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Abstract-this paper presents a first approach for 

implementations which fuse the Address-Event-Representation 

(AER) processing with the Cellular Automata using FPGA and 

AER-tools. This new strategy applies spike-based convolution 

filters inspired by Cellular Automata for AER vision 

processing. Spike-based systems are neuro-inspired circuits 

implementations traditionally used for sensory systems or 

sensor signal processing. AER is a neuromorphic 

communication protocol for transferring asynchronous events 

between VLSI spike-based chips. These neuro-inspired 

implementations allow developing complex, multilayer, 

multichip neuromorphic systems and have been used to design 

sensor chips, such as retinas and cochlea, processing chips, e.g. 

filters, and learning chips. Furthermore, Cellular Automata is a 

bio-inspired processing model for problem solving. This 

approach divides the processing synchronous cells which 

change their states at the same time in order to get the solution. 

I. INTRODUCTION

C
ELULLAR organization in biology has been an 

inspiration in several fields, such as the description and 

definition of Cellular Automata (CA). They are discrete 

models that consist of a regular grid of cells. Each cell has an 

internal state which changes into discrete steps and knows 

just one simple way to calculate the new internal state like a 

rudimentary automaton. Cellular activity is carried out 

simultaneously like it occurs in biology. Von Neumann 

refers to this system as a Cellular Space and is known 

currently as Cellular Automata [1]. 

The first self-reproducing CA, proposed by von Neumann 

consisted of a 2D grid of cells, and the self-reproducing 

structure was composed of several hundreds of elemental 

cells. Each cell presented 29 possible states [2]. The 

evolution rule was defmed as a function of current state of 

the cell and its neighbours (up, down, right and left). Due to 

the high complexity of the model, von Neumann rule has 

never been implemented in hardware, but some partial 

implementations have been obtained [3]. 

Address-Event- Representation (AER) is a spike-based 

representation technique for communicating asynchronous 

spikes between layers of different chips. The spikes in AER 

This work was supported by the Spanish grants SAMANTA II 
(TEC2006-11730-C03-02) and VULCANO (TEC2009-10639-C04-02), 
and by the Andalusia Council grants BrainSystems (P06-TIC-01417). 

M. Rivas-Perez, A. Linares-Barranco, G. Jimenez, and A. Civit are with 
the Dept. of Computer Architecture and Technology, University of Seville, 
Seville, SPAIN (e-mail: mrivas@atc.us.es). 

J.Cerdli and N. Ferrando are with the Dept. of Electronic Engineering 
Tech University of Valencia, Valencia, SPAIN. 

are carried as addresses of neurons (called events) on a 

digital bus. This bio-inspired approach was proposed by the 

Mead lab in 1991 [4]. 

There is a world-wide community of AER protocol 

engineers and researchers for bio-inspired applications in 

vision and audition systems and robot control, as it is 

demonstrated by the success in the last years of the AER 

group at the Neuromorphic Engineering Workshop series 

[5]. The goal of this community is to build large multi-chip 

and multi-layer hierarchically structured systems capable of 

performing massively-parallel data-driven processing in real 

time [6]. 

One of the first processing layers in the cortex consists of 

applying different kinds of convolution filters with different 

orientations and kernel sizes. Complex filtering processing 

based on AER convolution chips have been already 

implemented, which are based on Integrate and Fire (IF) 

neurons [7]. When an event is received, a convolution kernel 

is copied in the neighbourhood of the targeted neuron. When 

a neuron reaches its threshold, a spike is produced and the 

neuron is reset. Bi-dimensional image convolution is defined 

mathematically by the following equation, being K an nxm 

convolution kernel matrix, X the input image and Y the 

convolved image. 
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Each convolved image pixel Y(iJ) is defmed by the 

