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Abstract. Image convolution operations in digital computer systems are usually 
very expensive operations in terms of resource consumption (processor 
resources and processing time) for an efficient Real-Time application. In these 
scenarios the visual information is divided in frames and each one has to be 
completely processed before the next frame arrives. Recently a new method for 
computing convolutions based on the neuro-inspired philosophy of spiking 
systems (Address-Event-Representation systems, AER) is achieving high 
performances. In this paper we present two FPGA implementations of AER-
based convolution processors that are able to work with 64x64 images and 
programmable kernels of up to 11x11 elements. The main difference is the use 
of RAM for integrators in one solution and the absence of integrators in the 
second solution that is based on mapping operations. The maximum equivalent 
operation rate is 163.51 MOPS for 11x11 kernels, in a Xilinx Spartan 3 400 
FPGA with a 50MHz clock. Formulations, hardware architecture, operation 
examples and performance comparison with frame-based convolution 
processors are presented and discussed. 

1   Introduction 

Digital vision systems process sequences of frames from conventional video sources, 
like cameras. For performing complex object recognition algorithms, sequences of 
computational operations are performed for each frame. The computational power and 
speed required makes it difficult to develop a real-time autonomous system. But 
brains perform powerful and fast vision processing using small and slow cells 
working in parallel in a totally different way. Vision sensing and object recognition in 
brains is not processed frame by frame; it is processed in a continuous way, spike by 
spike, in the brain-cortex. 

The visual cortex is composed by a set of layers ([1][2]), starting from the retina. 
The processing starts beginning at the time the information is captured by the retina. 
Although cortex has feedback connections, it is known that a very fast and purely 
feed-forward recognition path exists in the visual cortex [1][3]. 
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In recent years significant progress has been made towards the understanding of 
the computational principles exploited by visual cortex. Many artificial systems that 
implement bio-inspired software models use biological-like (convolution based) 
processing that outperform more conventionally engineered machines [4]. However, 
these systems generally run at extremely low speeds because the models are 
implemented as software programs on conventional computers. For real-time 
solutions direct hardware implementations of these models are required. However, 
hardware engineers face a large hurdle when trying to mimic the bio-inspired layered 
structure and the massive connectivity within and between layers. A growing number 
of research groups world-wide are mapping some of these computational principles 
onto real-time spiking hardware through the development and exploitation of the so-
called AER (Address Event Representation) technology. 

AER was proposed by the Mead lab in 1991 [5] for communicating between 
neuromorphic chips with spikes (Fig. 1). Each time a cell on a sender device 
generates a spike, it communicates with the array periphery and a digital word 
representing a code or address for that pixel is placed on the external inter-chip digital 
bus (the AER bus). Additional handshaking lines (Acknowledge and Request) are 
used for completing the asynchronous communication. In the receiver chip the spikes 
are directed to the pixels whose code or address was on the bus. In this way, cells with 
the same address in the emitter and receiver chips are virtually connected by streams 
of spikes. Arbitration circuits ensure that cells do not access the bus simultaneously. 
Usually, these AER circuits are built using self-timed asynchronous logic [6]. 

There is a growing community of AER protocol users for bio-inspired applications 
in vision, audition systems and robot control, as demonstrated by the success in the 
last years of the AER group at the Neuromorphic Engineering Workshop series [7]. 

Fig. 1. Rate-coded AER inter-chip communication scheme 

Table 1. AER Convolution processors comparison 

Integrator based convolutions Mapper based convolutions IF based convolutions [15] 
Poisson output Poisson output Arbitrated output 
From 3x3 to 11x11 kernels 2x2 and 3x3 kernels Up to 32x32 kernels 
64x64 images 64x64 images 32x32 images per chip. Chips 

are scalables 
50MHz clock 50MHz clock 200MHz clock 
Fully digital 8-bit cells on RAM No cells. Results on-the-fly by mappings Analog integrators (capacitors) 



In this paper we present two FPGA implementations of neuro-cortical inspired 
convolution processors. These circuits are similar from a previous work implemented 
in a VLSI chip [13], but with some differences, presented in table 1. 

Section two explains how to convolve using spiking neurons. A VLSI chip [15] uses 
this mechanism. This paper presents an FPGA implementation with Poisson output 
distribution in section 3. In section 4 a new way of implementing convolutions not 
based on integrators is presented. Then in section 5 implementation details are 
presented. Section 6 discusses the performance of these spike-based convolution 
processors compared to frame-based digital convolution processors implemented on 
FPGA. 

2   Convolutions with Spikes 

a) Description. Complex filtering processing based on AER convolution chips already
exists [13]. These chips are based on IF neurons. Each time an event is received a
kernel of convolution is copied in the neighbourhood of the targeted IF neuron. When
a neuron reaches its threshold, a spike is produced and the neuron is reset.

