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Abstract: This paper presents a conceptual framework for the optimization of environmental 
sustainability in engineering projects, both for products and industrial facilities or processes. The main 
objective of this work is to propose a conceptual framework to help researchers to approach optimization 
under the criteria of sustainability of engineering projects, making use of current Machine Learning 
techniques. For the development of this conceptual framework, a bibliographic search has been carried 
out on the Web of Science. From the selected documents and through a hermeneutic procedure the texts 
have been analyzed and the conceptual framework has been carried out. A graphic representation 
pyramid shape is shown to clearly define the variables of the proposed conceptual framework and their 
relationships. The conceptual framework consists of 5 dimensions; its acronym is ADAPTS. In the base 
are: (1) the Application to which it is intended, (2) the available DAta, (3) the APproach under which it is 
operated, and (4) the machine learning Tool used. At the top of the pyramid, (5) the necessary Sensing. A 
study case is proposed to show its applicability. This work is part of a broader line of research, in terms of 
optimization under sustainability criteria.  

Keywords: conceptual framework; sensors; approaches; tools; data; application; project engineering; 
LCA; SDG 9; SDG 11 

 

1. Introduction 

In recent years concern for sustainability has grown, becoming one of the main problems worldwide 
[1,2]. The 2030 Agenda for Sustainable Development sets out 17 Sustainable Development Goals with 169 
goals of an integrated and indivisible nature that cover the economic, social and environmental spheres. 
An example of the importance that environmental sustainability has at the moment is that several of the 
Sustainable Development Goals are directly related to the concepts of sustainability [3,4]. 

Many of the interpretations of what sustainable development should be agree that, in order to achieve 
this, the policies and actions to achieve economic growth must respect the environment and also be socially 
equitable to achieve economic growth: it is the model of Triple E [5,6]. 

The main objective of this work is to propose a conceptual framework to help researchers to approach 
optimization under the criteria of sustainability of engineering projects, making use of current Machine 
Learning techniques. 

Likewise, the growing development in collaborative methodologies such as BIM (a methodology that 
integrates a growing number of disciplines and processes involved in the life cycle of a project), is 
something to consider. The sixth dimension of BIM is not only about energy saving and sustainable design 
(although they are the most recognized aspects), but also about the concept of value engineering, which 
consists in the optimization of construction systems, structures and facilities, so that with a few key 
modifications in strategic items or in certain systems or equipment it could be possible to obtain a 
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significant reduction in costs, in the construction phase and / or in the exploitation phase, without losing 
the essence of the project. In a project that incorporates the sixth dimension of the BIM, analytical models 
are generated to perform analysis, calculations and simulations in order to improve the quality of the 
project [7,8]. 

For the optimization of sustainability throughout the entire life cycle of a particular product, process 
or industrial installation, it is necessary to use some methodology for quantification and evaluation of 
sustainability.  

There are techniques aimed primarily at controlling effects (for example, life cycle analysis-LCA) [9,10] 
and techniques more focused on eliminating the causes (among which is Cradle to Cradle-C2C) [11,12].We 
can also find the circular economy approach, which proposes a new model of society that uses and 
optimizes stocks and flows of materials, energy and waste, with the aim of maximizing the efficiency of 
resource use [13,14] (Figure 1). 

 
Figure 1. Sustainability, Triple Bottom Line and Optimization. LCA/C2C/Circular Economy. 

However, these techniques, more oriented to modify the causes of sustainability inefficiencies, do not 
provide rigorous quantitative techniques for their evaluation (although they can be very useful in the 
decision-making process) [15,16]. That is why it seems appropriate to deepen the study of the LCA as a tool 
for evaluating potential impacts. 

Life Cycle Analysis (LCA) is an objective process that allows evaluating the environmental loads 
associated with a product, process or activity, identifying and quantifying both the use of matter and 
energy and the emissions to the environment, to determine the impact of that use of resources and those 
emissions [17,18]. 

On the other hand, industry is currently immersed in an evolution, consisting of its digital 
transformation [19,20]. To understand the keys to this transformation it is necessary to know the available 
tools and other emerging ones of new application. The term Industry 4.0. is a recent term, which consists in 
the use of new technologies and the integration with some other evolved ones, to achieve the total or 
partial digitalization of the current productive models, or to create new models that allow a substantial 
reduction of the terms in all the phases of the affected project or services and efficiency improvements of all 
kinds [21,22]. 

Among the solutions related to Industry 4.0 with more future are artificial intelligence and machine 
learning. Artificial intelligence techniques have evolved vertiginously recently [23], becoming a very useful 
tool to address complex problems in many different fields. These types of techniques have been applied to 
problems in the fields of sound classification [24], image processing [25,26], risk prevention [27,28], air 
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conditioning [29,30], in estimation of project parameters [31,32], and in many other fields of research. We 
understand very important to deepen the study of possible fields of application of these tools. 

One of the challenges is that machine learning algorithms need to have a large volume of data in order 
to be trained, validated and generalized. There are multiple technologies that are framed within Industry 
4.0. However, we can circumscribe the processes of digitization of industrial environments around three 
elements (Figure 2): 

• Collection of data from machines, warehouses and articles, achieved through the Internet of 
Things (IoT). 

• Analysis and exploitation of this huge amount of data through big data and business intelligence 
(BI) techniques. 

• Predictive analytics based on data through machine learning. 

 
Figure 2. Three digitalization process. 

Information is of crucial importance on these three stages. Obtaining, storing and managing relevant 
data intelligently plays a decisive role in the so-called Industry 4.0. [33,34]. In this way, Big Data becomes 
the axis on which the rest of actions must pivot in terms of digitalization. However, the avalanche of data 
faced by organizations may pose a threat to the viability of the project. 

In the first phase of industrial digitalization, companies need to capture in real time the maximum 
possible information, structured and accessible, about what is happening in their business. The 
development of intelligent sensors, capable of being located in multiple locations of the industrial 
processes, allows to capture a large number of parameters based on various indicators.  

These systems are complemented with cloud technology (Figure 3). The emergence of cloud solutions 
allows companies to store and manage in real time the multiple measurements obtained from sensors. This 
process is what we call the Internet of things (IoT). There are a number of advantages inherent to IoT that 
could be taken advantage of immediately by the industry, such as the detection of possible failures, the 
forecast of wear of parts or the reconfiguration of parameters and calibrations. However, many 
professionals are still cautious about their actual application in the industry. In this sense, there is a 
widespread perception that the real industrial world is not so prepared for hyper connectivity [35,36].  
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Figure 3. Sensors/Cloud/(connectivity)/ Storage (connectivity). 

It is necessary to rely on agents that cover this gap from analog systems to intelligent ones where the 
technology allows to connect the real world to communicate it to the cloud through the so-called 
cyber-physical systems. In any case, it is an unstoppable trend since several studies estimate that by 2020 
there will be 212 billion devices connected with sensors in the world [37]. 

The second phase consists in analyzing what is happening through tools that identify patterns and 
inefficiencies. Big data solutions allow the collection and systematized treatment of relevant data, obtained 
through sensorization, to make decisions that affect both the immediate future of organizations (to solve a 
breakdown or replace a part) and its development in the long term (change supplier, modify packaging or 
renew machinery) (Figure 4). 

