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Abstract—This paper presents an integer-based digital processor
for the calculation of phase synchronization between two neural
signals. It is based on the measurement of time periods between
two consecutive minima. The simplicity of the approach allows for
the use of elementary digital blocks, such as registers, counters,
and adders. The processor, fabricated in a 0.18-µm CMOS process,
only occupies 0.05 mm2 and consumes 15 nW from a 0.5 V supply
voltage at a signal input rate of 1024 S/s. These low-area and
low-power features make the proposed processor a valuable com-
puting element in closed-loop neural prosthesis for the treatment of
neural disorders, such as epilepsy, or for assessing the patterns of
correlated activity in neural assemblies through the evaluation of
functional connectivity maps.

Index Terms—Functional connectivity, low power CMOS VLSI,
neural signal processing, phase synchronization, seizure detection.

I. INTRODUCTION

OVER the past decade, there has been a growing interest
in the quantification of functional connectivity between

measurements of neural activity. This refers to the statistical
evaluation of coupling strengths between brain regions to iden-
tify those involved in specific tasks, including sensory responses,
motor responses and intellectual or emotional processing. Func-
tional connectivity can be assessed on neural signals captured
at different spatial resolutions, from single-unit responses ac-
quired by micro-electrode arrays to aggregated signals obtained
through electroencephalography (EEG) or functional magnetic
resonance imaging (fMRI) measurements, and it can be calcu-
lated on the basis of linear (e.g., correlations and coherence mea-
sures [1]), nonlinear (e.g., generalized synchronization [2]) or
information-related techniques (e.g., cross mutual information
[3])—see [4] for an in-depth review. Functional connectivity
does not determine the specific direction of information flow
but only shows the regions which are most likely connected.
To explicitly assess the influence that one region exerts over
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another, i.e., to derive the effective connectivity [5] and, hence,
to reveal the subjacent drive-response map of the neural system,
more complex techniques based on the analysis of long time
series are typically used. They include the Granger-causality
[6], Directed Transfer Function (DTF) [7] or Partial Directed
Coherence (PDC) [8].

Besides providing means to expose communication networks
in the brain, clinical studies have demonstrated that functional
connectivity also gives relevant information to distinguish be-
tween normal and pathological brain states, in particular, when
connectivity is estimated by synchrony evaluation techniques
[9]–[11]. Indeed, it has been shown that abnormal synchroniza-
tion patterns are associated with different neurological disorders,
such as, epilepsy [12], Alzheimer’s disease [13], Parkinsons dis-
ease [10] or schizophrenia [14]. Moreover, changes in functional
connectivity, possibly together with other univariate measures
extracted from neural recordings, have been found useful for
the early detection of epileptic seizures with good sensitivity
and specificity [2], [15], [16].

This later feature is actually exploited in recent closed-loop
neural prostheses for treating epilepsy [17]. These prostheses
detect specific bio-markers in neural signals during the pre-ictal
stages of seizures and, following detection, regions of the brain
are stimulated for preventing the spreading of seizure activity.
For instance, the observed desynchronization at the initiation of
seizures in human intracranial and extracranial recordings [18]
has been used as a bio-marker for predicting ictal periods long
before a seizure actually occurs [19].

The referred applications on neurophysiology, disease mon-
itoring and therapy suggest the development of dedicated
integrated circuits for functional connectivity evaluation, in par-
ticular, in those scenarios demanding power efficient solutions
(e.g., implantable neural prostheses) or fast on-site operation
to avoid neural activity transfer and off-line computations by
a host computer (e.g., neurostimulators for seizure abortion).
However, not all the candidate algorithms for deriving functional
connectivity lead to hardware friendly integrations. Most often,
they require the storage of long sequences often combined with
complex operators, e.g., Fourier Transform modules in the case
of coherence measures [1] or entropy calculators in the case
of information-related techniques [3]. Hence, their integration,
even assuming extensive usage of parallelism for addressing the
connectivity between multiple channels, would demand large
area occupation. Similarly, synchrony evaluation often relies on
analytical techniques involving trigonometric functions, which
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demand bulky and power-hungry computations [20] which make
multichannel extension difficult as scalability is reduced.