Bi-dimensional image convolution is defined mathematically by the following 
equation, being K an nxm kernel matrix of the convolution, X the input image and Y 
the convolved image. 
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Each convolved image pixel Y(i,j) is defined by the corresponding input pixel X(i,j) 
and weighted adjacent pixels, scaled by K coefficients. Therefore an input pixel X(i,j) 
contributes to the value of the output pixel Y(i,j) and their neighbours, multiplied by 
the corresponding kernel coefficients K. 

For implementing convolutions using spikes let’s suppose Y a matrix of integrators 
(capacitors for analog circuits or registers for digital circuits) to store the result of 
applying a kernel of convolution to an input image X that is coded into a stream of 
events through the AER protocol. Each pixel X(i,j) represents a gray value G in the 
original image. Let’s suppose that in the AER bus will be represented, for a fixed 
period of time, an amount of events P·G (proportional to the gray level of the pixel). 
Each event identifies the source pixel by the address on the AER bus. The value of the 
pixel is coded by the frequency of appearance of this address on the bus. For each 
event coming from the continuous visual source (e.g. an AER retina or a synthetic 
AER generator), the neighbourhood of the corresponding pixel address in Y is 
modified by adding the convolution kernel K, stored in a RAM memory and 
previously configured. Thus, each element of Y is modified when an event with the 
address (i,j) arrives with the following equation: 
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Once all the events of the pixel X(i,j) have been received and calculated, the 
integrator value of the corresponding address Y(i,j) has accumulated 
X(i+a,j+b), ba,∀  (the gray values) times the value of the kernel, so the multiplication

operation has been reached. 



The output of the convolution operation, at this point is stored in the matrix of 
integrators Y. This result can be sent out in several ways: (a) scanning all the 
integrators values and sending out an analog or digital signal. Each integrator or 
register is reset after reading. The system is converted into a frame-based output, so 
the neuro-inspired nature is lost. (b) Based on IF neuron, when an integrator reaches a 
threshold a spike is produced and the corresponding AER event is produced. The 
system is totally spike-based, but the output cannot follow a Poisson distribution due 
to the IF neuron [8]. Every time a spike is produced by a neuron, this is reset. This 
solution is used by analog convolution chips [13]. (c) Generate synthetically a stream 
of spikes. Having the result in the Y matrix, a method for synthetic AER generation 
can be used to warranty the Poisson distribution of spikes [10]. Since the AER 
Poisson generation method is accessing randomly Y matrix, this cannot be reset. A 
periodic and parameterized mechanism of forgetting is used instead of reseting cells 
when they spike. Periodically, the convolved matrix Y is accessed for subtracting a 
constant value to each element. 

In [13] the convolution chip is able to receive positive and negative events to 
process signed kernels and therefore, it is also able to produce signed output events. 
This is done by duplicating the number of integrators, having a positive and a 
negative integrator per cell. If the positive integrator reaches the cero and additional 
negative values arrive to the cell, the negative integrator starts to work. The output 
event produced will be signed depending on the integrator used to produce that event. 

b) FPGA Implementation I: Integrators on RAM. Figure 2 shows the block diagram of
the first architecture. It is composed basically by two devices: a FPGA and a
microcontroller. The FPGA is in charge of the AER-based convolution processor and
the microcontroller is responsible of the PC interface for configuring all the
parameters (Kernel matrix, kernel size, forgetting period and forgetting quantity). The
interface between the microcontroller and the FPGA uses a Serial Peripheral Interface
(SPI). The circuit in the FPGA can be divided into four parallel blocks:

• AER event reception and processing. The input traffic AER protocol is managed
by the “AER input” block. Each received event (i,j) is used to address the Y matrix
(64x64 cells). Centered on (i,j), the kernel is copied in the Y matrix. The
neighborhood of the cell (i,j) will modify their values by adding the corresponding
kernel value. Therefore, Y matrix is always up-to-date with the convolution result.
Y matrix is implemented using a block of dual-port RAM in the FPGA. Each
position of the RAM is 8-bit length. The kernel is stored in an 11x11 matrix with
8-bit resolution. Each kernel value is in the range of -127 to 127. When the kernel
is added the result stored in the matrix is limited between 0 and 255, because no
signed events are implemented.

• Forgetting mechanism. For high AER input bandwidth and / or weighted kernels,
maximum cell value could be reached quickly and thus, next events are lost. Let’s
call this situation saturation effect. For this reason, to avoid errors, a configurable
forgetting circuitry is present in the architecture. The forgetting is based on a
programmable counter that accesses the Y matrix periodically in order to decrease
its values by a constant. Forgetting period and quantity are configured through
USB. Since the saturation effect depends on the AER input bandwidth and the
kernel values (weight), the forgetting parameters depend on these two.