corresponding input pixel X(i,j) and weighted adjacent 

pixels, scaled by K coefficients. Therefore an input pixel

X(i,j) contributes to the value of the output pixel Y(iJ) and 

their neighbours, multiplied by the corresponding kernel 

coefficients K. 
Digital frame-based convolution processors implemented 

in FPGA or CPUs usually measure their performance by 

calculating the number of operations per second (MOPS). A 

comparative study between frame-based and spike-based 

convolution processors was presented in [8]. A frame-based 

3x3 kernel convolution processor in a Spartan-III FPGA 

yielded 139 MOPS, whereas spike-based one yielded 34.61 

MOPS for the same kernel. Nevertheless, frame-based llxll 

kernel convolution processors decreased their performance 

to 23 MOPS, while the spike-based processors increased 

their performance to 163.51 MOPS. Therefore, spike-based 

convolution processors may achieve higher performances for 

the same hardware availability. This has to be thanked to the 

fully parallel processing allowed by AER or spike-based 

processing. 



Another approach for solving frame-based convolutions 

with higher performances is the ConvNets [7] [9]. They are 

based on cellular neural networks and can achieve theoretical 

sustained 4 GOPS for 7x7 kernel sizes. 

This paper presents two implementations of AER spike­

based convolution processor for 3x3 kernel sizes using 

architectures inspired by Cellular Automata. These 

processors have been described into VHDL and 

implemented for a Spartan II 200 Xilinx FPGA with a 50 

MHz clock. A performance analysis has been carried out by 

USB-AER tools [10]. This processor can yield up to 150 

MOPS for 3x3 kernel sizes, which implies a performance of 

up to 2 GOPS for a possible llxll kernel implementation. 

Next section introduces and describes CA, AER and how 

they can work together. Section III presents architectures, 

results and future works about AER image filtering 

implementations based on CA. Finally the conclusions are 

presented in section IV. 

II. AER PROCESSING BASED ON CELLULAR
AUTOMATA 

A. Cellular Automata

A Cellular Automata consists of a regular 2D array of cells. 

The state of each cell is defmed by a set of bits and varies 

longitudinally according to an evolution rule. This evolution 

rule should be the same for all the cells and it is a function of 

the current internal state of the cell and its neighbourhood 

[1], so it does not depend on external stimulus. These 

neighbours are a fixed set of cells adjacent to the specified 

cell. A new generation is created every time the rule is 

applied to the whole grid. A global clock signal sets when 

the state of the cell is updated. 

B. AERfor spike-based systems

Address-Event-Representation (AER) is a communication 

protocol for transferring asynchronous events between VLSI 

neuro-inspired chips, originally developed for bio-inspired 

processing systems [4]. Every time a neuron generates a 

pike, a digital word (called event), which identifies the 

neuron, is placed on an external AER bus. A receiver chip 

decodes the received event and sends a spike to the 

corresponding neuron. This way each neuron from a sender 

chip is virtually connected to a corresponding neuron in the 

receiver chip through a single time division multiplexed bus. 

These neurons carry out an internal processing for every 

arriving spike and can produce an output spike or stream of 

spikes in response. The most active neurons access the bus 

more frequently than less active ones. An arbitration circuit 

ensures that neurons do not access the bus simultaneously. 

This AER circuit is usually built using self-timed 

asynchronous logic as it is discussed in [11]. 

AER chips develop hierarchical systems composed by 

layers of neurons like a brain. Results of one layer represent 

the input of the next layer or a feedback of a previous one. 

Furthermore, like in a biological neural system, several AER 

devices such as visual sensors (retina [12]), audio sensors 

(cochlea), filters and learning chips have been developed, as 

well as a set of glue tools (AER tools) which facilitate 

developing and debugging of these spike-based multi-layer 

hierarchical systems. For example, a synthetic AER 

generator is a tool that reproduces any test bench stimulus 

for debugging purposes, thus it is able to transform a 

sequence of static frames into AER stream of spikes [13]. 

Transmitting event addresses through the AER bus allows 

performing additional operations on the events while they are 

travelling from one chip to another. For example, the output 

of an AER retina can be easily translated, scaled, or rotated 

by simple mapping operations on the emitted addresses. 