It is a very complex process due to two factors: the huge volume of data and the heterogeneity of the 
sources from where come the data.  

In addition to this, we do not only want to know what it is that has happened or is happening in those 
moments, but what is going to happen in the near future. This is achieved by providing the manufacturing 
equipment of intelligent applications that make measurements along all processes by combining the 
historical data and predictive models. Machine learning can be then understood as the last phase of the 
evolution of Industry 4.0 [38,39].  

The predictive analysis, based on artificial intelligence, requires the design and implementation of 
algorithms that learn to represent data and to detect trends. The objective of the system is to develop 
models of future behaviors from the data. In this sense, the quality and quantity of information it is 
essential to take the next steps towards the Fourth Industrial Revolution. As we see, this brings us back to 
Big Data.  
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Figure 4. Sensors network. 

At this point we will return to the objective approach to the optimization under the criteria of 
sustainability of engineering projects, making use of the current techniques of Machine Learning. We will 
focus on the evaluation of the sustainability using the technique of LCA, because it uses a few indicators 
that allow to quantify the environmental impacts [9,40].  

Given that the techniques of artificial intelligence are a very useful tool for dealing with complex 
problems in diverse fields, it seems interesting to raise the possibility of using them as an aid in this goal. 
Therefore, it is essential to take account of the need to collect and make a systematic treatment of the 
relevant data, obtained through smart sensing.  

As far as we know, the sensorization of industrial plants and the treatment of data through machine 
learning algorithms is not yet sufficiently extended in the field of sustainability optimization. We detect a 
gap of opportunity (Figure 5) in the investigation of the state of the art, with the objective of proposing a 
conceptual framework that can help in the approach to this type of problems. 

 

Figure 5. ML-LCA-SENSORS. 

Conceptual frameworks are a very useful tool widely used for various applications. Figure 6 shows 
the evolution in the number of articles contained "conceptual framework" in the title indexed in the 
SCOPUS database over the last 10 years. As can be seen, there is a growing interest in the development of 
this type of work by the scientific community. 
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Figure 6. Number of published articles containing "conceptual framework" in the title indexed in Scopus. 
Source: Scopus (2020). 

In [41] the use of portable sensors to provide an adaptation based on affection in Environmental 
Intelligence systems is considered, and a proposal for a conceptual design framework for games is 
presented. Zupančič et al. [42] defines a conceptual framework that considers human participation in 
mobile crowd detection systems and takes into account that users provide their opinions and other 
subjective data in addition to unprocessed detection data generated by your smart devices. Mordecai et al. 
[43] proposes a conceptual approach based on models to capture, explain and mitigate CPG, which 
improves the systems engineer's ability to cope with CPGs, mitigate them by design and avoid decisions 
and wrong actions. González et al. [44] presents a new architecture based on OPC to implement 
automation systems dedicated to R&D and educational activities. The proposal is a new conceptual 
framework, structured in four functional layers where the various components are classified with the 
objective of promoting the systematic design and implementation of automation systems that involve OPC 
communication. Yoo et al. [45] describe a conceptual framework for exchanging closed cycle life cycle 
information for the service of products on the Internet of Things (IoT). The framework is based on the 
product-service ontology model and a standard IoT message type, Open Messaging Interface (O-MI) and 
Open Data Format (O-DF), which guarantees data communication. Varela et al. [46] states that human 
interaction environments (HIE) should be understood as any place where people carry out their daily lives, 
including their work, family life, leisure and social life, interacting with technology to improve or facilitate 
the experience. The integration of technology in these environments has been achieved in a disorderly and 
incompatible way, with devices that operate on isolated islands with artificial borders delimited by 
manufacturers. A framework is presented that constitutes an integral solution for the development of 
systems that require the integration and interoperation of devices and technologies in HIE. In this work a 
conceptual framework for the integration of artificial intelligence and life cycle assessment (LCA) will be 
proposed. 

2. Methodology 

The objective of this work is the development of a conceptual framework for the integration of 
artificial intelligence and LCA. A conceptual framework is a tool that allows the analysis and organization 
of information related to a field of knowledge. Thus, it is easier to carry out future research [47,48]. 

An important part of academic texts has to do with integrating concepts, ideas, arguments or theories 
of our discipline that allow us to fulfill the objectives of a writing work. Sometimes, these concepts and 
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ideas work to briefly explain the object or theme of our text, but in other cases a more extensive conceptual 
framework must be developed to meet the requirements of the task. 

A conceptual framework is a section of a text written in the academic field that details the theoretical 
models, concepts, arguments and ideas that have been developed in relation to a topic. The conceptual 
framework is generally oriented to define this object, describe its characteristics and explain possible 
processes associated with it. In some more extensive texts, the conceptual framework also works to 
recognize and describe “the state of the art”, that is, to point out the main theoretical lines in relation to this 
topic, in order to propose a new theoretical view that is considered relevant in relationship with the object. 

All research needs to use concepts to be able to organize your data and perceive the relationships 
between them. Borsotti [49] suggests that scientific knowledge is entirely conceptual, since; ultimately, it is 
constituted by interrelated systems of concepts in different ways. Hence, to access the ideas of science, it is 
necessary to manage the concepts and languages of science. These concepts cannot cease to be subjective; 
they are necessarily conditioned by ideological positions and by evaluative positions that are logical 
assumptions of all knowledge. Borsotti adds, that "when you think about it, it is irremediable to resort to 
notions drawn from common language, generated in historical and social life, and that are loaded with 
ideological connotations and full of ambiguity and vagueness. Science cannot be managed with these 
concepts. It does not seek to be exact, but to be precise, in order to achieve the elaboration, the construction 
of unique concepts, that is, concepts whose intention and extension are as precise as possible." A concept is 
an abstraction obtained from reality and, therefore, its purpose is to simplify by summarizing a series of 
observations that can be classified under the same name. 

The information that is integrated into the conceptual framework must be systematically organized so 
that it can be better understood. An important principle is to start from the most general to the most 
particular. A starting point can be the definition of the object or topic and then describe its characteristics, 
functions and indicate the parts that compose it or the associated concepts that are relevant. 

The diagram representing the research topic or problem is sometimes called the conceptual 
framework, this diagram could be useful to analysis and interpret the results [47,48,50]. It is a visual 
scheme that represents the concept or idea. It is the way in which the work will be carried out and 
integrates the elements. It also influences the research problem as it is associated with the literature used. A 
part of this framework will offer a synopsis of the main points of the study. In addition, the diagram will 
show the central factors that influence the relationship of the primary variables, elements or constructions, 
as well as the hypothesis. After reading the literature of the corresponding area, it has to be shown what 
the theories state about it and support the relationship. 

The first phases followed in the methodology for developing the conceptual framework include 
investigating the main variables or elements that correspond to those contextual factors that are related to 
the research work. The technique used in this initial stage for constructing the conceptual framework is the 
hermeneutics. In hermeneutics, the texts are read and analyzed in order to delve into them obtaining a 
better understanding of reality [51]. Although the origin of hermeneutics is associated with the study and 
interpretation of religious texts, its use has been extended to other disciplines such as pedagogy or 
philosophy [52]. With the expression hermeneutic circle, the relationship between the text and the context 
from which the research is revealed [50,52]. In our case, it has been successfully applied to the construction 
of a conceptual framework for the teaching of Sustainable Development Goals in Higher Education [50].  

