
Building Blocks for Spikes Signals Processing

A. Jimenez-Fernandez, A. Linares-Barranco, R. Paz-Vicente, G. Jimenez, A. Civit

Abstract-Neuromorphic engineers study models and

implementations of systems that mimic neurons behavior in the

brain. Neuro-inspired systems commonly use spikes to

represent information. This representation has several

advantages: its robustness to noise thanks to repetition, its

continuous and analog information representation using digital

pulses, its capacity of pre-processing during transmission time,

... , Furthermore, spikes is an efficient way, found by nature, to

codify, transmit and process information. In this paper we
propose, design, and analyze neuro-inspired building blocks

that can perform spike-based analog filters used in signal

processing. We present a VHDL implementation for FPGA.

Presented building blocks take advantages of the spike rate

coded representation to perform a massively parallel processing

without complex hardware units, like floating point arithmetic

units, or a large memory. Those low requirements of hardware

allow the integration of a high number of blocks inside a FPGA,
allowing to process fully in parallel several spikes coded signals.

I. INTRODUCTION

NATURE, thanks to species evolution, has found
efficient solutions to solve environment adaptation

problems for living beings. Bio-inspired systems try to
understand real biological systems, extracting from them all
possible advantages. As a subset of them, we can find the
neuro-inspired systems, these systems face nowadays
engineering problems, trying to solve them inspired in the
way that the nervous system of living beings codifies and
process information. Living beings brains allow them to
interact dynamically with their environment, unlike robotics
systems that need in best cases a controlled environment,
being a great current challenge to improve robots
adaptability and cognitive skills. The solution could be to
replace progressively robots sensorial, control, and cognitive
systems, by new neuromorphic systems, developing new
processing architectures inspired in the way that biology
performs these tasks. Neuromorphic systems provide a high
level of parallelism, interconnectivity, and scalability; doing
complex processing in real time, with a good relation
between quality, speed and resource consumption.
Neuromorphic engineers work in the study, design and
development of neuro-inspired systems developed, like
aVLSI chips for sensors [1][2], neuro-inspired processing,
filtering or learning [3][4][5][6], neuro-inspired control
pattern generators (CPG) [9], neuro-inspired robotics
[8][17] and so on. Neuromorphic engineering community
grows every year as it demonstrate the success of the
Telluride and Capo Caccia Cognitive Neuromorphic
workshops [9][10].

This work was supported by the Spanish grants SAMANTA II
(TEC2006-11730-C03-02) and VULCANO (TEC2009-10639-C04-02), and
by the Andalusia Council grants BrainSystems (P06-TIC-O 1417). .

AJimenez- Fernandez, A. Linares-Barranco, R. Paz-Vicente, G.
Jimenez, and A. Civit are with the Dept. of Computer Architecture and
Technology, University of Seville, Seville, SPAIN (e-mail:
mrivas@atc.us.es).

Spiking systems are neural models that mimic the
neurons layers of the brain for processing purposes. Signals
in spikes-domain are composed by short pulses in time,
called spikes. Information is carried by spikes frequency or
rate [11], following a Pulse Frequency Modulation (PFM)
scheme, and also from other point of view, in the inter-spike
time (lSI) [5]. One important feature of spikes rate coded
signals is that using this kind of modulation, spikes
represents a continuous signal, not a stream of digital
samples of a digital signal. In consequence, spikes rate coded
information can be processed in a continuous way, without
codifying information into discrete samples. Because of the
simplicity of these models, spikes processing do not need a
complex hardware to perform information processing, like
multipliers. In consequence, this hardware can be replicated
performing a massively parallel information processing
[13][14].

One important consideration is how living beings have
found an efficient way to transmit and represent information
using spikes. Let's suppose the hypothesis that our eyes
codify visual information using a 32-bit integer per cell
representing the averaged value for a period of time, like
conventional digital cameras. Then, a digital bus is needed to
communicate each retina cell value. The number of buses
needed in a brain would be impracticable, so a bus sharing
will be necessary. However, when information is codified
through spikes, one simple line is enough to communicate
one cell activity. Then to communicate all the retina cells a
set of lines will be required. This situation represents a
problem for neuromorphic engineers when developing VLSI
chips like a silicon retina since available pins of chips are
limited. For example, a 128x128 retina will need 16.384
lines to communicate all the cells activity. The solution
adopted by neuromorphic engineers consist in assign an
identifier to each cell and use it to represent the cell that is
producing the spike using a shared output digital bus.
Furthermore, spike based representation of a signal allows
continuous information flow in time, in contrast to discrete
representation used by conventional digital vision systems,
like camcorders. Thanks to these dedicated communication
channels, system parallelism is increased because there is a
virtual point to point connection between one sender and one
receiver cell of different chips or systems that allow each cell
to work independently. These cells (neurons) perform very
simple computations, like on integrate and fire neuron model
[12]. Although these operations are very simple, our brain
has a huge number of neurons, with thousand of connections
between them, allowing implementing a really complex
processing of information, fully parallel and in real-time.

