.19 0.28
τ = 2 0.00 0.00 0.00 0.37 0.27 0.23 1.01 1.05 0.29 0.31 2.26 0.39 1.94 0.18 0.52 0.39 0.19 0.14 0.21
Average 0.00 0.00 0.01 0.33 0.37 0.33 0.72 0.69 0.41 0.35 1.28 0.37 1.15 0.29 1.60 0.73 0.38 0.14 0.24

Table 4: Computational results of schemes of solutions: ARPD

26

Parameter
OS1 OS2 OS3 OS4 OS18 OS19

#O #F #N #O #F #N #O #F #N #O #F #N #O #F #N #O #F #N
n = 6 60 0 0 60 0 0 60 0 0 53 7 0 60 0 0 60 0 0
n = 7 60 0 0 43 0 17 60 0 0 45 1 14 60 0 0 60 0 0
n = 8 60 0 0 31 0 29 60 0 0 22 1 37 60 0 0 60 0 0
n = 9 58 2 0 14 7 39 60 0 0 15 3 42 60 0 0 60 0 0
n = 10 51 9 0 7 8 45 57 3 0 4 4 52 59 1 0 60 0 0
n = 11 45 15 0 1 8 51 51 9 0 0 4 56 57 3 0 60 0 0
m = 2 90 0 0 61 13 16 90 0 0 60 6 24 90 0 0 90 0 0
m = 3 83 7 0 45 6 39 88 2 0 35 3 52 90 0 0 90 0 0
m = 4 84 6 0 30 2 58 87 3 0 30 2 58 90 0 0 90 0 0
m = 5 77 13 0 20 2 68 83 7 0 14 2 74 86 4 0 90 0 0
τ = 0 111 9 0 47 7 66 116 4 0 42 1 77 117 3 0 120 0 0
τ = 1 108 12 0 41 5 74 116 4 0 40 0 80 119 1 0 120 0 0
τ = 2 115 5 0 68 11 41 116 4 0 57 12 51 120 0 0 120 0 0
All 334 26 0 156 23 181 348 12 0 139 13 208 356 4 0 360 0 0

Table 5: Computational results of schemes of solutions using MILP models: optimal
solutions (#O), feasible solutions (#F), no solution is found (#N)

Parameter OS1 OS2 OS3 OS4 OS18 OS19
n = 6 0.38 269.54 0.53 59.22 0.28 0.19
n = 7 0.99 550.72 1.02 522.65 0.54 0.25
n = 8 8.76 833.52 6.65 1059.64 2.53 0.51
n = 9 110.17 1230.49 24.71 1238.26 27.13 2.34
n = 10 286.66 1452.09 153.22 1418.82 56.45 21.65
n = 11 501.73 1500.38 421.54 1495.79 383.71 257.69
m = 2 27.20 610.62 19.90 599.23 42.33 38.12
m = 3 143.88 987.00 103.20 841.33 50.31 43.30
m = 4 176.43 1109.45 108.85 1067.38 75.20 50.19
m = 5 258.27 1334.84 173.16 1204.23 145.92 56.81
τ = 0 157.48 1079.94 90.77 998.15 98.59 46.88
τ = 1 208.91 1064.24 105.43 1030.63 84.90 49.23
τ = 2 87.95 887.24 107.63 755.36 51.84 45.21
All 151.45 1010.48 101.28 928.04 78.44 47.11

Table 6: Computational results of schemes of solutions: CPU times (s)

In view of the results, the following comments can be done:

1. OS1 to OS3 are solutions of the same quality, as it can be seen from Table 4. A non-

27

parametric Mann-Whitney test is conducted between OS1 and OS3 and confirms that the

hypotheses that the ARPD of OS1 and OS3 are equal cannot be rejected with α = 0.05

(p-value=0.157, comparison performed in the instances where both approaches found their

corresponding optimal solution). This means there are not (statistical) differences between

exploring the full space of semiactive schedules of the HFS problem and restricting the

search to R2(FAM) R3(FIFO∗). However, the computation times in Tables 5 and 6

show that –at least if the MILP models presented in Section 5 are employed– obtaining

OS2 requires much more CPU time than obtaining OS1 and OS3, which require roughly

the same computational effort.

2. The quality of solutions of OS1 and OS4 is not the same, but the difference in terms

of ARPD is somewhat meagre: 0.32 on average. Although according to a non-parametric

Mann-Whitney, both OS1 and OS4 are statistically significant with a p-value of 0.000 (this

statistical difference between R1 and R4 is also found using OS5 and comparing against

OS1), the small difference in the ARPD speaks for the high efficiency of R4, particularly

if the interest lies on obtaining good solutions in short computation times.