For the search and selection of the texts a systematic search of the literature has been carried out 
following the sequence proposed by Pawson [53]. The first step is to clarify the purpose of the review. In 
the second step, it aims to search for documents. This stage was divided into three sub-stages: the search 
for bibliographic references proper, the filtering of the documentation and the synthesis of the documents. 

The review was carried out on the main collection of the Web of Science, in documents written in 
English and published in the last 5 years (2015-19) [48,54,55]. Keywords used in the search are shown in 
Table 1. 
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Table 1. Keywords used during systematic literature review. 

Keywords Search Criteria 
“Machine Learning” and “LCA” I 

“Machine Learning” and “Life Cycle Assessment” II 
“Artificial Intelligence" and “Life Cycle Assessment” III 

“Artificial Intelligence” and “LCA” IV 

Once this step was finished, the actual hermeneutic work began with the evaluation of the results, the 
synthesis of the documentation and the creation of the conceptual framework.  

The methodology used to build the proposed conceptual framework consists of the following main 
phases [56], as shown in Figure 7. 

 
Figure 7. Methodology used to build the proposed conceptual framework [56]. 

Phase 1: Identification of the selected data sources. The first task is to review the spectrum of 
multidisciplinary literature regarding the phenomenon in question. This process includes the identification 
of text types and other data sources. 

Phase 2: Detailed reading and categorization of the selected data. The objective in this phase is to 
categorize the data by discipline and by a scale of importance. 

Phase 3: Identification and denomination of concepts. The objective in this phase is to reread the 
selected data and identify the concepts that group them [57,58]. 
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Phase 4: Build and categorize concepts. The objective of this phase is to find each concept, identify its 
main attributes, characteristics, assumptions and role. Subsequently it organizes and categorizes the 
concepts according to their characteristics and ontological, epistemological and methodological role. 

Phase 5: Integration of concepts. The objective in this phase is to group conceptions that have 
similarities in a new concept. This phase dramatically reduces the number of definitions and allows a 
reasonable number of them to be manipulated. 

Phase 6: Synthesis The objective in this phase is to synthesize concepts in a theoretical framework. The 
researcher must be open, tolerant and flexible with the theorizing process and the emerging new theory. 
This process is iterative and includes repetitive synthesis until the researcher recognizes a general 
theoretical framework that makes sense. 

Phase 7: Validation of the conceptual framework. The objective in this phase is to test the conceptual 
framework. The question is whether the proposed framework and its concepts make sense not only for the 
researcher but also for other academics and professionals. 

Phase 8: Rethink the conceptual framework. A theory or theoretical framework that represents a 
multidisciplinary phenomenon will always be dynamic. It should be reviewed according to new 
knowledge, comments, literature. 

3. Results 

In this study, it has been detected that the sensorization of industrial plants and the treatment of data 
through Machine Learning algorithms has not yet been extended enough in the field of sustainability 
optimization. As a result of this research on the state of the art, five fundamental dimensions are obtained 
in the approach to these types of problems: applications, data, approaches, tools and sensors. These five 
aspects will be integrated into a proposed conceptual framework, which aims to be a contribution when 
facing sustainability engineering projects. 

We propose a conceptual framework that may help to understand and situate the research in life cycle 
analysis using techniques of machine learning, as well as apply the proposed framework to a case study. 

The search result according to the criteria shown in the previous section was 39 documents. Of these 
documents, 15 were discarded because they were false positives: from the abstract and the title it could be 
deduced that there was no relation with the topic analyzed in the work. The remaining 24 documents were 
read in depth. Figure 8 shows the distribution of the documents according to the year of publication and 
the type of publication (journal or conference proceedings or book chapters).  

As can be seen in the figure, most of the 24 documents that have been reviewed correspond to articles 
published in journals. An increase in the number of publications that address this topic could be inferred 
from the data, this aspect shows the interest of the work. 
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Figure 8. Evolution of the articles published in the last 5 years. 

From the reading of the previous documents, a total of 11 articles were eliminated because they were 
outside the scope. For example, for dealing with steam turbine operating conditions [59] or improving the energy 
use of a farm [60]. Thus, the articles that were finally used for the construction of the framework are shown in 
Table 2. 

 

Table 2. Documents used to construct the conceptual framework. 

ID [ref] Tittle Year 
Search Criteria 

I II III IV 

A [61] 
Machine learning for toxicity characterization of organic 
chemical emissions using USEtox database: Learning the 
structure of the input space 

2015 1  1  

B [62] 
Extending life cycle assessment normalization factors and use 
of machine learning - A Slovenian case study 

2015 1  1  

C [63] 
Limitations of toxicity characterization in life cycle assessment: 
Can adverse outcome pathways provide a new foundation? 

2016 1  1  

D [64] 
Quantifying the impact of sustainable product design decisions 
in the early design phase trough machine learning 

2016 1  1  

E [65] 
A Data-Driven Approach for Improving Sustainability 
Assessment in Advanced Manufacturing 

2017 1  1 1 

F [66] 
Computational design optimization of concrete mixtures: A 
review 

2018  1   

G [67] 
Integration of artificial intelligence methods and life cycle 
assessment to predict energy output and environmental 
impacts of paddy production 

2018   1 1 

H [68] Developing surrogate ANN for selecting near-optimal building 2019 1 1   
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energy renovation methods considering energy consumption, 
LCC and LCA 

I [69] Machine Learning for Sustainable Structures: A Call for Data 2019 1 1 1 1 

J [70] 
Model uncertainty analysis using data analytics for life-cycle 
assessment (LCA) applications 

2019 1  1  

K [71] 
Assessing environmental performance in early building design 
stage: An integrated parametric design and machine learning 
method 

2019  1   

L [72] 
A machine learning approach for the estimation of fuel 
consumption related to road pavement rolling resistance for 
large fleets of trucks 

2019  1   

M [73] 
Combined life cycle assessment and artificial intelligence for 
prediction of output energy and environmental impacts of 
sugarcane production 

2019   1 1 

As can be inferred from Table 2, only one document 17 meets the four search criteria, one document 13 
covers three search criteria. Most of the documents [61–64,68,70,73] cover two search criteria, the most 
common being the conjunction of criteria I and II. Only two documents [71,73] meet a single search 
criterion. 

3.1. ADAPTS: A Proposal of Conceptual Framework for Engineering Projects 

Results have been extracted from the bibliographic study (shown in  
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Table ). The most relevant characteristics detected in the works analyzed are: 1) the application to 
which the work refers, 2) the data used, 3) the approach that has been given to the problem addressed, 4) 
the machine learning tool used and 5) the sensors used or proposed for implementation. These five aspects 
detected are what form the basis of our conceptual framework. Therefore, the proposed conceptual 
framework starts from the bibliographic study carried out, which has allowed us to identify the key aspects 
when addressing the optimization of engineering projects from the perspective of sustainability, using 
LCA.As previously described in the methodology section, after a detailed reading of the above-mentioned 
bibliographical references (phase 2 of Figure 7), authors of this article constructed and categorized the 
concepts (phase 4), integrated the concepts (phase 5) and proposed a pyramid-shaped structure that 
integrates all the results (phase 6). 