• Poisson like AER output. Y always has the result of the convolution. Thanks to the
forgetting mechanism, this matrix can be captured at any time with a valid
convolved result. To warranty the Poisson distribution of output events, the Y
matrix is accessed by a Random AER synthetic generator [9][10].

• Configuration. The controller is in charge of receiving kernel size and values,
forgetting period and amount to forget. An SPI interface connects a USB
microcontroller and the FPGA. A computer with MATLAB controls the system.

The system has been developed in hardware in a Spartan 3 FPGA. The testing
scenario consists on a USB-AER working as Uniform AER generator [9], the output 
is connected to an AER-Robot working as the AER convolution processor; and its 
output is connected to a second USB-AER working as an AER datalogger or 
framegrabber. A laptop is connected to the three boards, to manage all of them from 
MATLAB, through USB.  

Figure 2 (left, top row) shows a source image and its negative version. These 
images are converted into AER using an AER Uniform generator to feed the 
convolution processor. When applying a kernel for edge detection (ON to OFF, see 
figure 2, matrix K), opposite responses are expected. Bottom row shows the 
reconstructed normalized histograms for 512Kevents obtained with the AER 
datalogger [11], from convolution processor output. The middle column images are 
the result of applying a MATLAB conv2() function with the same kernel to the source 
bitmap used by AER generator. 
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Fig. 2. Right: block diagram of the FPGA AER-based convolution processor. Left: source 
images (top), MATLAB simulation images result (center) and FPGA AER convolution output 
histograms (bottom). 

3   Spike-Based Convolutions with a Probabilistic Mapper 

a) Description. Let’s explain how to implement this using a probabilistic multi-event
mapper [15]. This mapper is able to send M different events per input event. Let’s



suppose that M is the number of elements of a convolution kernel K. Each of these 
mapped events has associated a repetition factor (R) and a probability (P) to be sent or 
not. For each input event (Ini), up to dim(K) output events are generated. 

)dim(,,,, KbaInPROut ibababa ∈∀⋅⋅=
Thus a projective field of events is generated for each input event. From the receiver 

point of view, the number of events for the same address depends on probability and 
repetition factor of the input events in the neighbourhood. This neighbourhood is 
defined by the kernel size. Therefore, the number of events for a fixed output address 
follows the expression: 
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For example, for a desired kernel coefficient Ki=1.2, repetition factor is Ri=2 and 
probability is Pi=0.6. 

b) Implementation II: Probabilistic Mapper. The identification or address of each
emitter neuron that is present in the AER bus, is used to index a mapping table in the
AER mapper. Then, a list of mapped addresses is sent replacing the original one. Each
mapped address is stored in the mapping table with two parameters: a repetitious
factor (R) and an output probability (P). A FSM is in charge of sending the list of
events if the probability function allows it and repeating each mapped event according
to R (see figure 3, left).

With this mapper, sophisticated operations can be performed in the AER traffic 
during the transmission time, like small kernel convolutions. As the probability can be 
modified per each mapped event, it is possible to implement a one-to-dim(K) 

Fig. 3. Left: Probabilistic Multi-event mapper block diagram. Right: (a) source image, (b) K1 
convolution histogram, (c) K2 postive output traffic and negative traffic, (d) 
abs(positve+negative) K2 histogram. 
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mapping, where each of these dim(K) events can be modulated with P and R, as 
expressed in previous section. Thus, this architecture is able to send weighted traffic 
to a neighbourhood per each input event. Furthermore, mapped events can be positive 
and negative, so signed events appears in the output AER bus. A receiver must take 
the average between positive and negative events per each address. 

An internal LFSR (Left Feedback Shift Register) is used to generate pseudorandom 
numbers which are compared with the probability in order to decide if the mapped 
event is sent. In this way a Poisson output distribution is obtained [11][12]. 

This architecture has been tested in a USB-AER board that is composed by a 
Spartan II FPGA and 2Mb of SRAM memory (mapping table) [11]. It is able to 
process a one-to-one mapping in 120ns, and a one-to-M effective mapping in 
(60+M·60) ns. If a mapped event is not sent the time consumption decreases in 20ns. 

Figure 3 right shows two examples. The same source image (64x64) in AER 
format, generated by the Uniform AER generator [9], has been used (a). The second 
image is the normalized histogram of collecting AER traffic for 100ms, after applying 
a simple 2x2 kernel convolution K1 (b). The resulting image should be the initial one 
with soft-edges. An added random noise, due to Poisson distribution of mapped 
events, is introduced. 

Images (c) and (d) belong to a second example, where an edge detection kernel 
(K2) is applied. The mapper sends a positive and a negative event per each input 
event with different addresses. Positive and negative (c) normalized histograms are 
shown. The last image (d) shows the absolute value of the combination of positive 
and negative traffic, using an up-down counter per address.  