In the other hand, traditional computer and digital signal
processing systems (OSP) are different to spike-based
systems. OSP codify the information as digital words with
different characteristics (lengths, representations types,
accuracy, ...) like integer, fixed point or floating point
numbers. OSP also need complex arithmetic units to process
information, and sometimes the complexity of these units
doesn't allow to include several in a OSP. Inside in a OSP a
reduced number of buses are shared and multiplexed in time
between elements. Memory has the same problem, because it
is a shared resource that requires overhead instructions for a
correct managing. Then a OSP usually have to reuse in time
arithmetic components, multiplex buses and memory access,
and execute overhead instructions, these facts limits the
parallelism level and decreases the efficiency of OSP useful
number of operations performed. In the context of DSP most
advanced devices, parallelism doesn't go beyond the
instruction level parallelism (lLP) and single instruction -
multiple data (SIMD) capabilities (10 operations in parallel)

Present work takes advantage from spike based
representation for new implementations of basic signal
processing operations, like low-pass and high-pass filters,
Our aim is to adapt existing discrete computation models and
algorithms available in OSP to hardware components that
processes spike coded information. We have designed
Spikes Signal Processing systems (SSP). SSP is massively
parallel, appropriate for real-time processing, and allows to
synthesize in an FPGA a huge number of processing
elements thanks to models simplicity.

SSP will improve present neuromorphic systems with
new functionalities (pre or post processing filters). We
propose and analyze new architectures for SSP with
equivalent behavior to analog frequency filters. SSP
components have been designed as building blocks, allowing
connecting them together in several ways to perform
complex spikes processing. SSP building blocks presented in
this paper have been written in VHOL, and simulated inside
MATLAB with the addition of Xii in x System Generator.

In Section II we present a set of basic building blocks
designed, as SSP primitive functions. In section III we
combine basic blocks to design complex blocks that can
perform spike based filters equivalent to analog filters. In
section IV we present simulation results and discuss them.
Finally, in section V we present the building blocks
hardware implementation, and a performance study,
compared to traditional OSP.

II. BASIC BUILDING BLOCKS FOR SSP

Like any complex digital or analog systems is divided or
decomposed into simple components, we propose to develop
a SSP using four basic blocks:

A synthetic spikes generator for converting an
analog signal into spikes, like an input or a
reference.

A spikes integrator and generator that works like an
analog integrator or capacitor.

A spike hold and fire, for adding or subtracting two
spikes coded signals.

A spike frequency divider, which reduces the
frequency of incoming spikes stream by a constant
value.

A. Synthetic Spikes Generator (RB-SSG)

A Synthetic Spikes Generator (SSG) will transform a
digital word (SSG input) into a frequency rate of spikes
(SSG output). This element is necessary in those scenarios
where some reference signals (sensors or feedback signals)
are not coded using the spike representation. There are
several ways to implement a SSG as presented in [15]. A
SSG should generate a synthetic spikes stream, whose
frequency should be proportional to a constant (kspikesGen) and
an input value (x), according to next equation:

SSG(X)spikesRate = kSpikesGen * X (1)

Selected SSG implements the reverse bitwise method
found detailed in [16] for synthetic AER events generation.
Fig. 1 shows the internal components of the reverse bitwise
SSG (RB-SSG) implemented. RB-SSG uses a continuous
digital counter (figure top), whose output is reversed bitwise
and compared with the input absolute value (A BS(x)). In the
case that input absolute value is greater than reversed counter
value, a new spike is fired (figure bottom). RB-SSG ensures
a homogeneous spikes distribution along time, thanks to
reversing bitwise counter output. Since a reference or an
analog signal can be negative, is necessary to generate
positive and negatives spikes. Therefore, we use a
demultiplexor to select the right output spikes, where
selection signal is the input sign, or X(MSB). Finally, a clock
frequency divider (figure left top) is included to adjust RB
SSG gain. This element will activate a clock enable (CE)
signal, for dividing spikes generator clock frequency,
according with a frequency divider signal (genFD). In
consequence RB-SSG gain (kBwspikesGen) can be calculated as
follows:

FCLK
KBwSpikesGen = 2N-l(genFD + 1) (2)

Where Fclk represents system clock frequency, N the
RB-SSG bits length, and genFD clock frequency divider
value. These parameters can be modified in order to set up
RB-SSG gain according with design requirements.

Clock Frequency CE
Divider

x
[n ... O]

Fig. 1. Reverse Bitwise Synthetic Spikes Generator block
diagram.

B. Spikes Integrator & Generator (SI&G)

Spikes Integrator & Generator (SI&G) is composed by a
spikes counter for the integrator part, and by a RB-SSG, as

showed in Fig. 2. Spikes counter is a digital counter that is
increased by one when a positive spike is received, and its
value is decreased by one with a negative spike. Counter
output is the RB-SSG input. Therefore, new spikes generated
have a frequency proportional to spikes count or spikes
integration. The SI&G gain is set by RB-SSG parameters.