The conceptual framework will be validated through a practical application exercise, a case study 
demonstrating its usefulness (phase 7), shown in the following section. This paper describes a new 
conceptual framework to be applied in addressing project problems in engineering, from a point of view of 
sustainability optimization. The conceptual framework provides tools to approach engineering projects in 
an intelligent and sustainable way. The proposed tools are based on the analysis of the state of the art in the 
areas of sustainability, life cycle analysis, sensing and machine learning. Five main dimensions have been 
detected: Applications, Data, APproaches, Tools and Sensors. The results of the “state of the art” study 
carried out are shown on Table 3. 
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Table 3. Results for State of the art. 

ID Application Data Approach Tools Sensors 

A [61] 
Predict energy consumption 
of buildings 

TRNSYS simulation data. Data collected 
on existing buildings. 

Energy. Performance 
prediction 

ANN + SBMO (genetic algorithms) Literature review 

B [62] 
Reduce the impact of 
Structures 

Geometry, material, building type and 
other key parameters  

A more sustainable 
built environment 

Machine Learning + Artificial 
Neural Networks Resource efficient built environment lab 

C [63] 
Predict the sources of 
uncertainty in the LCA: 
Chicago Pavement LCA 

Traffic data report 
Objective uncertainty 
quantification (UQ) 

Various data analytics methods 
were used to conduct a thorough 
model uncertainty analysis 

Traffic, Speed IRI Collected from 2015 Traffic data 
report 

D [64] Sustainability in manufacture Manufacture data using simulation 
models 

Data-driven modeling Data-model-decision network 

Cheaper monitoring tools and pervasive wireless 
technology enables environmental data to be 
collected. Manufacturing process data is most 
often proprietary 

E [65] 
To asses biological effects 
using a tool quantitative 
outcome pathway (qAOP) 

Toxicity data. The emission levels. Data 
of inventory analysis 

Toxicological LCIA 
models and 
assumptions 

Mechanistic; Probabilistic 
supervised machine learning 
models; and Weight of evidence 

Experimental toxicity data 

F [66] 
Estimate LCA results from 
product properties. 37 case 
study 

LCA data. Data generated during 
conceptual design. 

Guidelines, Heuristics, 
Standards Methods 
Preferences 

Multi-layer perception neural 
network with back propagation 
training 

Product attributes 

G [67] 
Toxicity characterization of 
chemical emissions in Life 
Cycle Assessment (LCA) 

Properties of the chemical compounds 
being assessed (databases) buildings. 

Usetox model 
Dimensionality reduction 
techniques. 

Environmental properties 

H [68] LCA normalization factors 
A pesticides properties database PPDB, 
ReciPe .08 and FURS. 

LCA normalization 
Linear regression using Java 
program Package 

Environmental indicators 

I [69] 

Estimate LC environmental 
impacts and output energy of 
sugarcane production 
(planted or ratoon farms) 

Ecoinvent 2.2 databases 
Cradle to grave 
approach 

Artificial neural networks (ANNs) 
and adaptive neuro fuzzy 
inference system (ANFIS) model 

Used resources emissions, Used electricity 

J [70] 
Estimate LC and energy of 
paddy production 

Agricultural input parameters from 240 
paddy producers. 

CExD cumulative. 
Energy Demand 

Artificial neural networks (ANNs) 
and adaptive neuro fuzzy 
inference system (ANFIS) 

Paddy production process 

K [71] 
Evaluate environmental 
impact in early building 
design stage 

Generated samples Parametric design 
Fuzzy C-means clustering and 
extreme learning machine 

Properties of the building 

L [72] 

Energy consumption of the 
trucks to evaluate the 
operation phase of the 
pavements. 

Database of Micrilise Ltd. Road 
geometry and condition of the road 
surface for each vehicle in the databases 

Enveloping methods 
(Boruta)  

Boruta algorithm and Neural 
Networks 

Standard sensors (SAE International 2016) that 
keep track of various parameters (including 
consumption) 

M [73] 
Design and optimization of 
concrete structures 

Literature review 
Optimization Decision 
Making 

ANNs, instance-based learning, 
decision-trees and SVMs. 

Concrete mixture parameters 
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A conceptual framework is proposed that integrates these five dimensions as shown in Figure 
9. At the base of this pyramid will be the applications, data, approaches and tools. At the top of the 
pyramid is the sensorization. As a complement to the proposed conceptual framework, this proposal 
will be developed for a specific case (a case of a food industry), a development that can be found in 
the discussion section. 

 

Figure 9. Proposed conceptual framework. 

3.1.1. Applications 

The first dimension of the proposed conceptual framework is the application of artificial 
intelligence and machine learning technologies. A first classification of the applications can be 
referred to the sectors in which they are applied. 

Among the 13 articles analyzed; six of them are focused on the construction sector and civil 
engineering. Traditionally, the construction sector has been quite conservative and resistant to 
change. However, the emergence of technologies such as Building Information Modelling are 
causing a change in it. LCA criteria could be used for design structures. This was explored in a 
review article on the design of concrete structures [66] or in a call for data for the evaluation of 
structures [69].  Environmental criteria can be used for the design of buildings in the early design 
stage [71] or for the estimation of total energy consumption from environmental life cycle analysis 
(LCA) and in cost life cycle analysis (LCC) [68]. In the field of civil engineering, environmental 
assessment of roads (in its operational phase) was explored by analyzing truck traffic [72] or vehicle 
speed and road roughness data in Chicago [70]. 

The design and production of products has been analyzed. For this purpose, LCA was obtained 
from the data generated in the conceptual design [64] or by analyzing sustainability in 
manufacturing [65]. 

Environmental assessment of agricultural activities using artificial intelligence techniques has 
been analyzed jointly with the energy consumption for the cultivation of sugar cane (planted or 
ratoon farm) [73] or rice [67]. 

Finally, some applications consist of using artificial intelligence techniques to address specific 
aspects of the LCA such as sensitivity to certain factors [70], to asses biological effects using a tool 
quantitative outcome pathway (qAOP) [63], toxicity characterization of chemical emissions [61] or 
assess normalization factors in LCA methodology [62]. 

3.1.2. Data 
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The data is crucial for the implementation of Machine Learning and Artificial Intelligence 
methodologies. Data are required for training and making predictions with both supervised and 
unsupervised techniques. 

Obtaining data is not always simple in fact, some authors warn of the need to work in scenarios 
with little data (austere data environments). This justifies the need for call for data. For example, 
D'Amico made a request for data geometry, material, type of building and other aspects in the field 
of structures [69]. 

In road environmental impact assessment studies, the data came from a company database 
(Microlise) [72] or from mobility studies in cities such as Chicago [70]. 

In the field of agriculture, data such as the amount of pesticides, fertilizers, or seeds are needed 
to determine the environmental impact. This can be done by randomly obtaining data, as was done 
in [67] to analyze the environmental impact of rice or in [73] for sugarcane farms. 

In some investigations, data come from simulations. For example, in Sharif and Hammad [68] 
extensive data is collected on existing buildings related to several factors including TEC, outside 
temperature, building envelope components, HVAC and lighting systems; in other occasions the 
data are obtained using a data generator these data are later validated with experimental data [65]. 

The conceptual design of products [64] or the early design stage of building [71] are a source of 
data that can be used in the environmental assessment of products [64] or buildings [65]. 