These mapping can either be lookup-based (using, e.g. an 

EEPROM) or algorithmic. Furthermore, the events that a 

chip transmits can be received by many receiver chips in 

parallel, by handling the asynchronous communication 

protocol properly. 

The AER information transmitted by a visual AER sensor 

or a synthetic AER generator is usually coded in gray, i.e. the 

number of events (in other words, the frequency of spikes) 

transmitted by a pixel through the AER bus identifies the 

gray level of that pixel or the intensity of the pre-processed 

result. 

C. Cellular Automatafor AER processing

The philosophy of AER systems is lightly different from 

CA but also similar in a certain sense. A CA is a cooperative 

system, whose evolution only depends on the input and its 

neighbours, but an AER system usually does not implement 

evolution rules for producing new output spikes, i.e. it only 

produces spikes when a stimulus arrives. Nevertheless, they 

cooperate with the neighbourhood to produce a response. 

Spike-based convolution processor cells communicate with 

their neighbours somehow for the kernel processing, but the 

results are produced only when a stimulus arrives. 

A spike-based convolution processor inspired in CA is 

suggested to filter a visual stimulus for edge detection 

(detecting vertical and! or horizontal contrast changes) using 

a non-evolutionary process. The output of this edge detection 

produced by a set of cells may be communicated in an 

evolution way for detecting predefined objects. For example, 

in a spike-base convolution processor of 3x3 kernels 

configured to detect edges and stimulated by spikes from a 

diamond image, only the edge cells of the diamond may 

produce events. This represents the convolution output. But 

if each output spike is sent to the neighbours, there will be 

cells receiving spikes that represent the edge detection from 

their neighbours at the same time. If these spikes are 

transmitted through the neighbourhood, at the end the pixel 

in the centre of an object will receive edge detection 

information from several sides at the same time, what allow 

identifying the centre of a diamond or a square or a circle, 

for example. There will be a junction cell for these spikes 



that represents the centre of the object. In this case, the 20 

array of cell may be implementing an edge detector using the 

3x3 kernel convolution processor, but it may also have the 

same cells implementing a next processing layer, like an 

object centre detector. 

This paper discusses a start point of this theory by 

implementing convolutions using a 20 array of cells that 

communicates with a predefined neighbourhood. 

D. AER Image filtering strategy

When an event arrives from an emitter chip, its address is 

decoded and a spike is sent to the corresponding cell. For 

each spike received, several operations are arranged to 

transform the target cell and the neighbourhood. These are 

summarized below: 

• The cell which received a spike resends it to its neighbours
and updates its state with an increment of the kernel centre.

• The state of each neighbour is incremented by the
corresponding kernel element, which depends on where the
spike comes from, i.e., each spike received brings on
several increment operations in the kernel size
neighbourhood of the target cell. When the specific cell
and its neighbours are updated, an acknowledge signal is
sent to the AER emitter.

• When the state of a cell achieves the threshold, this cell
generates an event and resets its state. The threshold value
is constant in the whole grid. This behaviour corresponds
to the Integrate and Fire neuron model.

The number of events that a cell receives depends on the

gray level of the corresponding pixel, so the specific cell and 

its neighbours are incremented as many times as the gray 

level, implementing the mUltiplication of the convolution 

operation. 
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III. IMPLEMENTATION ON FPGA

A. USB-AER board

The USB-AER board includes a relatively large FPGA 

(Spartan-II 200) that can be loaded from MMC/SO or USB 

(through the C8051 F320 microcontroller), a large SRAM 

bank (512Kx32 12ns) and two AER ports [10]. An input 

AER bus and an output AER bus connected directly to the 

FPGA allows implementing any hardware for manipulating 

or processing AER information. 

The USB-AER tool has several functionalities according 

to the module that is loaded in the FPGA (through MMC/SO 

or USB). For example, it may act as a sequencer, monitor, 

mapping, event processor, datalogger, etc. Most of such 

functionalities can be performed in a standalone manner. 