ClK
RST

RST ClK RST ClK
UP Spike_out_p

Spike_pl---....

DOWN

Spikes Counter
genFreqDivt=.===��

Gen_ln

Spike_n

genFreqDiv
RB-SSG

Fig. 2. Spikes Integrate & Generate block diagram.

With these considerations, SI&G spikes output
frequency,JI&G, and SI&G gain, k1&G, can be expressed as:

Ii &G = k1&G * f f.nputSpikes dt
-

FCLK
f f. dt- 2N-1(genFD + 1) inputSpikes

(3)

Similarly to analog systems, we can calculate equivalent
SI&G transfer function in "spikes-domain" using Laplace
transform. SI&G transfer function is presented in (4), being
equivalent to an ideal integrator with a gain of k1&G .

SI&G(s) =
FSI &G (s)

FinputSpikes (s)
kl&G

S
FCLK

2N-l(genFD + 1) * s

(4)

For SI&G testing purpose we have executed a set of
simulations for different pairs of parameters (N: number of
bits, genFD: generator freq divider): 13-0, 14-1, 16-0, and a
constant rate of input spikes. Fig. 3 shows SI&G simulation
results, at figure top is represented the frequency of input
spikes in blue (a step signal), and three SI&G frequency
output spikes couples for different parameters. These couples
are composed by simulated reconstructed output (solid line)
and theoretical response (discontinuous line). At figure
bottom we can see SI&G inputs spikes in blue, and also
SI&G output spikes in green. Input spikes represent a step
signal, having a constant spike rate, SI&G output spikes have
a constant linear frequency increasing when input spikes are
positives, like a ramp, with a slope equivalent to kl&G, and
also decreasing output spikes frequency with negative
spikes, as expected from an ideal analog integrator with
same features. Simulations also denoted a good accuracy
with theoretical responses.

C. Spikes Hold & Fire (SH&F)

This block performs the subtraction between two spikes
stream. SH&F will allow us to implement feedback in the

SI&G block, obtaining new transfer functions and
desingning more complex systems for SSP.

� Input Spikes Rate

N=14, GenFD=1 -----...

N=16, GenFD=O �

0.5 1.5 2 2.5 3 3.5 4 4.5

x 10
"

SI&G Output Spikes �
Input Spikes _

��--. ' -���--�.�

Fig, 3, SI&G simulation output spikes rate reconstructed, top, and
input/output spikes, bottom.

Subtracts a spikes input signal ((,,) to another (jy), means
to get a new spikes signal which spike rate lfsH&F) will be the
difference between both inputs spikes rate:

(5)

The procedure of the SH&F is to hold the incoming
spikes a fixed period of time while monitoring the input
evolution to decide output spikes. Fig. 4 shows an example
of how SH&F can evolve from a positive spike. This block
has two inputs U (positive input) and Y (negative input
commonly used as feedback). Let's suppose that a positive U
spike (U+) is received, figure left. U+ is held internally (state
U+), figure center, doing nothing in the case that no spikes
are received. When a new spike arrives, it behaves in one or
other way according to spike input port and sign, figure
right. On top, if SH&F receives a positive spike (U+), held
spike is fired as a positive spike, and new one is held
internally (U+). If a negative input spike is received in the
port U (U-), or a positive spike in the port Y (Y+), held spike
is cancelled and no output spike is produced. Finally, if a
negative Y spike (Y-) is received (figure bottom), hold spike
is sent and last one received is held with positive sign (U+).
Similar SH&F behavior can be extended to any kind of input
spikes (U-, Y+ and Y-) using the same logic: hold, cancel,
and fire spikes according to input spikes ports and sign.

This block has been successfully used previously to
design spike-based closed-loop control systems in mobile
robots by authors [17][18]

A. Spikes Frequency Divider (SFD)

This block will divide the spike rate of an input signal by
a constant. We can think in many ways to implement this
basic block, like for example using simple counters, firing
one spike when several spikes have been received, or with
probabilistic techniques by deciding to propagate, or not, an
incoming spike using a random number generator. These

techniques present a problem, output spikes rate is correct in
average, but these spikes are not distributed homogenously
in time. To ensure spikes distribution we have implemented
this block inspired in the way that RB-SSG works. Fig. 5
shows SFD internal components, it's very similar to RB-SSG
with three differences: first of all, input spikes increases the
digital counter, not every clock cycle like RB-SSG. Next
difference turns around the spikesDiv signal, in the RB-SSG
this signal works like generator input, being its output spikes
rate proportional to this value, in SFD spikesDiv behaves like
the constant to divide, being its value compared with the
digital counter output reversed bit wise. Digital comparator
output drives a buffer that allows, or not, input spikes to pass
through SFD. In general, input spikes will increase the
digital counter, which reverse value will be compared with
spikesDiv signal and in the case that reversed counter output
is lower than spikesDiv, output buffers will be enabled,
allowing next spike to travel across this component. So,
output buffers only enable output spikes according spikesDiv
homogenously in time. SFD transfer function can be
calculated using (6), where N represents the SFD number of
bits, and spikesDiv the signal presented before.