Finally, to perform the toxicological characterization of chemical emissions [61], the authors 
used databases such as USEtox [74], for the normalization of factors [62] the authors used databases 
such as PPDB, ReciPe.08 or FURs. 

3.1.3. Approaches 

In the study of the state of the art carried out as part of the process of construction of the 
proposed conceptual framework, various work approaches have been shown. For example, several 
of these works [63,66,68,69,71] use the LCA life cycle analysis technique to improve the design. There 
are also works that focus on the exploitation phase [67,70,72,73], while others focus on the study of 
the methodology followed in the LCA [61,62,65]. 

3.1.4. Tools 

The use of artificial neural networks is currently a trend in the scientific literature [75,76]. In this 
area, neural networks have been used to predict energy consumption [68], as a surrogate model to 
replace simulation software. [69], to obtain LCA results from product characteristics [64], to obtain 
toxicity with fewer parameters [61], to evaluate energy consumption and environmental impact of 
agricultural activities [67,73] and to evaluate the energy consumption in order to evaluate 
environmental impacts of roads [72].  

Artificial Neural Networks are often used in combination with other tools such as 
Simulation-Based Multi-Objective Optimization [68], Bayesian analysis and orthogonal basis 
polynomial basis system [70], dimensionality reduction techniques and linear regression [61]; 
adaptive Neuro fuzzy inference system (ANFIS) model and Boruta algorithm [72].  

Another similar tool is the Extreme Machine Learning (feedforward neural networks), that 
together with fuzzy C-means clustering was used to valuate environmental impact in early building 
design stage. Bayesian Network Models were used too in several applications [63,65]. Linear 
regression was used to estimate normalization LCA factors [62].  

3.1.5. Sensors 

Throughout this study the enormous relevance of using sensing when addressing an objective 
of intelligent sustainability in engineering projects has emerged. 

This sensorization is essential to be able to train models, validate and generalize them. It is also 
useful to have intelligent sensors that allow us to have control of the data in the exploitation process.  
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Several of the works analyzed use simulation data, data taken from databases or public data. 
For example, [63] works with toxicity data, in [71] it deals with properties of the buildings or in [70] 
traffic data is used. The enormous utility of having data from sensorization is evident.  

3.2. Case Study 

A new conceptual framework has been described that could be applied to address the problems 
of engineering projects, from the point of view of sustainability optimization. The proposed 
conceptual framework integrates five dimensions: applications, data, approaches, tools and sensing. 
This conceptual framework is developed below for a specific case (olive oil sector), showing its 
applicability and usefulness. 

The case study intends to answer the five questions that constitute the validation phase of the 
conceptual framework [77]. 

1) Is this framework useful? [78,79]. 
2) Does it provide a common language from which to describe the situation under 

scrutiny and to report the findings about it [79]. 
3) Does it develop a set of guiding principles against which judgments and predictions 

might be made? 
4) Does it act as a series of reference points from which to locate the research questions 

within contemporary theorizing? 
5) Does it provided a structure within which to organize the content of the research and to 

frame conclusions within the context? [78]. 

Below is an application of the proposed conceptual framework to a specific case study, the olive 
oil sector. Each of the dimensions of the ADAPTS pyramid will be discussed in this example (Figure 
10).  

 
Figure 10. Conceptual framework. Study case. 

Olive oil production is a very important activity in the Mediterranean area. Oil processing 
influences the environment by causing resource depletion, land degradation, air emissions and 
waste generation [80]. Figure 11 illustrates the total volume of olive oil exports within the European 
Union, by country. 
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Figure 11. Total exports volume. Compiled by the authors based on [81]. 

Different phases must be considered to carry out the LCA of oil production. Firstly, in the 
agricultural phase, the cultivation of the olive trees is considered, as well as the pruning and 
harvesting. In the phase of production, oil extraction must be analyzed. Some studies also consider 
aspects such as packaging, distribution, consumption and transport. Finally, the management of the 
residues must be considered. There is a consensus in the scientific literature that the phase that has 
the greatest impact is agriculture. This is due to the use of fertilizers, phytosanitary products and 
irrigation [82]. 

Thus, it is necessary to consider that the processes are compatible with both environmental 
protection and efficiency, throughout the entire product life cycle. This extends to the handling, 
packaging and labeling of products. It is necessary to take into account the reduction of inputs such 
as fertilizers, phytosanitary products or fossil fuels. The development of technologies is sought to 
optimize the use of valuable water resources in an environment with water scarcity. It is advisable to 
use climate monitoring stations through olive groves, making extensive use of soil moisture sensors, 
salinity sensors and reporting systems to ensure that water is used for maximum efficiency. Carbon 
emissions play an important role in atmospheric conditions and climate change, so it is necessary to 
reduce emissions. It is also necessary to reduce the energy use of the electricity grid, seeking to 
reduce the carbon footprint. 

3.2.1. Application 

The olive trees produce the olive that is transported to the oil mills, where after a few 
mechanical processes the virgin olive oil is extracted. This oil is packaged directly in packaging 
machines belonging to oil mills or in independent packaging machines, in the case of extra virgin 
olive oil. If not, it is sold to refineries where refined olive oil is obtained. From the mixture of extra 
virgin olive oil and the refined olive oil is obtained which will be packaged in the refineries. Oil 
distribution can be done through distribution platforms, hypermarkets, supermarkets and 
traditional stores [83], being able to start in olive crops with different forms of exploitation.  

There are three cultivation modalities: traditional or extensive, intensive and superintensive 
cultivation. The first cultivation modality is the usual one in the areas of olive tradition; they can be 
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irrigated or dry. Its planting density is around 80–120 trees/ha, with one or several feet. This makes 
the collection is mostly done manually through the help of machinery. In the intensive cultivation 
system, always in better soils and irrigated land, we work with a planting density of 200–400 
trees/ha. The collection systems are very similar to those of the traditional olive grove. In the 
superintensive (or "in hedge") the planting density is more than 800 trees/ha. These systems 
constitute what has come to be called "new olive growing" [83]. The olive harvest in this type of 
plantation is fully mechanized thanks to the existence of machines designed for this type of olive 
grove. The impact of this first stage is the highest according to most studies [82]. 

Once the olive has been collected using the methods required for each type of crop (traditional, 
intensive and extensive), the industrialization process begins. To do this, the olive is cleaned well on 
the farm itself where it is collected or, it is taken to the mills and there it will undergo the cleaning 
process. In the oil mills, the olives caught in flight are separated, that is, from the tree, or from the 
ground since, the quality of the oil varies depending on the origin and possible damage that it may 
have suffered. Once separated, the oil extraction process begins by grinding, shaking, horizontal and 
vertical centrifugation and decanting. Once these phases are finished, the oil is stored until the 
packaging process begins, which can be done in the mills themselves, if they have the capacity to do 
so, or in independent packaging machines. A third option is packing machines linked to refineries 
where the lampante oil is taken to undergo a neutralization process. This oil is the result of a last 
centrifugation which makes it very acidic and not suitable for human consumption. It is called that 
because it was formerly used for the combustion of oil lamps.  