3. Although the differences in ARPD for OS4 and OS5 are not statistically significant (p-value

equals 0.842 using a Mann-Whitney test) on the overall testbed (the difference in ARPD,

when OS4 finds an optimal solution, is 0.074), they can be notable for some parameters (see

e.g. for n = 8 or m = 4 in Table 4). Recall that the difference between both approaches is

that OS4 is obtained using RF4 (FAM,FIFO∗) considering all ties (FIFO∗), while in OS5,

the ties are solved at random (i.e. RF4 (FAM,FIFO)). This gives some hints regarding

the possibility of improving the solutions by elaborating smart tie-breaking mechanisms.

4. OS5 and OS17 are solutions of similar quality. This is confirmed by conducting a non-

parametric Mann-Whitney test with a confidence level of α = 0.05, resulting that the

hypothesis cannot be rejected as the p-value equals 0.441. Therefore, we can conclude

that RF4 and RB4 (using a sequence of jobs to represent the first or the last stage) produce

similar results if FIFO and FAM (the most common approaches for machine assignment

and job sequencing) are used.

28

5. OS6 to OS14 are not better than OS5. A series of tests are conducted, resulting in that

these hypotheses cannot be rejected with a confidence level of α = 0.05 (Mann-Whitney).

These results imply that, when using RF4 and FAM for machine assignment, the variants of

the FIFO rule for job sequencing –i.e. FIFO(iLS), Q(SPT), Q(LPT), Q(PT+WINQ+AT),

Q(MWRF), Q(LWRF), Q(MTWF), Q(LTWF), and Q(LIFO)– do not improve the original

rule.

6. In Table 4 it can be seen that the ARPD of OS5 is 0.37 and the ARPD of OS18 is 0.13.

Therefore, the optimal solution of RF4 (FAM,FIFO) could be used to reduce the search

space in R1 (by fixing the sequence in the first stage OS5), and this reduced solution space

would still contain very high quality solutions (indeed a hypotheses test shows that there

are statistical differences (Mann-Whitney test) between OS5 and OS18 with a confidence

level of α = 0.05, p-value equals 0.000). Fixing the sequences in all stages (i.e. using

the sequence in the first stage given by OS5 and the sequences in other stages using the

FIFO rule) to restrict the search in R1 (as it is done to obtain OS19) does not perform bad

either, as the ARPD of OS18 is 0.24. In this latter case, however, there are not statistically

significant differences between OS5 and OS19 (p-value equals 0.059 using a non-parametric

Mann-Whitney test).

7. In view of the poor quality of OS15 (i.e. using the same sequence of jobs in all stages), it

can be concluded that employing the same sequence of jobs in every stage (permutation

restriction) does not provide good results for the HFS problem. The differences between

OS15 and OS5 are statistically significant (p-value equals 0.000 using a non-parametric

Mann-Whitney test).

7 Conclusions

In this paper, the efficiency of solution representations for the hybrid flow shop scheduling prob-

lem to minimise the makespan has been studied. First, we have reviewed and classified the dif-

ferent solution representations employed in the literature, together with the main job sequencing

and machine assignment rules required for some of the representations. In addition, we include a

29

solution representation that, to the best of out knowledge, has not been employed so far. Then,

the spaces of solutions defined by the most common solution representations and rules have been

studied in terms of their size and in terms of the quality of the solutions that can be obtained.

Regarding the size of the solution space, we explicitly give the size of the solution space of the

different representations. Regarding the quality of the solutions that can be obtained, we carry

out an exhaustive computational evaluation of the most employed solution representations and

combinations of rules. A number of conclusions and future research lines can be obtained from

the evaluation, which can be summarised as follows:

• High-quality solutions can be obtained using solution representations (R2 and R3) that

only explore a small portion of the full space of semiactive schedules (given by represen-

tation R1). On the one hand the use of R2 and R3 allows to find extremely high-quality

solutions not further than 0.02% from the optimal solution. On the other hand, R4 (i.e.

a sequence of n jobs) greatly reduces the search space while their best solutions are only

marginally outperformed by the best solutions in R1. Consequently, this solution repre-

sentation seems to be quite apt for approximate algorithms.

• In contrast, R1 seems to be suitable if optimal solutions are sought. If this is the case,

the fact that the optimal solutions in R4 are very good solutions for R1 can be used in

order to either provide a tight upper bound, or to restrict the search space in R1 without

greatly diminishing the quality of the solutions by fixing the job sequence in the first/all

stages.