, >
,

=:
I

'

�

-,-"Ho ""Cld "-':�-"'ire,---
CM

--'
�

...1.: Hold & Fire , Hold & Fire Hold & Fire
=-.Il u �. I , -Iu U+

I

:�IU 1
�, t---+ CM f-+ : � y CM !--+I --+j Y I : - LY __ ----', : � 1'----__ -',

: � Hold & Fire

: :I� CM�
: I'----__ -'!
: Hold & Fire
��I� U+ CM�

Fig. 4. Spike Hold&Fire evolution fonn a positive U spike,

D _ FoutSpikes
rSFD -FinputSpikes

spikesDiv
=--.."..--

2N (6)

SFD transfer function is equivalent to a gain block with a
value in the range of [0, I], with 2N possible steps. SFD
accuracy can also be ad�usted with N (N=16 bits in Fig.5)
getting an accuracy of T .

III. FEEDING BACK THE SPIKES INTEGRATE & GENERATE

Using these basic building blocks as primitive operations,
is possible to combine them for designing new building
blocks for more complex SSP, like for example spikes
frequency filters.

If we generate a spikes stream from an analog signal,
spikes frequency will be proportional to analog signal
amplitude, as exposed before in (1). In consequence, analog
signal amplitude changes will be represented by spikes
frequency changes. As analog frequency filters modifies
signal frequency components from amplitude changes,
spikes filters will work on spikes rate changes frequency
components. For example, a spikes low pass filter will
attenuate spikes rate high frequency components, so if

constant spikes rate signal is applied to spikes filter input, as
an analog input step, spikes output frequency will start to
increase exponentially, as expected from an analog filter
output signal amplitude, until spikes rate reach a steady state
frequency. Next section presents in detail two spikes filters,
the first one will be equivalent to a low pass filter, and the
next one to a high pass filter, but in the context of spikes
coded signals.

Fig. 5. Spikes Frequency Divider internal components.

A. Spikes Low Pass Filters

The Spikes Low Pass Filter (SLPF) block will filter high
frequency changes on input spike rate. To build this new
block we have feedback a SI&G using a SH&F and two
SFD, as it is shown in Fig. 6. The idea is to ingrate input
spikes with a SI&G, subtracting SI&G output spikes with
input spikes using a SH&F, performing in this way a basic
filter, without a great accuracy and a fixed gain to I. To
avoid this problem and improve SLPF features, two SFD
have been included. The most important one is the SFD
placed in the feed-back loop, its work is to divide feedback
spikes frequency, subtracting less input spikes in the SH&G,
providing a higher number of spikes at the SI&G input. This
fact affects to filter gain, being higher than one, because
SI&G integrates more spikes, and cut-off filter frequency can
be selected with an improved accuracy, as will be discussed
later. The inclusion of SFD in the feedback increases filter
gain, so another SFD is placed before SLPF output, allowing
to decrease SI&G output, being SLPF gain fully adjustable.

i-S p i k�;- L-�;--P �;-; -F�t� � - i, ,
Spikesiln i

, , , , , , , , , , ,
L ___ �

Fig, 6. Spikes Low Pass Filter Architecture

According to SI&G feedback topology and taking into
account both SFD gain, we can calculate SLPF equivalent
transfer function using basic systems theory. Next equation
shows SLPF ideal transfer function, where SI&G(s) can be
obtained from (4), kSDo1i1 represents output SFD gain and

kSDFB the gain of the SFD placed in the feedback loop, both
detailed in (6).

F ()
_ FoutSpike5 (s) kSFDOut * S/&G(s) SLPF s -FinputSpike5 (s) 1 + kSFDFB * S/&G(s)

kSFDOut * kl&G (7)

S + kSFDFB * kl&G
SLPF transfer function is equivalent to a first order low

pass filter with a pole. Theoretical filter cut-off frequency,
weI/I-of! in rad/sec, can be determined by the product between
kl&G, and kSDFB. Thanks to the fact that kSDFB can be set with a
2N bits value, the accuracy of WeI/I-of! can be very sharp.

Weut-off = kSFDFB * kl&G (8)

Equivalent SLFP gain can be set with the relation
between the values of kSDFB and kSDOut.

k - I' F ()
_ kSFDOut * kl&G _ kSFDOutSLPF - 1m SLPF S - -

5-->0 kSFDFB * kl&G kSFDFB
B. Spikes High Pass Filters

(9)

Using an SLPF and SH&F we have built a spike-based
high pass filter (SHPF). This block will filter low frequency
components in a spike-based signal, allowing passing only
high frequency components. The idea is to perform a low
pass filtering of input spikes, using a SLPF, and subtract
SLPF output with original spikes signal using a SH&F, as
Fig. 7 shows.