4   Comparison with Digital Frame-Based Convolution Processors 

Digital frame-based convolution processors implemented in FPGA, GPUs or CPUs 
usually measure their performance by calculating the number of operations per second 
(MOPS). In this way, a frame-based convolution processor has to calculate ADD and 
MULT operations done to apply a kernel of convolution to an input frame. Once all 
the operations are executed for the whole frame, a result frame is obtained and sent to 
another stage. In [16][17] a performance study was presented for different kernel sizes 
and platforms (see table 2). 

A spike-based convolution processor with integrators cells is performing a number 
of ADD operations per each input event, but no MULTs are done because these are 
replaced by an explosion in the number of ADD operations due to the spike-based 
representation of the information. In this case, the number of ADD per input event is 
equal to the kernel size, since the kernel is added to the neighborhood of the pixel 
address of the incoming event. Measuring AER protocol time in the input, it is 
feasible to calculate the MOPS.  

There exist previous works related to convolution solving based on AER, like [13], 
where a 32x32 pixels convolution chip is based on analog Integrate and Fire neurons. 
This chip can process images with a 31x31 kernel. Each input spike needs 330 ns to 
be processed. Therefore, this system yields 31x31/330=2910MOPS. 

FPGA implementation explained in section 3 is accessing sequentially all the 
kernel elements and adding their values to the corresponding cells. As cells are stored 
in RAM memory and this is read cell by cell, time required per each input event 
grows linearly with the kernel size. In this case the hardware implements only one 



ADD. For example, for 3x3 kernel, the system consumes one cycle for reading the 
cell value and the corresponding kernel position, a second cycle is used for the add 
operation and for writing the result in the internal RAM. Thus 3x3x2 cycles are 
needed per each input event, apart from those needed for the handshake. The 
architecture can be easily improved by having a number of adders equivalent to the 
kernel row size, and allowing the access to the RAM by blocks. Table 2 shows the 
real performance in MOPS for a one ADD architecture, and the simulated 
performance for the N ADD architecture of the NxN kernel convolution processor. 

A spike-based convolution processor based on the probabilistic mapper is not 
calculating neither MULT nor ADD operations. It works by projecting the input 
traffic following a 1 to N2 mapping in a first stage, and then by cancelling negative 
and positive events of the same address in a short period of time. In this way one 
possible equivalent number of operations can be the number of mappings per each 
input event. Table 2 shows the results. 

Table 2. Mega Operations per Second for frame and spike-based convolution processors 

MOPS 
Digital frame based 2D convolutions 

[16][17] 
Spike-based 2D Convolutions 

By mapping By RAM integrators By analog 
caps [13] 

Kernel
size

(NxN) 

Pentium 4 
3GHz
CPU

6800
ultra
GPU 

Spartan 3 Virtex II-
Pro

Spartan II 
(100MHz) 

Spartan 3 
(real) 1 sum

(50MHz) 

Spartan 3 
(sim) N sum 

(50 MHz) 

VLSI 
0,35um 

(200MHz) 
2x2 14 1070 190 221 18,2 - - -
3x3 9,7 278 139 202 22,5 20,45 34,61 - 
5x5 5,1 54 112 162 - 23,14 65,78 -
7x7 2,6 22 90 110 - 24,01 98,00 - 
9x9 1,6 9 73 61 - 24,39 130,00 -
11x11 1,2 4,7 23 48 - 24,59 163,51 -
31x31 - - - - - - 495,00 2910

5   Conclusions 

Two neuro-cortical layers of 64x64 cells with NxN convolution kernel hardware 
implementation on FPGA have been presented. One can work with kernels of up to 
N=11 (~500Ksynapses), with 8-bit integrator cells, and the other with N=3 
(~37Ksynapses), with no integrator cells. The AER output of both follows a Poisson 
distribution since LFSR are used. Both are compared with VLSI analog implementation 
and tested for image edge detection filtering. Poisson output distribution of events and 
low cost are the main differences and strongest contributions of this approach. A 
performance study is presented comparing frame-based digital convolution processors 
and VLSI analog-integrators spike-based convolution processors. Digital frame-based 
architectures are limited by the number of parallel ADDs and MULTs so their 
performance decreases while the kernel size increases. Digital RAM-cell spike-based 
architecture is limited by RAM access. When parallelizing the number of ADDs, the 
performance increases with the kernel size. Spike-based Mapper architecture avoids 
ADD operations since the operations consist in projecting inputs events with weighted 
and signed events and then averaging them in short periods of time. The performance of 
these systems depends on SRAM access time. Kernel sizes are limited by the mapping 
table capacity. 
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