This paper addresses the integrability of functional connectiv-
ity operators in silicon and presents a simple, hardware friendly
algorithm and a companion CMOS implementation as a demon-
strator. The algorithm focuses on the measurement of synchrony
between two signals and, similar to [21], relies on the identifica-
tion of events with no need to evaluate the instantaneous phase of
the signals. Although the algorithm can be extended to any neural
recording and identifiable event (e.g., action potentials in single
unit measurements), herein it is illustrated with narrow-band
filtered surface or intracranial EEG signals, using local minima
as events [22], [23]. The demonstrator uses integer arithmetic for
calculations and consists of counters, registers and comparators,
as main building blocks. In spite of its simplicity, the proposed
operator has an accuracy comparable to that of more complex
algorithms, such as the the mean phase coherence [24], but
with much lower area and power consumptions. Indeed, the
processor, fabricated in a 0.18μm CMOS technology, consumes
15 nW from 0.5 V supply and only occupies 0.05 mm2.

The paper is organized as follows. Section II defines the
phase synchronization concept and Section III briefly de-
scribes some of the methods most commonly used for the
on-chip quantification of synchrony between two signals. Then,
Section IV introduces the proposed algorithm and Section V
presents the structure and operation of the developed processor.
Section VI describes the methods followed for testing and shows
the achieved performance. It presents experimental results, in-
cluding functional connectivity maps, obtained by driving the
integrated operator with neural recording streams available in
an epilepsy database [25]. Comparisons with simulations of
analytical techniques for synchrony computation and seizure
detection are also given to illustrate the accuracy of the approach.
Finally, Section VII presents some concluding remarks and
future plans.

II. PHASE SYNCHRONIZATION CONCEPT

Phase Synchronization (PS) is expressed by the phase lock-
ing condition n · ϕs1 −m · ϕs2 = const., where n and m are
integers, and ϕs1 and ϕs2 denote the instantaneous phases
of the oscillating signals s1(t) and s2(t). In the presence
of noise, this condition is relaxed to the weaker constraint
|n · ϕs1 −m · ϕs2| < const. or to the frequency entrainment
condition,n · 〈ωs1〉 −m · 〈ωs2〉 = 0, whereωs1 andωs2 denote
the angular frequencies of s1(t) and s2(t), respectively, and 〈·〉
denotes averaging over time [26].

The measurement of PS over time typically encompasses two
main steps: first, the estimation of phase anglesϕs1 andϕs2 and,
second, the quantification of the amount of synchronization over
a given period of time. This period is usually defined by a sliding
window of N samples and, hence, the quantification inherently
carries out a data reduction process. Synchronization measures
often contain rapid fluctuations. Hence, an additional smoothing
process can provide a more useful baseline for assessing changes
in synchrony.

In practical situations, PS estimation is preceded by the
pre-filtering of the neural signals such that s1(t) and s2(t) are

band-limited into specific frequency bands. For instance, in
the case of signals obtained by EEG or electrocorticography
(ECoG) methods, these bands are conventionally defined as: δ ∼
0.1−3 Hz, θ ∼ 4−7 Hz, α ∼ 8−12 Hz, β ∼ 12−30 Hz, γ ∼
30−60 Hz and high-γ > 60 Hz. Given the narrow-band
constraint and considering that signals are obtained from the
same physiological system (i.e. the brain) with similar recording
techniques (i.e. surface or intracranial EEG), it will be assumed
in the following that PS can be more likely found for phase
locking integers n = m = 1 [24], [26].

III. REVIEW OF ON-CHIP PS SOLUTIONS

One popular approach for the calculation of the instantaneous
phase of a signal relies on the construction of the analytic repre-
sentation sa(t) = s(t) + js̃(t), where s̃(t) is the Hilbert Trans-
form of s(t) [see (A.1) in the Appendix]. Using time-frequency
domain techniques, the Hilbert Transform can be derived by
[31] (i) obtaining the Fourier transform of s(t), (ii) nulling
the negative frequency components, (iii) calculating the inverse
Fourier transform and (iv) taking the imaginary part of the result.
Given the non-stationary nature of neural signals, the Fourier
transform should be applied over short intervals. This suggests
the use of the Short Time Fourier Transform (STFT) algorithm
instead of the classical Fast Fourier Transform (FFT) [4].