1------------------------------1
: Spikes High-Pass Filter :

. I I
Splkes : ln

+SH&F Spikes i Ou
I I I I I I I I I I I
_______________________________ 1

Fig. 7. Spikes High-Pass filter Architecture

Using SLPF transfer function, in (7), we can calculate
SHPF equivalent transfer function as follows:

kSFDOut * kl&G FSHPF(s) = 1- FSLPF(s) = 1- -�..:...::.:-.....:..::=--
s + kSFDFB * kl&G

S + (kSFDFB * kl&G - kSFDOut * kl&c) (10)

S + kSFDFB * kl&G
Resulting SHPF transfer function contains a pole and a

zero. Because we are looking for high-pass filter, the zero
should be placed in the origin. To meet this constrain,
according to (10), kSFDFB must be equal to kSFDOI/{, or in other
words, SLPF gain has to be 1, as exposed in (9). Taking into
account this constrain, SHPF transfer function is reduced to:

s FSHPF (s) = () s + kSFDFB * kl&G 11

And SHPF cut-off frequency can be calculated as the
product of kSFDFB and kl&G:

Weut -off = kSFDFB * kl&G (12)

However, gain of band pass filter is fixed to one. DC
signal component is rejected, as transfer function limits
evidence.

s kSHPF (S -+ 0) = lim k k = 0
5-->0 S + SFDFB * I&G

s kSHPF (s -+ 00) = lim = 1
5-->00 S + kSFDFB * kl&G

IV. SIMULATION SCENARIO AND RESULTS

(13)

This section presents experimental results from
MA TLAB simulations of previously exposed SLPF and
SHFP. For this purpose we have designed a simulation
scenario using Simulink with the addition of Xilinx System
Generator. Thanks to these tools we can simulate, among
other things, Simulink elements together with VHDL
entities, providing a powerful interface to stimulate and
analyze the behavior of written VHDL files. Fig. 8 shows the
scenario used for simulations, it contents two presented
building blocks, at left a RB-SSG, and at right, the spikes
filter that we want to test (SLPF and SHPF, with all their
possible parameters as constants), actually any other building
block can be placed in test filter slot. A Simulink signal
generator provides a stimulus signal for the RG-SSG input,
generating at RB-SGG output the stimulus spikes for testing
the spikes filter, being spikes frequency proportional to input
signal amplitude, as presented before in (1). Synthetic
generated spikes will be the spike test filter input. Spikes
filter under test will process incoming spikes, providing a
new spikes stream that is the result of the simulation. Adding
at the end, figure right, two more Simulink blocks, one for
sending output spikes directly to MA TLAB work space, and
a scope to watch spikes.

Our aim is to present diverse filters responses, so
different features spikes filters have been simulated, as for
SLPF and as for SHPF. Fixing different parameters sets,
getting equivalent filters with various cut-off frequencies and
gain (in the case of SLPF). Simulation parameters are
presented in Table I, it contains from left to right: number of
filter under test, and the kind of filter used; next four rows
show filter parameters, bits number, frequency divider, and
both SFD values; finally last three row provides equivalent
ideal filter parameters, cut-off frequency, gain in absolute
value, and rise time. Simulations results are presented in Fig
9, this figure is composed by two different kinds of
simulations, in a) there are spikes filters temporal response,
and in b) the frequency

Fig. 8. Simulation scenario designed for spikes filters testing

TABLE I
SPIKES FILTERS SIMULATION PARAMETERS

Test Case Spikes Filter Bits Number Frequency Diy. Spikes Diy. Out Spikes Diy. Feedback ((leut-off Filter Gain (abs) Rise Time

I
2
3
4
5
6
7
8

,
x 10

SLPF
SLPF
SLPF
SLPF
SLPF
HLPF
HLPF
HLPF

13
II
9

13
13
13
II
9

0 0.5147
0 0.634
0 0.634
0 0.6691
0 0.6691
0 0.5147
0 0.634
0 0.634

�'-, -, -----,-�--=------r---:;_;_::___;:__=_-I ®-.
! � ! :
I .. ' : � Input Spikes Rate

: ��. , �-::�����,..,., 'i . __ ��� ____________ : ___________________________ Q.�:I��u:�p�k!����e_

! I! � : 0 :

:0.03 :
t. . ..::' m"' Se""C'""0.""13 "" mS""' ec"-_--'_--":0"". 6""3m"" Sec"'-__ L--_____ _ I
) a) 0.5 1.5

0.5147 1kHz I 0.6366mSec
0.634 5kHz I 0.1273mSec
0.634 20kHz I 0.0318mSec

0.5147 1kHz 0.5 0.6366mSec
0.5147 1kHz 1.3 0.6366mSec
0.5147 1kHz I 0.6366mSec
0.634 5kHz I 0.1273mSec
0.634 20kHz I 0.03 I 8mSec

5'- . , - - ,�---,�����-��-�. �.�,� .�- .- ' � f 1kHz : 5kHz · : 20kHz

/ ! .' t
! !