This standalone operating mode requires to load the FPGA 

and the mapping RAM from some type of non-volatile 

storage so that it can be easily modified by the users, e.g. 

MMC/SO cards. USB input is also provided for development 

stages. Due to the bandwidth limitations of full speed USB 

(12Mbitls), a based-event to frame conversion is essential in 

this board for high or even moderate event rates [10]. 

The present work increases these functionalities by 

including two versions of filters based on CA. The first 

version comes from the CA concept: hardware implements 

independent cells that evolve and communicate with their 

neighbours. The second version optimizes resources by 

exploiting a quirk of the AER-CA: only the targeted cell and 

its neighbours work when a spike arrives, i.e., this spike only 

affects that neighbourhood. The neighbourhood size is the 

same as the convolution kernel size. Therefore, it may be 

possible to keep the results of the whole 20 array in memory 

and to implement only a shared set of cells that perform the 
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operations needed to calculate the result of the convolution 

when a new spike arrives. Both versions are described 

below. 

Next sub-section presents the implementation of the whole 

20 array, and sub-section C describes a resource sharing 

implementation using distributed memory to store the 20 

processing result. 

B. Implementation based on distributed computational
units

A 3x3 kernel implementation has been described into 

VHOL for Spartan-II 200. Larger kernel sizes require FPGA 

with more resources than Spartan-II. Each cell in a 3x3 

kernel implementation is connected to eight neighbours. 

Figure 1 illustrates the main diagram of this 

implementation. AER input is connected to the grid through 

two-level decoders. When an event comes, e.g. from a vision 

sensor, its address is divided into row and column. The first 

level decodes the row by Input Event X and the second level 

decodes the column by Input Event Y in order to select the 

targeted cell. Input Req signal notifies when the new event 

arrived. 

Each cell is also connected to a two-level arbiter. The first 

level consists of a row arbiter and OR gates to encode the 

output event row address (Output Event X). The second 

level is composed of a column arbiter and an array of 

multiplexors. This array selects a row from the grid and it is 

controlled by the first level. The column arbiter encodes 
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output event column address (Output Event Y) from the array 

of multiplexer. The array of mUltiplexors and a multiplexor 

connects the cell to the output. 3x3 kernel elements and 

threshold are available for all cells of the grid as figure 1 

shows. Each cell is connected to its eight neighbours through 

a single wire, only request signal, to minimize the number of 

connections. 

Figure 2 shows the digital logic of each cell in the grid. A 

cell consists basically of two multiplexers to select the kernel 

coefficient to add (Mux8: 1 and Mux2: 1), an adder ADD8 to

update the cell internal state, a register FD8CE to save the 

state, a comparator COMP to calculate when the cell must 

fire, 0 Flip-Flop FDSR to communicate the cell with the 

arbiters by handshaking process and some logic gates to 

control the overflow. The lower overflow is also controlled 

because some kernel coefficients may be negative. 

When receiving a spike, this cell increment its internal 

state according to kernel centre by ADD8 and sends a spike 

to its eight neighbours simultaneously. Each one of these 

neighbours adds a kernel coefficient to its internal state 

depending on where the spike arrives, e.g. when a spike 

comes from the bottom right cell, it adds the bottom right 

coefficient of the kernel to its internal state. That is, the cell 

that receives the spike and its eight neighbours (nine cells in 

total) modifY their states by the corresponding kernel 

element. This implies a restriction in the system that makes 

the kernel sizes to be small for a Spartan II 200 FPGA. 
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When the state of a cell reaches the threshold, the 

comparator COMP in the figure 2 resets its state and saves a 

request in the FDSR. The output arbiter processes the fired 

cells by a fixed priority. This arbiter generates the output 

event address according to the cell attended. When this 

output event is acknowledged, the arbiter clears the request 

stored in the FDSR of the cell. 