A simpler method for the generation of the analytic signal
representation sa(t) uses Hilbert Transformers based on digital
filtering. These transformers can be implemented in complex
domain or formed by the combination of two sub-components;
a Hilbert filter with an ideal transfer function −jsgn(f) for the
generation of the imaginary part of sa(t), and a delay equal to
that of the Hilbert filter for the real part. In both cases, the total
group delay of the signal components should be kept constant
as to not cause phase errors. The vector analyzer presented in
[27] follows the second implementation approach and employs
16-tap Hilbert finite impulse response (FIR) filters for obtaining
s̃(t), and 16-tap All-Pass FIR filters for implementing the delay.
In a more recent implementation [28], the in-phase and quadra-
ture components are directly provided by the mixed-signal ac-
quisition front-end, and four 64-tap FIR filters are used for band
selection. Further, [34] introduces an improved implementation
with 9× area reduction by means of resource re-utilization.

Another transform-based approach for deriving the instanta-
neous phase of a signal uses Wavelets [see A.4 in the Appendix].
In this case, the on-chip implementation of the method requires
Multiply-and-ACcumulate (MAC) processors to correlate the
input time series with wavelet templates. As an example, [29]
proposes a charge-recycling mixed-signal MAC processor for
epilepsy detection in which time series of 1024 samples are
serially loaded and correlated in parallel with all the Morlet
wavelet templates (coded in 32 frequency bins with 4-bit coef-
ficient resolution) stored in the on-chip memory.

The trigonometric functions involved in (A.2) and (A.3) as
well as the computation of the phase locking value in (A.5)
can be readily implemented by CORDIC (COordinate Rotation
DIgital Computer) units. This is actually done in [20] where a
digital signal processing (DSP) block formed by three 16-bit
CORDIC cores and two 32-tap moving average FIR filters are
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TABLE I
PERFORMANCE SUMMARY OF PROPOSALS RELATED TO ON-CHIP PS CALCULATION

aPower consumption mainly due to the 4 × 128 8-bit ΣΔ algorithmic ADCs. At 15 kHz parallel sample rate, the bank of ADCs dissipates 6.3 mW from a 3.3 V supply [30].

used for computing the phase locking value (PLV ) from the
analytical signal sa(t). In [35], FIR filters are replaced with an
IIR approximation resulting in a 60% decrease in group delay
latency. Another alternative approach for computing PLV in
which trigonometric functions are replaced by linear algebra
calculations is presented in [36].

Numerical methods for computing PS, such as the one based
on probabilities of recurrence, pr(τ), described in the Appendix,
typically use simpler logic than transform-based techniques at
the price of increased latency and more memory resources. Thus,
for instance, the evaluation of pr(τ) in (A.7) requires the collec-
tion and combination of phase space trajectories, demanding for
a large memory allocation. Nevertheless, it is worth observing
that, depending on τ , there are coincident terms in the sum (A.7).
This opens doors for reducing the computational complexity of
the algorithm by avoiding recalculations. This is actually the
approach followed in [32], where a differential scheduling for
the computation of the correlation integral of a signal (similar to
the calculation of recurrences) allows for a substantial reduction
in complexity. Following the calculation of pr(τ), a MAC unit
should be used for the calculation of the cross-correlation in
(A.8) to serve as a synchronization index.

As shown in (A.9) and (A.10), numerical methods can also be
used for the computation of synchronization indexes. Although
the computational complexity is relaxed as compared to the
PLV (in particular for the index based on Shannon entropy),
long sliding windows are needed to populate the histograms and
obtain a meaningful distribution of probabilities. Hence, circuit
simplicity is counterbalanced with an increase in latency and
memory depth.

Table I illustrates the performance of the different integrated
circuits presented in this section, together with the performance
of the presented work (to be discussed in Section VI). The two
first rows represent for complete PS processors while the rest
corresponds to building elements which can be eventually used
depending on the particular PS implementation strategy. The
table clearly shows that the algorithms used for PS calculation,
although easily programmable in computers, tend to occupy
large area and consume significant power when dealing with
silicon integration. The problem is even more acute in the
context of functional brain connectivity, where multiple phase
synchronization indexes from different sites are needed. For
instance, if functional connectivity has to be measured between
16 recording sites, as it is typically done in a standard 10–20

EEG electrode system, 120 different combinations of neural
signal pairs should be simultaneously addressed. This means
application specific integrated circuits (ASICs) for functional
connectivity quickly become far to big and/or power hungry,
even if sophisticated multi-thread sharing DSP techniques are
employed.