Olive oil packaging must go through the filling and capping, labeling and packaging phases. 
The distribution of olive oil can be carried out on different supports depending on what will be your 
final recipient. The bulk distribution involves selling the unpacked oil, so that the buyer is 
responsible for its bottling and subsequent distribution. Packaged oil, in the mills themselves or in 
independent packaging machines, is usually sold directly to the final consumer or packed to small 
businesses. Finally, pallet oil is sold wholesale to new forms of commercial distribution such as 
supermarkets and hypermarkets. 

In the last ten years, the olive oil value chain has benefited from innovations introduced with 
the idea of making oil more efficient and profitable. The most significant innovations have been 
exposed in the work, helping us to do so with the specific value chain mentioned above [84]. 

3.2.2. Data 

One of the main difficulties in carrying out an adequate LCA of oil production is the need to 
have public databases with information about all stages of the process [82]. 

In this way, information about soil salinity and climatic characteristics can be crucial to develop 
an optimization of the impact of this activity. This information could be collected by sensors. 

The main technological variables that influence the elaboration process are: 

1) Degree of grinding. The degree of grinding indicates the average size in which the hardest parts 
of the paste remain. Grinding too thick means a weak breakage of the tissues that leads to a 
decrease in exhaustion. On the other hand, too fine grinding causes a greater increase in the 
temperature of the paste that has a negative impact on the quality of the oil, and can generate 
more emulsions in the pasta that deplete exhaustion. Additionally, too fine grinding causes 
problems of bindings in the mill and increases energy consumption [85]. 

2) Temperature and beat time. These parameters are, perhaps, the most decisive in the quality of the 
oil to be obtained. The increase in the temperature of the pasta in the blender reduces its 
viscosity, which favors the aggregation of the drops of oil and therefore improves extraction 
performance. On the other hand, the increase in shaking time also favors the change in the 
structure of the paste that allows increasing the depletion of the pomace. However, both 
parameters have a negative impact on the quality of the oil obtained, since the increase in 
temperature accelerates the speed of the reactions that take place in the blender and favors the 
loss of volatile components. 
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3) Composition and structure of the pasta at the exit of the blender. In the shaking of the so-called 
difficult pastes, which are those pastes that present difficulties in extracting the oil, it is 
necessary to use adjuvants (natural microtalco and, where appropriate, water) to improve their 
behavior. A repair of the deficient pulp entails substantial increases in the oil contained in the 
pomace, while the addition of adjuvants has no influence on the quality of the oils obtained 
[86]. 

4) Degree of moisture of the paste in decanter. This parameter has great relevance in depletion, since it 
will determine the thickness of the rings inside the decanter and, therefore, the operating 
conditions of the machine. 

5) Residence time in decanter. The residence time in the decanter is determined by the established 
production rate, which is generally imposed by the olive oil entering the mill and the capacity 
of the installation. Operating the decanter at higher rates than recommended implies a 
significant loss of fat in the pomace. 

6) Parameters of the operation within the decanter. The differential screw-bowl speed and the 
discharge height of the oil phase determine the width of the different rings within the decanter 
[87]. A correct choice of these parameters makes it possible to improve depletion without 
influencing the quality of the oil obtained. 

7) Parameters specific to the operation of the vertical centrifuge. The temperature of the addition water 
must be adjusted to the temperature of the oil so as not to affect its organoleptic properties and 
avoid the formation of emulsions that induce the loss of oil with the wash waters. Likewise, the 
water flow must be adjusted to that of oil for the proper functioning of the machine in terms of 
losses. Finally, the discharge frequency of the cumulative strips is an important parameter since 
it influences the quality of the oil obtained and the oil losses in the operation. 

8) Parameters of the decantation in stainless steel tanks. The main parameter is the residence time of 
the oil in the tanks and the frequency of the purges of the erasures. A short residence time 
means that the oil remains with a high level of moisture and impurities, while a residence time 
that is too high and a poor purge frequency can be supposed to damage its organoleptic 
characteristics [88]. 

These variables are related to the quality of the olive oil, but also to other aspects such as the 
energy consumption or the waste generated in the process. In this way, with a suitable sensing, the 
impact that the activity has on the environment can be optimized. 

3.2.3. Approach 

As a result of the growth of the food and beverage industries, a particularly demanding sector 
with production management is found. Economic behavior (rigid supply, inelastic demand), 
administrative intervention in primary productions, food safety requirements, diversity of products, 
variability of productions, etc. to which we must add those that also affect the rest of the economy: 
financial fluctuations, acceleration of applicable technologies, globalization of markets, etc. [89].  

The agro-food industry is a very important strategic sector for our economy. It generates more 
than half a million direct jobs, above the total manufacturing industry and the Spanish economy as a 
whole [90]. For this reason, the case study has been focused on this sector, due to the great potential. 
These companies show and the possibilities they provide. Thanks to the new Industry 4.0 approach, 
making use of information technology, it is now easier to convert data into useful information for 
decision making. 

Tools such as data mining and predictive techniques organizations have information that helps 
them raise more precise, effective and applicable business strategies in shorter periods of time. 
Before they can interpret the process data, companies must treat them to reduce the problem to be 
treated and optimize the available resources. Data mining provides the means for the treatment of 
productive data.  

On the other hand, there are different predictive techniques, each with its benefits and 
deficiencies, which provide a new way for companies to make decisions. The Spanish agri-food 
industry is likely to benefit from the Industry 4.0 approach. In a globalized market, any small 
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advantage over the competition can make a big difference. As the food and beverage market is very 
demanding regarding production management, the tools discussed above offer organizations a 
competitive advantage to value [91]. 

3.2.4. Tools 

As shown in the section dedicated to tools, the use of artificial neural networks is currently a 
growing trend in recent academic literature [75,76]. In the field of sustainability applied to 
engineering projects, neural networks have been used to predict energy consumption [68], as a 
surrogate model to replace simulation software. [69], to obtain LCA results from product 
characteristics [64], to obtain toxicity with fewer parameters [61], to evaluate energy consumption 
and environmental impact of agricultural activities [67,73] and to evaluate the energy consumption 
in order to evaluate environmental impacts of roads [72], among many other applications. 

Artificial Neural Networks are often used in combination with other tools such as 
Simulation-Based Multi-Objective Optimization [68], Bayesian analysis and orthogonal basis 
polynomial basis system [70], dimensionality reduction techniques and linear regression [61]; 
adaptive Neuro fuzzy inference system (ANFIS) model and Boruta algorithm [72].  

In this case of application it has been decided to use ANN as a tool due to the reasons already 
stated: because the use of artificial neural networks is currently a growing trend, because in the field 
of sustainability applied to engineering projects ANN have been used in numerous applications and 
because ANNs are often used in combination with other tools. 

Artificial neural networks (ANN) are a machine learning tool that can be useful for predicting 
one or more variables in complex systems. ANNs consist of an input layer, a variable number of 
hidden layer(s), an output layer, weights and connection biases, an activation function and an 
addition node. Each neuron constitutes a computational unit, integrated in a layer. Each layer takes 
as input values those calculated in the previous layer and generates an output value for the next 
layer. The input layer provides the input values of the network, which are fed to the hidden layer. 
Each hidden layer consists of several neurons that calculate an output using all the inputs of the 
input layer and a predefined set of weights and biases. During the learning process, each neuron 
calculates a single output value based on its input data from the previous layer. This result can be 
fed to the next hidden layer or to the output layer. The output layer takes as inputs all outputs of the 
last hidden layer and produces the final output of the ANN [92]. 