When all fired cells are attended, an acknowledge signal is 

sent to the emitter AER chip and therefore processing of the 

incoming event concludes. In this way, no new input events 

can arrive before the current event has finished. This 

constrain simplifies this design because: 

• An Input FIFO is not needed to store all new events that

arrive while the current event is being processed.

• Output arbiter may be fixed priority because there is no

risk that lower priority cells starve and a fixed priority

arbiter is the simplest implementation.

• Each cell never has more than one pending request, so a

single FDSR is needed and then less resource are required.

C. Implementation based on distributed memory

A design based on distributed computational unit wastes

many resources (see results bellow) because each cell is 

implemented by a different computational unit; but only nine 

cells of the whole grid work simultaneously, i.e. the selected 

cell and its eight neighbours, so only a few resources are 

used at the same time. 

This section describes a new implementation based on 

nine shareable computational units. Each unit always works 

with the same kernel element but different cells. In the 

previous design each computational unit stores a cell state, 

but in this new implementation all states are saved in RAM 

memory because there is not one unit per cell. RAM memory 

is divided into nine banks so that nine computational units 

can access one memory bank at the same time. These states 

are distributed to nine RAM memory banks in a way that 

each computational unit accesses a different RAM bank 

simultaneously every time an event arrives. 

Each computational unit always uses the same kernel 

element and modifies the state of same neighbour relative to 

the target cell, for example, the upper left unit always works 

with the upper left kernel element and the upper left 

neighbour of the targeted cell. The left side of the figure 3 

shows an example about how it works. Each location in the 

grid indentifies a cell and it is labelled by Bx where x is the 

number of bank associated to that cell. When the cell C(3, 2) 
receives an spike, a computational unit uses the kernel 

element K(J, /) and the bank B2 to modifY the state of cell

C(3, 2), another one uses the kernel element K(O, 0) and the

bank B7 to modifY the state of neighbour (2,1), and so on up 

to nine units, but each unit accesses a different bank. 

When each cell stores its state, the memory address and 

the memory bank are calculated as the following: 

• Event address is divided into row and column coordinates.

• Each coordinate is incremented and decremented in order

to obtain the address of nine neighbours as a couple of

coordinates. For example, cell address (3,8) generates eight

addresses (2,7), (2,8), (2,9), (3,7), (3,9), (4,7), (4,8) and

(4,9).
• Every coordinate (original, incremented and decremented

coordinate for row and column) is divided in 3. In the

above example, row coordinates are 2, 3 and 4; and column

coordinates are 7, 8 and 9.

• The quotient of division denotes the memory address. Six

calculated quotients are combined in pairs, quotient from a

row and column to get memory address of the nine cells.

• The reminder of division indicates the memory bank. The

calculation process of memory banks is the same as

memory addresses but a reminder is used.

A separate router connects automatically each

computational unit to the corresponding cell state by using 

addresses and banks calculated so that units do not have to 

control RAM memory directly. 

As in distributed computational unit implementation, 

every computational unit calculates the new state adding the 

corresponding kernel coefficient to current state. When cell 

state achieves the threshold, resets its state and saves a 

request in its FDSR (figure 2) until the output fixed priority 

arbiter processes it. When the arbiter dispatches all requests, 

an input acknowledge signal is sent to sender and the system 
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waits for a new event. Figure 3 at the right shows snapshots 

of how these implementations work when an edge detection 

kernel is used. 

D. Testing Scenario

Three USB-AER boards have been connected in line in 

order to test and measure the performance of these 

processors. 

A sequencer firmware is loaded in the first board to send a 

stream of events to the second one. This stream depends on 

the image previously loaded in the FPGA memory. A 

diamond image as figure 3 shows is uploaded in memory to 

test firmware. 

The convolution processor to be tested is loaded in the 

second USB-AER board. The board receives spikes from the 

sequencer and carries out the filtering operation according to 

3x3 kernel loaded. Filter parameters, such as kernel 

coefficients and threshold, are controlled from a computer 

application via USB. The right side of the figure 3 illustrates 

the original and resultant image when a 3x3 kernel is applied 

for extracting edges. 