• Most contributions employing R4 use some variant of FIFO for job sequencing and FAM

for machine assignment. However, our experimentation shows that the results obtained

can be improved if the sequence obtained by R4 is fixed as the sequence in the first stage

and either other assignments in machines or sequencing rules in other stages are tested

(i.e. OS18). This seems to indicate that there is room for improving the results using R4

by devising alternative local search on the space of solutions of R1, R2, and/or R3 (in this

regard, see e.g. Urlings et al., 2010; Fernandez-Viagas et al., 2018a).

• If R4 plus FIFO for job sequencing and FAM for machine assignment is used, i.e.

30

R4(FAM,FIFO), then the quality of solutions is similar if the encoding represents the

job sequence in the first stage (RF4) or in the last stage (RB4).

• Although most of the different variants of job sequencing rules do not seem to statisti-

cally improve the results of the original one –at least when FAM is employed for machine

assignment–, the manner in which the ties are solved by FIFO may play a role. However,

the use of different job sequencing rules than FIFO is very limited in approximate algo-

rithms in the literature. Again, this seems to speak for some possibility of improving the

performance of the current algorithms: either by using some smart tie-breaking rule for

FIFO or by changing/combining different job sequencing rules along the algorithms (in

this regard, see e.g. Wang et al., 2013).

• Although the best solutions are found using R1, the number of solutions in this space is

huge as compared to other representations of the solutions. Future exact/approximate al-

gorithms should include specific properties of the problem to avoid or bound the evaluation

of such a high number of solutions.

• The combination of the MILP models developed in this paper together with the different

solution representations could result in efficient matheuristics for the problem.

Acknowledgements

The authors are sincerely grateful to the anonymous referees, who provide very valuable com-

ments on the earlier version of the paper. This research has been funded by the Spanish Ministry

of Science and Innovation, under the project “PROMISE” with reference DPI2016-80750-P.

References
Acero-Dominguez, M. and Paternina-Arboleda, C. (2004). Scheduling jobs on a k-stage flexible flow shop

using a TOC-based (bottleneck) procedure. 2004 IEEE Systems and Information Engineering Design
Symposium, pages 295–298.

Allahverdi, A. and Al-Anzi, F. (2006). Scheduling multi-stage parallel-processor services to minimize
average response time. Journal of the Operational Research Society, 57(1):101–110.

Barman, S. (1997). Simple priority rule combinations: An approach to improve both flow time and
tardiness. International Journal of Production Research, 35(10):2857–2870.

31

Belkadi, K., Gourgand, M., and Benyettou, M. (2006). Parallel genetic algorithms with migration for the
hybrid flow shop scheduling problem. Journal of Applied Mathematics and Decision Sciences, 2006.

Brah, S. (1996). A comparative analysis of due date based job sequencing rules in a flow shop with
multiple processors. Production Planning and Control, 7(4):362–373.

Brah, S. and Loo, L. (1999). Heuristics for scheduling in a flow shop with multiple processors. European
Journal of Operational Research, 113(1):113–122.

Brah, S. and Wheeler, G. (1998). Comparison of scheduling rules in a flow shop with multiple processors:
A simulation. Simulation, 71(5):302–311.

Buddala, R. and Mahapatra, S. (2018). Improved teaching-learning-based and JAYA optimization algo-
rithms for solving flexible flow shop scheduling problems. Journal of Industrial Engineering Interna-
tional, 14(3):555–570.

Carlier, J. and Néron, E. (2000). An exact method for solving the multi-processor flow-shop. RAIRO -
Operations Research, 34(1):1–25.

Chung, T.-P., Sun, H., and Liao, C.-J. (2017). Two new approaches for a two-stage hybrid flowshop prob-
lem with a single batch processing machine under waiting time constraint. Computers and Industrial
Engineering, 113:859–870.

Cui, Z. and Gu, X. (2014). A discrete group search optimizer for hybrid flowshop scheduling problem
with random breakdown. Mathematical Problems in Engineering, 2014.

Dios, M., Fernandez-Viagas, V., and Framinan, J. (2018). Efficient heuristics for the hybrid flow shop
scheduling problem with missing operations. Computers and Industrial Engineering, 115:88–99.

Fernandez-Viagas, V. and Framinan, J. (2017). Reduction of permutation flowshop problems to single
machine problems using machine dominance relations. Computers and Operations Research, 77:96–110.

Fernandez-Viagas, V., Molina-Pariente, J. M., and Framinan, J. M. (2018a). New efficient constructive
heuristics for the hybrid flowshop to minimise makespan: A computational evaluation of heuristics.
Expert Systems with Applications, 114:345 – 356.