I

Fig. 9. Simulation Results: a) Spikes Filters time response b) Spikes Filters Bode diagram

response. As first simulations we present a set of temporal
simulations, Fig. 9 a), simulating all spikes filters of Table I
for a fixed time (1.5mSec). This figure shows spikes filters
temporal output, being x axis simulation time, and y axis
instantaneously spikes rate. For temporal simulation these
spikes filters have been excited by a constant spike rate input
(7.6MSpikes/Sec), as an analog voltage step, in blue. Filter
output spikes have been analyzed and their instantaneous
frequency along time (in diverse colors) have been
reconstructed. Theoretical responses of analog ideal
equivalent filters have been also added to the figure, to
compare simulation response respect to ideal response. In the
case of SLPF (1-5), output spikes frequency start to increase
exponentially, like expected from an ideal low pass-filter,
with a rise time near to 4 times the inverse of weI/I-off SLPF
output spikes rate reach a steady state value proportional to
SLPF gain, reaching input spikes frequency when is 1 (1-3),
higher output spikes rates in the case that SLPF gains is
higher than 1 (5), and opposed effect happens when SLPF
gains is lower than 1 (4). When SHPF is simulated, its output
spike rate behaves like an impulse (6-8), with high spike rate
at start, and decreasing output spikes frequency exponentially
until no spike is fired, denoting that DC component is
completely rejected. This response represents input temporal
changes, with the addition of some dynamics, adjustable with
SHPF cut-off frequency; however SHPF filter gain cannot be
adjusted and it is fixed to 1. No timing issues are detected

with SHPF as in digital high-pass filter using same topology,
because spikes represent continuous signals, and they are
subtracted on the fly, while spikes are arriving.

Both SLPF (1-5) and SHPF (6-8) have a similar behavior
from expected theoretical temporal responses, confirming that
filters work equivalently to previously calculated Laplace
transfer functions.

After simulating the temporal behavior of designed spikes
filters, we have studied their frequency responses. If our aim
were to characterize an analog filter in frequency domain, one
simple way to perform this task could be to excite the analog
filter with pure frequency tones (fixed frequency sinusoidal
voltage signal), and annotate analog filter output power for
each voltage tone. Translating this experiment to spikes
domain, we are going to stimulate RB-SSG with an input
sinusoidal signal, getting a spikes output which frequency
changes according the sinusoidal signal, codifying a pure tone
as spikes rate changing. Then generated spikes will stimulate
the spikes filters, whose output will be a spikes stream with
same input frequency tone, but with its amplitude and phase
modified by the spikes filters. So we have exited every spikes
filter with a set of spikes coded tones, making a frequency
sweep, and recording all the spikes filter output power for
every that tone, obtaining finally the spikes filter Bode
diagram. Results of these simulations are presented in Fig. 9
b), x axis represents the frequency of input tones in Hz, and y

axis contains the spikes filter gain in dB from 100Hz to
100kHz. Figure contains SLPF simulated and theoretical
responses marked with a cross, and also SHPF responses,
where theoretical responses are marked in these cases with
circle. SLPF with a gain of 1 (1-3) have predicted gain ofOdB
in the pass band, and then gain starts to decrease when
frequency is near to cut-off frequencies, cutting them with a
gain of 3dB, providing an attenuation of 20dB by decade as
expected of analog filters. SLPF with different gains (4-5),
having a gain in the band pass of -6dB and +2.6dB
respectively, and attenuating frequency components from the
cut-off frequency as OdB SLPF. SHPF (6-8) are opposed to
OdB SLPF, attenuating low frequency components, with a
gain of -3dB on them cut-off frequencies, and a OdB gain in
their pass band.

Both simulations, temporal and frequencial, have
evidenced that spikes filters work as we predicted
theoretically in previous sections. All spikes filters show a
great accuracy with ideal values and a closer behavior to
analog filters, although spikes filters are pure digital, working
with binary signals values.

V. SSP BUILDING BLOCKS SYNTHESIS AND

PERFORMANCE

Spikes filters have been synthesized in a commercial
FPGA, to determine hardware requirements and analyze
spikes filters performance. Each spikes filter has been
synthesized for a Spartan 3 FPGA family manufactured by
Xilinx, the XC3S400. Table II contains synthesis results,
showing the spikes filter synthesized; spikes filter number of
bits, number of slices consumed, maximum operation
frequency and number of equivalents operations performed.
Spikes filters have been synthesized for different number of
bits, because this is a parameter that is determinated in
synthesis time and it is needed to allocate inside the FPGA
several counters and comparators of different length when
final circuit is being synthesized. The SLPFs need between
115 and 139 slices depending of the number of bits selected,
with different working frequencies, from 121MHz to
111 MHz. As higher is the number of bits, higher is the
hardware consumption and lower is the working frequency.
Results of SHPFs are very similar, however SHPFs include
an additional SH&F, what will slightly increase the number
of slices, and in consequence, it will decrease working
frequency.