The third USB-AER board receives events from the 

convolution processor. A datalogger or framegrabber 

firmware can be loaded in this board. The datalogger 

firmware is able to store, in real-time, not only the address of 

the spikes produced by the AER-CA, but also the time when 

they are produced. Therefore, the spikes captured can be 

processed off-line by MatIab to test the processor and 

measure performance. The frame grabber firmware rebuilds 

the resultant image from the spikes received and sends this 

frame to a computer via USB to be displayed. 

A windows application called Multi-LoadFPGA or MatIab 

controls and configures every USB-AER via USB without 

reloading the FPGA. 

E. Result

The event rate achieved is determined not only by 

convolution processor delay but also by input and output 

event rate. The input event rate depends on the image loaded 

into the sequencer and the output event rate is related to the 

kernel coefficients and threshold. 

AER-CA based on distributed computational units 

requires three clock cycles for every event received: a 

synchronization cycle, a cycle for edge detection and another 

one to calculate cell states. Furthermore, this version requires 

two cycles for every new event generated: one cycle to send 

an event and another one to wait for the acknowledgement. 

This implementation yields up to 16.6 mega-events per 

second when no event is generated. In addition, nine ADD 

operations are computed every three cycles, thus the system 

yields up to 150 MOPS when a 50 MHz clock is used. 

This implementation requires many resources to 

implement the cell grid. The largest grid that may be loaded 

in a Spartan-II 200 is an 8x8 grid. This grid spends 84% of 

all resources and allows clock frequencies of up to 52 MHz. 

A 16x16 grid requires a FPGA three times larger. 

AER-CA based on distributed memory requires six clock 

cycles per received event. Unlike the previous version, this 

firmware requires four cycles to calculate cell states: A cycle 

to calculate memory addresses and banks, a cycle to connect 

each unit to the appropriate bank, another one to read the 

current state and the last one to write the new state in 

memory. As the former implementation, this version also 

requires two cycles per event. It performs up to 8.3 mega­

events per second and 75 MOPS. 

This version saves more resources in comparison to the 

former one. This version allows grids of up to 32x32 in a 

Spartan-II. This grid spends just 28% of the internal logic 

and uses 9 of 14 memory banks. A larger grid requires 

adding four memory banks more because the number of 

banks must be multiple of nine at least. 

F. Future Improvements

Both proposed versions require saving the state of every 

cell to calculate new states from the previous one, but it 

wastes many resources. A probabilistic version may be 

developed, which cells fire depending on a probabilistic 

matrix, to avoid storing cell states. Under this new vision, a 

random number and the corresponding probability 

coefficient determine when cells fire instead of adding kernel 

coefficients until threshold is achieved. This new version 

may increase processing speed and may work with larger 

grids in the Spartan-II. 

IV. CONCLUSIONS 

This paper proposes AER neuro-inspired filters for vision 

processing by a Cellular Automata approach. These filters 

can implement two layers, one for the input processing and 

the second one thanks to the evolution rule. 

Two AER filters based on 3x3 kernel convolutions have 

been implemented for FPGA using a Cellular Automata 

approach. An AER filter based on distributed computational 

units has been implemented in which each cell is assigned to 

a different computational unit. This implementation performs 

up to 150 MOPS for a 3x3 kernel and yields up to 16.6 

Mega-events per second in a Spartan-II. 

An improved version called AER Cellular Automata in 

distributed memory has also been implemented to save 

resources by reducing a number of computational units. A 

performance of 75 MOPS has been measured for 3x3 

kernels. This performance may be easily improved for higher 

kernel size, allowing up to 2 GaPS for llxll kernels, which 

is feasible for the distributed memory implementation. 

A real scenario has been used to prove these 

implementations consisting of an AER sequencer, the AER­

CA convolution processor to test, and an AER monitor or 

datalogger. 
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