Fernandez-Viagas, V., Ruiz, R., and Framinan, J. (2017). A new vision of approximate methods for the
permutation flowshop to minimise makespan: State-of-the-art and computational evaluation. European
Journal of Operational Research, 257(3):707–721.

Fernandez-Viagas, V., Valente, J., and Framinan, J. (2018b). Iterated-greedy-based algorithms with
beam search initialization for the permutation flowshop to minimise total tardiness. Expert Systems
with Applications, 94:58–69.

Framinan, J., Gupta, J., and Leisten, R. (2004). A review and classification of heuristics for permu-
tation flow-shop scheduling with makespan objective. Journal of the Operational Research Society,
55(12):1243–1255.

Graham, R. L., Lawler, E. L., Lenstra, J. K., and Rinnooy Kan, A. H. G. (1979). Optimization and Ap-
proximation in Deterministic Sequencing and Scheduling: A Survey. Annals of Discrete Mathematics,
5:287–326.

Gupta, J. (1988). Two-stage, hybrid flowshop scheduling problem. Journal of the Operational Research
Society, 39(4):359–3641.

Han, Z., Sun, Y., Ma, X., and Lv, Z. (2018). Hybrid flow shop scheduling with finite buffers. International
Journal of Simulation and Process Modelling, 13(2):156–166.

Holthaus, O. and Rajendran, C. (1997). Efficient dispatching rules for scheduling in a job shop. Interna-
tional Journal of Production Economics, 48(1):87–105.

Hunsucker, J. and Shah, J. (1992). Performance of priority rules in a due date flow shop. Omega, 20(1):73
– 89.

Jayamohan, M. and Rajendran, C. (2000). A comparative analysis of two different approaches to schedul-
ing in flexible flow shops. Production Planning and Control, 11(6):572–580.

32

Jin, Z., Yang, Z., and Ito, T. (2006). Metaheuristic algorithms for the multistage hybrid flowshop schedul-
ing problem. International Journal of Production Economics, 100(2):322–334.

Jouglet, A., Oguz, C., and Sevaux, M. (2009). Hybrid flow-shop: A memetic algorithm using constraint-
based scheduling for efficient search. Journal of Mathematical Modelling and Algorithms, 8(3):271–292.

Koulamas, C. and Kyparisis, G. (2000). Asymptotically optimal linear time algorithms for two-stage and
three-stage flexible flow shops. Naval Research Logistics, 47(3):259–268.

Kouvelis, P. and Vairaktarakis, G. (1998). Flowshops with processing flexibility across production stages.
IIE Transactions (Institute of Industrial Engineers), 30(8):735–746.

Lahimer, A., Lopez, P., and Haouari, M. (2013). Improved bounds for hybrid flow shop scheduling with
multiprocessor tasks. Computers and Industrial Engineering, 66(4):1106–1114.

Lee, C.-Y. and Vairaktarakis, G. (1994). Minimizing makespan in hybrid flowshops. Operations Research
Letters, 16(3):149–158.

Liao, C.-J., Tjandradjaja, E., and Chung, T.-P. (2012). An approach using particle swarm optimization
and bottleneck heuristic to solve hybrid flow shop scheduling problem. Applied Soft Computing Journal,
12(6):1755–1764.

Naderi, B., Gohari, S., and Yazdani, M. (2014). Hybrid flexible flowshop problems: Models and solution
methods. Applied Mathematical Modelling, 38(24):5767–5780.

Naderi, B., Ruiz, R., and Zandieh, M. (2010). Algorithms for a realistic variant of flowshop scheduling.
Computers and Operations Research, 37(2):236–246.

Naderi, B., Zandieh, M., Khaleghi Ghoshe Balagh, A., and Roshanaei, V. (2009). An improved simulated
annealing for hybrid flowshops with sequence-dependent setup and transportation times to minimize
total completion time and total tardiness. Expert Systems with Applications, 36(6):9625–9633.

Niu, Q., Zhou, T., and Ma, S. (2009). A quantum-inspired immune algorithm for hybrid flow shop with
makespan criterion. Journal of Universal Computer Science, 15(4):765–785.

Nowicki, E. and Smutnicki, C. (1998). The flow shop with parallel machines: A tabu search approach.
European Journal of Operational Research, 106(2-3):226–253.

Oguz, C. and Ercan, M. (2005). A genetic algorithm for hybrid flow-shop scheduling with multiprocessor
tasks. Journal of Scheduling, 8(4):323–351.

Oguz, C., Zinder, Y., Do, V. H., Janiak, A., and Lichtenstein, M. (2004). Hybrid flow-shop scheduling
problems with multiprocessor task systems. European Journal of Operational Research, 152(1):115 –
131.