Finally we have analyzed spikes filters performance,
although, in general, analyzing spikes processing systems
performance uses to be difficult and debatable, because this
kind of system are very different to systems based on
sequential traditional processors. We have analyzed filters
performance inspired in the way that AER-based
convolutions have been measured in [19] and [20], analyzing
spikes performance according to the operations that AER
convolutions perform compared with the equivalent digital
processing systems. Our idea is to determinate how many
operations are needed to implement digital filters with the
same features than spikes filters, estimating how many
equivalent operations can be performed by a spikes filter.

Finite Impulse Response (FIR) filters uses to be a
common way to filter discrete signals in a DSP, we are going
to use this kind of filter as reference because are simpler than
Infinite Impulse Response (I1R) filters. The idea of a FIR
filter is to multiply a history of input signal samples by a
fixed set of coefficients, adding the results of all of these
operations to get the output sample. In (14) we show the
general equation of a FIR filter of order 1. This filter needs
last two samples of the input samples (x), and two fixed
coefficient, bOob that contains filter behavior. Output sample
(y) is the result of the operation of multiplicate-and
accumulate (MAC) between these values.

YLPF (n) = bo * x(n) + bi * x(n - 1) (14)

To perform this operation, the DSP should execute many
instructions, not only arithmetic operations. DSPs need to
access to memory in a sequential way to obtain input samples
and coefficients, for a later execution of arithmetic
operations. Then DSP need to shift input samples to be ready
for next sample. Overhead instructions decrease dramatically
the DSP performance in effective operations per seconds. FIR
filter needs 1 addition and 2 multiplications, if we assign a
classical set of weights to both operations, typically 1 and 4
respectively, we can calculate the number of ideal operations
that a FIR filter needs is 9. This number of operations is ideal,
because it doesn't take care of memory access or arithmetic
operations related again to memory access. However we are
going to use this number of operations as reference, because
spikes filters don't access to memory at all, and also can
execute this operation in a massive parallel way. Table II last
row shows the number of operations that can be performed by
the different spikes filters related to the same digital
operation, obtained from the product between spikes filter
maximum operating frequency and equivalent number of
operations, 9. Spikes filters can reach a number of operations
equivalents higher than 1.1 Gops / Sec, and no lower than
0.99Gops / Sec, denoting a good performance. In addition,
spikes filters do not need any complex hardware like floating
point ALUs, so spikes filter can be replicated many times,
performing high number of operations. Compared with
commercial DSP like [20], that reaches ideally 2.5Gops, if we
allocate in a medium FPGA, like is selected Spartan 3, 3 or
more spikes filters, FPGA will be performing more
operations than this DSP (in ideal conditions) using only a
1% of the FPGA.

TABLE II
SSP BUILDING BLOCKS SYNTHESIS RESULTS AND PERFORMANCE

Occupied
Max.

Eq. operations
Building Number operating

Block of bits
slices. Max

frequency
by second

3584
(MHz)

(Gops)

SLPF 8 115 121.4 1.0927
SLPF 12 130 119.7 1.0773
SLPF 16 139 111.6 1.0044
HLPF 8 132 120.8 1.1196
HLPF 12 144 119.3 1.0737
HLPF 16 153 110.6 0.9954

VI. SSP BUILDING BLOCKS PRACTICAL APPLICATIONS

Although SSP building blocks are in a early state, some
filed of applications can be found, however new SSP building
blocks should be proposed and designed to perform more
complex operations. Currently authors are starting to work on
two possible applications of SSP building blocks. First field
of application is in spikes-base robotics controls. Nowadays
these kind of controls implements proportional (P) closed
loop controls based only in the use of spikes [17] and have
been used to control mobile robots [18]. Thanks to SI&G and
SHPF spikes-based controls can be improved, designed
Proportional-Integral-Derivative (PID) controls using only
spikes, providing better and new spikes-based controls. Far
beyond, SHPF transfer function is equivalent to a lead
network when SLPF inside has a gain different to 1, that is a
very common control structure in industry.

Other possible application is the design of a neuro
inspired synthetic cochlea. An example of an analog cochlea
can be found in [2], biological cochlea decompose sounds in
its frequency components, this fact is mimicked by this
analog cochlea as a set of analog band-pass filters, whose
analog output value is codified to spikes by a determinate
circuit (the inner-hair-cell circuit, IRe). Analog cochlea use
to show some practical problems related to A VLSI circuits,
like the introduction of noise due to use of analog filters, and
problems with circuit mismatch, that affects to analog filters
cut-off frequencies. In the sense of this cochlea, it processes
analog sound information to convert it later to spikes. Using
spikes filters, why don't convert incoming sound in spikes
and then process spikes directly? So a very useful application
could design spikes band pass filters (SBPF) as similar as
analog band pass filters is possible, to try to avoid the
problems that's this kind AVLSI systems presents.