3.2.5. Sensors 

As we have mentioned before, in order to perform an adequate LCA of the oil manufacturing 
process it is essential to have a reliable database about the variables that influence the process. In this 
sense, a correct sensor network arranged throughout the process can contribute to improve the LCA 
and with it, the process optimization can be carried out crucial aspect for the optimization of the 
LCA of olive oil is the cultivation phase. In this respect, Previous studies have shown that sensing 
can help optimize olives drip irrigation by controlling soil moisture and knowing the weather using 
a weather station [93,94]. LED Scanner Sensor have been used for measuring olive oil canopies [95]. 

One of the problems that arise in the automatic control of oil mills is the difficulty of having the 
necessary information about the process. In fact, in order to adapt the operating conditions of the 
plant from a global point of view, it would be necessary to know the characteristics of the input fruit, 
the characteristics of the pasta in the blender, the composition and flow of the flows of entry and exit 
of the decanter, etc. To control the mill with the objective of maximizing quality, it would be 
necessary to be able to measure this variable, which in general would be a combination of the values 
of different chemical and organoleptic parameters.  

Many of these variables are qualitative and difficult to measure online, so the use of indirect 
measures or the use of sensory fusion techniques are intuited as necessary alternatives to be able to 
estimate the values of the parameters. An important sensor technology for the automatic control of 
oil mills are Near Infrared Spectrocopy (NIR) sensors, since this technique allows the construction of 
sensors to estimate the moisture and fat content of the pulp and pomace. In addition, it allows 
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characterizing the oil obtained from the process in terms of quality by estimating a series of chemical 
parameters, such as acidity, peroxide index, K270 and total polyphenol content [96].  

The use of this type of sensors together with neural networks it allows to improve data obtained 
from this type of sensors [97,98]., which together with the possibility of using these sensors for 
measurements online makes them fundamental tools for automatic control of the oil mill. Another 
technology of relevance sensors is the arrays of voltmetric sensors, which allow evaluating the 
polyphenol content of oil [99]. The construction of sensors in line with this technology can provide 
very valuable information for the control of oil mills in order to maximize the quality of the oils 
obtained, since they allow information on parameters sensitive to the elaboration process and very 
related to the oil quality In this regard, they have been applied this same type of sensors to monitor 
online the accumulation of volatile components in the mixer [100], which opens the doors to its use 
for automatic control.  

The first reference of using neural networks to building a virtual sensor is located in [101], 
where a neural network is designed and implemented to infer depletion and moisture from the 
alpeorujo. The use of neural networks to infer characteristics of the oil produced from characteristics 
of the input fruit and the process parameters can be consulted in [102], as well as the use of artificial 
vision to capture information from the input olives, in this case the index of maturity. In the same 
line of behavior prediction of the installation from neural networks, build a neural network to 
predict the depletion of the pomace from variables characteristic of the fruit (fat and moisture 
content) and technological variables such as the beat temperature, the addition of micro-total, paste 
inlet flow into the decanter, paste moisture and oil outlet height from the decanter [103]. These 
works present the bases for the construction of virtual sensors that allow variables to be included in 
control loops that otherwise would not be possible to measure online [88]. 

The Figure 12 shows the result of applying the proposed conceptual framework to the case 
study. 

 
Figure 12. Conceptual framework. Study case. 

The case study is a validation of the conceptual framework proposed in Section 3.1. The 
conceptual framework is a useful tool to analyze the production of olive oil from an environmental 
perspective. It allows to create a common language for the analysis of the LCA using machine 
learning tools.  
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The framework can be a reference point that will allow to guide future research and to organize 
the content of future investigations. In this way, it can be stated that the conceptual framework 
answers the questions proposed by Smith [77] (see Figure 13).  

 
Figure 13. Validation of the Conceptual Framework. 

Rykiel [104] argues that models can be validated pragmatically, while theoretical validity is 
always provisional. In this regard, he, like Matalas et al. [105], distinguishes between theoretical and 
conceptual frameworks. According to Rykiel [104], validation is not a procedure to test the 
conceptual framework, but rather a proof of its suitability for its intended use. The domain of 
applicability (of the conceptual model) will be the conditions for which the conceptual model has 
been tested, that is, compared to reality as far as possible and considered suitable for use [106].While 
a theoretical framework is used to test theories, to predict and control the situations within the 
context of a research inquiry, a conceptual framework is aimed at development of a theory that 
would be useful to practitioners in the field [107]. In this sense, this case study remarks that the 
proposed conceptual framework develops a set of guiding principles against which judgments and 
predictions might be made. Specifically, the conceptual framework proposes to focus the study on 
five axes: the application, the data, the approach, the machine learning tools to be used and the 
necessary sensing.  

In the case studied, using these guiding principles proposed, it is concluded that for the 
application in the case of olive oil it is useful to have data related to the quality of the olive oil, but 
also to other aspects such as the energy consumption or the waste generated in the process. It is also 
claimed that the agri-food industry is likely to benefit from the Industry 4.0 approach, and it is 
proposed that use of ANN In this case of application it has been decided to use ANN as a tool, and 
address the need for adequate sensing, because to perform an adequate LCA of the oil 
manufacturing process it is essential to have a reliable database about the variables that influence the 
process. In this sense, a correct sensor network arranged throughout the process can contribute to 
improve the LCA and with it, the process optimization can be carried out crucial aspect for the 
optimization of the LCA of olive oil is the cultivation phase. 

The results obtained from the bibliographic study (shown in Table 3) provide the most relevant 
characteristics detected in the analyzed works: 1) the application to which the work refers, 2) the 
data used, 3) the approach that has been given to the problem addressed, 4) the machine learning 
tool used and 5) the sensors used or proposed for implementation. These five aspects detected are 
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those that form our conceptual framework. Therefore, the proposed conceptual framework starts 
from the bibliographic study carried out, which has allowed us to identify the key aspects when 
addressing the optimization of engineering projects from the perspective of sustainability, using 
LCA. As far as we know, industrial plant sensing and data processing through Machine Learning 
algorithms has not yet been extended sufficiently in the field of sustainability optimization for 
engineering projects. The way to bridge this opportunity gap detected in the investigation of the 
state of the art (Figure 5) constitutes our research question, for which the proposed conceptual 
framework aims to constitute a reference point that helps to locate the research question within the 
contemporary theorizing. 

4. Discussion 

The main objective of this work is the development of a conceptual framework for the 
integration of artificial intelligence and life cycle assessment (LCA). In the literature review that has 
been carried out, it has been detected that the sensorization of industrial plants and the treatment of 
data through Machine Learning algorithms has not yet been extended enough in the field of 
sustainability optimization. 

This work has focused on the evaluation of sustainability using the LCA technique, because it 
uses some indicators that allow quantifying environmental impacts.  

As far as we know, industrial plant sensorization and data processing through machine 
learning algorithms have not yet been extended enough in the field of sustainability optimization. 
An opportunity gap has been detected in the investigation of the state of the art. 