Pan, Q.-K., Gao, L., Li, X.-Y., and Gao, K.-Z. (2017). Effective metaheuristics for scheduling a hybrid
flowshop with sequence-dependent setup times. Applied Mathematics and Computation, 303:89–112.

Pan, Q.-K., Wang, L., Li, J.-Q., and Duan, J.-H. (2014). A novel discrete artificial bee colony algorithm
for the hybrid flowshop scheduling problem with makespan minimisation. Omega (United Kingdom),
45:42–56.

Paternina-Arboleda, C., Montoya-Torres, J., Acero-Dominguez, M., and Herrera-Hernandez, M. (2008).
Scheduling jobs on a k-stage flexible flow-shop. Annals of Operations Research, 164(1):29–40.

Perez-Gonzalez, P. and Framinan, J. (2009). Scheduling permutation flowshops with initial availability
constraint: Analysis of solutions and constructive heuristics. Computers and Operations Research,
36(10):2866–2876.

Pinedo, M. (1995). Scheduling: Theory, Algorithms and Systems. Prentice Hall.
Ribas, I., Leisten, R., and Framinan, J. (2010). Review and classification of hybrid flow shop scheduling

problems from a production system and a solutions procedure perspective. Computers and Operations
Research, 37(8):1439–1454.

Rinnooy Kan, A. H. G. (1976). Machine Scheduling Problems: Classification, Complexity and Computa-
tions. Martinus Nijhoff, The Hague.

33

Ruiz, R. and Maroto, C. (2005). A comprehensive review and evaluation of permutation flowshop heuris-
tics. European Journal of Operational Research, 165(2):479–494.

Ruiz, R. and Vázquez-Rodríguez, J. (2010). The hybrid flow shop scheduling problem. European Journal
of Operational Research, 205(1):1–18.

Santos, D., Hunsucker, J., and Deal, D. (1996). An evaluation of sequencing heuristics in flow shops with
multiple processors. Computers and Industrial Engineering, 30(4):681–692.

Serifoglu, F. and Ulusoy, G. (2004). Multiprocessor task scheduling in multistage hybrid flow-shops: A
genetic algorithm approach. Journal of the Operational Research Society, 55(5):504–512.

Soewandi, H. and Elmaghraby, S. (2001). Sequencing three-stage flexible flowshops with identical machines
to minimize makespan. IIE Transactions (Institute of Industrial Engineers), 33(11):985–993.

Su, S., Yu, H., Wu, Z., and Tian, W. (2014). A distributed coevolutionary algorithm for multiobjective
hybrid flowshop scheduling problems. International Journal of Advanced Manufacturing Technology,
70(1-4):477–494.

Urlings, T., Ruiz, R., and Stützle, T. (2010). Shifting representation search for hybrid flexible flowline
problems. European Journal of Operational Research, 207(2):1086–1095.

Vairaktarakis, G. and Elhafsi, M. (2000). The use of flowlines to simplify routing complexity in two-stage
flowshops. IIE Transactions (Institute of Industrial Engineers), 32(8):687–699.

Wang, S.-Y., Wang, L., Liu, M., and Xu, Y. (2013). An enhanced estimation of distribution algorithm for
solving hybrid flow-shop scheduling problem with identical parallel machines. International Journal of
Advanced Manufacturing Technology, 68(9-12):2043–2056.

Xu, Y., Wang, L., Wang, S., and Liu, M. (2013). An effective shuffled frog-leaping algorithm for solving
the hybrid flow-shop scheduling problem with identical parallel machines. Engineering Optimization,
45(12):1409–1430.

Ying, K.-C. and Lin, S.-W. (2018). Minimizing makespan for the distributed hybrid flowshop scheduling
problem with multiprocessor tasks. Expert Systems with Applications, 92:132–141.

Yu, C., Semeraro, Q., and Matta, A. (2018). A genetic algorithm for the hybrid flow shop scheduling with
unrelated machines and machine eligibility. Computers and Operations Research, 100:211–229.

Zhong, W. and Shi, Y. (2018). Two-stage no-wait hybrid flowshop scheduling with inter-stage flexibility.
Journal of Combinatorial Optimization, 35(1):108–125.

34

View publication statsView publication stats

https://www.researchgate.net/publication/332861189

	Introduction
	Problem description and notation
	Background: Solution Representation
	Structure of the solutions: Size of the solution space and complete enumeration
	MILP models
	Model 1 to solve P1 Naderi20145767
	Model 2 to solve P2
	Model 3 to solve P3
	Model 4 to solve P4

	Evaluation of the quality of the solution representations
	Sets of instances
	Structure of the solution space
	Quality of the solutions

	Conclusions