VII. CONCLUSIONS

This paper presents building blocks inspired in the way
that biology codifies, transmit, and process the information,
the spike rate coded representation. Although there is no
evidence that nature performs same operations than presented
blocks, we continue working in this way because it is
interesting in the sense that SSP building blocks adapts
already known digital operations to spikes based operations,
but with the advantages of representing information with
spikes. These advantages are well known, like massively
parallel operations, the absence of a sample period, or the
simplicity of the hardware needed to process this information.
SSP building blocks performs operations equivalent to basic
analog systems, but using pure digital circuits. Those new
spike-based components evidence that nature have reach
efficient solutions, processing signals without the need of
complex information representation (e.g. floating point
numbers), avoiding complicated arithmetic hardware (e.g.
multipliers). Being the most complex operation performed by
our blocks the addition of one to a counter. We have
simulated and synthesized these new elements, showing a
good behavior, low hardware consumption and higher
performance from the computational point of view.

ACKNOWLEDGMENT

This work has been supported in part by the Andalucia
Council with the BrainSystem project (P06-TIC-O 1417), and
by the Spanish projects: SAMANT A II (TEC2006-ll730-
C03-02) and VULCANO (TEC2009-l0639-C04-02)

REFERENCES

[1] P. Lichtsteiner, et al. "A 12Sxl2S 120dB 15 us Asynchronous
Temporal Contrast Vision Sensor". IEEE Journal on Solid-State
Circuits, vol. 43, No 2, Feb-200S.

[2] Chan, V. et al" "AER EAR: A Matched Silicon Cochlea Pair With
Address Event Representation Interface". IEEE Transactions on
Circuits and Systems I: Regular Papers, Volume 54, Issue 1, Jan. 2007

[3] R. Serrano-Gotarredona, et al.. "On Real-Time AER 2-0 Convolutions
Hardware for Neuromorphic Spike-Based Cortical Processing. IEEE
Transactions on Neural Networks, Vol. 19, No 7. July-200S.

[4] Oster, M et al "Quantifying Input and Output Spike Statistics of a
Winner-Take-All Network in a Vision System" IEEE International
Symposium on Circuits and Systems, 2007. ISCAS 2007.

[5] P. Hafliger. "Adaptive WTA with an Analog VLSI Neuromorphic
Learning Chip". IEEE Transactions on Neural Networks, vol. IS, No
2,. March-2007.

[6] G. Indiveri, et al. "A VLSI Array of Low-Power Spiking Neurons and
Bistables Synapses with Spike-Timig Dependant Plasticity". IEEE
Transactions on Neural Networks, vol. 17, No 1. Jan-2006.

[7] F. Gomez-Rodriguez, et al "AER Auditory Filtering and CPG for
Robot Control" . . IEEE International Symposium on Circuits and
Systems ,ISCAS 2007.

[S] A. Linares-Barranco, et al. "Using FPGA for visuo-motor control with
a silicon retina and a humanoid robot". . IEEE International
Symposium on Circuits and Systems, ISCAS 2007.

[9] Telluride Cognitive Neuromorphic workshop: https://neuromorphs.netJ
[10] Capo Caccia Cognitive Neuromorphic workshop:

http://capocaccia.ethz. ch
[11] G. Shepherd, "The Synaptic Organization of the Brain". Oxford

University Press, 3rd Edition, 1990.
[12] E. Chicca, et al. "An event based VLSI network of integrate-and-fire

neurons ". IEEE International Symposium on Circuits and Systems,
ISCAS 2004 Misha Mabowald. VLSI Analogs of Neuronal Visual
Processing: A Synthesis of Form and Function. PhD. Thesis, California
Institute of Technology Pasadena, California, 1992.

[13] R. Serrano-Gotarredona, et al. , "CAVIAR: A 45k-neuron, 5M-synapse
AER Hardware Sensory-Processing-Learning-Actuating System for
High-Speed Visual Object Recognition and Tracking," IEEE Trans. on
Neural Networks, Volume 20, Issue 9, Sept. 2009 Pags.: 1417 - 143S

[14] F. Gomez-Rodriguez, et al. "Two Hardware Implementation of the
Exhaustive Synthetic Aer Generation Method". LNCS. Vol. 3512.
2005. Pag. 534-540

[15] R. Paz-Vicente, et al."Synthetic retina for AER systems development".
International Conference on Computer Systems and Applications,
AICCSA 2009.

[16] A. Jimenez-Fernandez, et al. "AER-based robotic closed-loop control
system". IEEE International Symposium on Circuits and Systems,
ISCAS 200S.

[17] A. Jimenez-Fernandez, et al. "AER and dynamic systems co-simulation
over Simulink with Xilinx System Generator". IEEE International
Conference on Electronics, Circuits and Systems, ICECS 200S.

[1S] A. Linares-Barranco, et al. "FPGA Implementations comparison of
Neuro-Cortical Inspired Convolution Processors for Spiking Systems".
International Work-Conference on Artificial Neural Networks, IW ANN
2009.

[19] A. Linares-Barranco, et al. "On the AER Convolution Processors for
FPGA". IEEE International Symposium on Circuits and Systems,
ISCAS 201O.Texas Intruments TMS320C6720 datasheet:
http://focus.ti.comllitJdslsymlinkltrns320c6727b.pdf