As shown in Figure 5, our work is part of the triple coincidence between the sectors of 
sustainability (especially through life cycle analysis), sensorization and the application of machine 
learning techniques. In the bibliographic study conducted, the confluence between machine learning 
tools and the life cycle analysis technique has been enhanced, and the results obtained are shown in 
the corresponding section. It has not deepened the binomials machine learning-sensors and 
sensors-LCA, because the searches of these binomials in Web Of science give a huge number of 
results, some of them not very relevant, because they are very closely related terms. 

In Pérez et al. [108], sustainability is taken into account from the stage of conceptualization and 
design of an engineering project. This paper presents a review of the state of knowledge and project 
design methodology to obtain a first comprehensive approach and an initial structure of a generic 
nature, as the first step to provide a practical way to facilitate analysis and application of 
sustainability criteria in the design of an engineering project. 

In García et al. [109] a model is shown, in consecutive stages, for sustainability analysis: 
definition, interpretation, conception of goals and specifications, measurement and evaluation. 
Specifically, these are principles that integrate a philosophy of sustainable design around innovation 
and creativity in engineering in general, and in chemical engineering in specific. 

Vanegas et al. [110] proposes a model to incorporate sustainability criteria and principles in the 
design, construction and management of infrastructures, which he proposes applicable to any 
sustainability discussion in engineering, architecture and construction. Its model encompasses three 
visions of sustainability (a global vision; a sector vision and a project vision); three maps for the 
implementation of sustainability (strategic, tactical and operational) and the indication of 
sustainability principles from specific sources, manifesting a freedom in their adoption as long as 
these principles can be made effective by expressing them in terms of specific goals; quantifiable 
objectives associated with the goal; and an application plan, for specific projects. 

The sustainability evaluation model of engineering projects using specific sustainability criteria 
proposed by Segalas et al. [111], associates measurement and evaluation variables in the different 
stages of the life cycle of a project; and a learning assessment model that engineering students 
acquire in different subjects through the specific use of concept maps. 

Vezzoli et al. [112] propose the use of guides and checklists for the design of a certain type of 
product with an eco-efficient approach, pointing out the importance of developing specific guides 
and checklist for each type of product, as tools to realize the design sustainable of an object. 
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In Labus et al. [113], the application of sustainability indicators in the design process of an 
engineering project is proposed. Based on the analysis of current computer frameworks, it 
establishes a framework of indicators that can guide the different stages of a project, a product or a 
system; to link sustainability principles throughout the project life cycle and between the different 
stages that comprise it. It also brings the qualitative importance of sustainability assessment with 
decision analysis techniques. 

Other elements of consideration from a project management point of view are provided in 
Fernandez et al. [114], to identify sustainability factors and indicators in engineering projects in 
general and civil engineering projects in particular. 

The results of the study conducted in Armenia et al. [115], indicate that the academic literature 
on this subject is still in diapers, but that the attention of academics is growing and opens new 
directions of research. Based on the results of the literature review, a new conceptual framework is 
proposed that links five key dimensions of sustainable project management: corporate policies and 
practices, resource management, life cycle guidance, stakeholder participation and organizational 
learning. 

In none of the existing conceptual frameworks, as far as the authors know, a conceptual 
framework is proposed that integrates the aspects of sustainability through the application of 
Machine Learning techniques in engineering projects. 

A conceptual framework is proposed that can help in the approach to these types of problems. 
This paper has described a new conceptual framework that could be applied to address the 
problems of engineering projects, from the point of view of optimization of sustainability. 

In a research work not only influences the choice of the topic and the approach of the problem, 
but also affects the selection made of the research procedures, the underlying theories that explain 
the topic of interest, and the specific way in which results are analyzed and disseminated.  

When carrying out the work, the researchers incorporate and make initial formulations of the 
research problem, which should be based on the empirical evidence that best supports the existing 
theoretical perspective(s). It is convenient to develop the research project based on a conceptual 
framework, related to the subject in question, which makes reference to the explanations given for 
the research problem of interest, the most appropriate procedures to answer the research questions, 
as well as the strength of the evidence achieved in terms of methodological instrumentation. 

The initial plan for the development of a framework that supports the research to be carried out, 
includes not only the assumptions from which the research starts, but also shapes the way in which 
the data is collected, which in turn determines or establishes the limits of the kinds of analysis that 
can be used. 

Certain techniques are more compatible with some assumptions than with others, which means 
that at the time of selecting a series of research methods, a certain theoretical position is necessarily 
assumed. 

The scientific method in general, favors the scope of objective knowledge, has a basic 
methodology that uses research logic and research procedures, and is invariable regardless of the 
kind of data studied. On the other hand, the researcher can observe, relate and make sense of the 
events he/she can remember, imagine, compare, differentiate, integrate, and thereby place them in 
his/her proper perspective. And part of other assumptions too, it has the means to create 
instruments that extend these capabilities or reduce their restrictions. In a broad sense, scientific 
theory refers to a series of logically interrelated propositions or assertions that empirically make 
sense, as well as the assumptions the researcher makes.  

The conceptual framework is actually a bibliographic investigation that talks about the 
variables that will be studied in the research, or the relationship between them, described in similar 
or previous studies. It refers to perspectives or approaches used in related studies, its goodness or 
property and its relevance to the current study is analyzed.  

More specifically, it leads to the establishment of hypotheses, suggests ways of analysis, or new 
perspectives to be considered, and at the same time, helps interpret the results of the study[116]. 
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The conceptual framework proposed in this work provides tools to address engineering 
projects in an intelligent and sustainable way. The proposed tools are based on the analysis of the 
state of the art in the areas of sustainability, life cycle analysis, detection and machine learning.  

A conceptual framework that integrates five dimensions is proposed. At the base of the 
proposed pyramid will be the applications, data, approaches and tools. At the top of the pyramid is 
the sensorization. As a complement to the proposed conceptual framework, this proposal has been 
developed for a specific case (olive oil sector), showing its applicability and usefulness. 

5. Conclusions 

This paper proposes a conceptual framework applicable to optimization problems under 
sustainability criteria in engineering projects, making use of current machine learning techniques.  

A systematic literature review has been carried out. From the selected documents, the texts 
were analyzed, and the conceptual framework was proposed. A graphic representation is also 
proposed to clearly define the variables of the proposed conceptual framework and their 
relationships. 

The proposed conceptual framework consists of five dimensions. At the base are: (1) the 
application to which it is intended, (2) the available data, (3) the approach and (4) the tool used. At 
the top of the pyramid, (5) the necessary sensing. 

The first dimension of the proposed conceptual framework is the application to which the 
conceptual framework is applied. A first classification of applications may refer to the sectors in 
which they are applied. 

Data is crucial for the implementation of machine learning and artificial intelligence 
methodologies. Data is necessary to train supervised algorithms and make predictions in 
unsupervised algorithms. 

In the study of the state of the art carried out as part of the process of construction of the 
proposed conceptual framework, various work approaches have been shown. 

Another very important dimension of the proposed framework is the artificial intelligence and 
machine learning tools used. 

Throughout this study, the enormous relevance of using sensing when addressing an objective 
of intelligent sustainability in engineering projects has emerged. This sensorization is essential to be 
able to train models, validate them and generalize them. It is also useful to have intelligent sensors 
that allow us to have control of the data in the exploitation process. 

This work is part of a broader line of research, in terms of optimization under sustainability 
criteria. We hope that the proposed framework will serve as a basis for future research related to this 
topic. 
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