IV. EVENT-BASED PHASE SYNCHRONIZATION

In this section, an algorithm for phase synchronization com-
putation which aims to alleviate the area/power consumption
burden for silicon integration of previous approaches is pro-
posed. Similar to the transform-based methods, the proposal
is also based on the estimation of instantaneous phases in
band-limited signals, however, instead of using complex filter-
ing or wavelet convolutions, phases are extracted through the
identification of distinct marker events in waveforms. Without
loss of generality, in this work it is assumed that such events
correspond to the local minima of the signal at time instants tn.
The time interval between two consecutive minima correspond
to one complete cycle and, therefore, the phase increment dur-
ing this period is exactly 2π. Hence, the signal phase can be
approximated for any arbitrary time instant tn < t < tn+1 as,

ϕs(t) ≈ 2π
t− tn

tn+1 − tn
+ 2πn (1)

where the term 2πn unwraps the phase angle and T s
n = tn+1 −

tn measures the duration of the transition period between the
minima, as illustrated in Fig. 1. Note that this approximation
notably simplifies phase estimation as the problem basically
reduces to measure time intervals. For this reason, the proposed
algorithm is denoted as Delay Difference Analysis (DDA).

Based on the approximation in (1), an index for quantifying
the synchronization level between two signals has been proposed
in [21]. It relies on creating histograms on how many times
the events in one signal are preceded by events in the other.
The approach has low computational cost however, similarly to
the numerical techniques described in the Section III, it needs
long time series to build meaningful statistics and, in some sense,
it wastes the time information between events.

The proposed approach for measuring synchronization is
similar to the PLV technique in (A.5) but avoids the use of
trigonometric functions. DDA analyzes the time difference
between the transition periods of both signals, not their relative
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Fig. 1. Transition periods and approximated phases in two signals. Starting
at point A, the DDA algorithm generates the following absolute differences
between transition periods: |T 1

1 − T 2
1 |, |T 1

2 − T 2
2 |, |T 1

3 − T 2
3 | and |T 1

5 − T 2
4 |.

phase �ϕ, and, remarkably, it operates on-the-fly with no need
to store long signal sequences. The procedure simply consists in
pairing transition periods from both signals as soon as they are
detected. If a pair is formed between the i-th transition period of
signal s1(t) and the j-th transition period of s2(t), the absolute
difference �Tn = |T 1

i − T 2
j | is calculated, where T 1

i and T 2
j

denote, respectively, the durations of said transition periods. If
two or more transition periods in one signal are detected before
a transition period is found in the other, only the last transition
period of the former signal is accounted for in the computation
of �Tn. Of course, this situation is more or less likely to happen
depending on the band limitations of the input signals. For
example, in the theta band which has a narrow frequency spread,
the probability of multiple transitional detection is less than that
of the beta band. Fig. 1 shows an example of the procedure.

Let us denote by K the number of absolute differences �Tn
computed in the k-th sliding window of lengthN , and let us as-
sume with no loss of generality thatN = 2m. A synchronization
index between signals s1(t) and s2(t) can be defined as,

S
(r)
dda(k) = 1− 2r

N
min

(
K−1∑
n=0

|�Tn| − Tos,
N

2r

)
(2)

where r ∈ [0,m] is a user-defined selectivity control parameter
and Tos is a positive integer offset for adjusting the synchroniza-
tion index range. Fig. 2(a) plots S(r)

dda for Tos = 0 and different
selectivity configurations assuming that s1(t) is a sine wave at
20 Hz, and s2(t) is a chirp whose frequency linearly sweeps from
10 to 30 Hz. Both signals are sampled at 1024 S/s and quantized
at 10-b resolution. Every calculated index is obtained assuming
a non-overlapping sliding window of lengthN = 1024. Clearly,
the higher the selectivity parameter, the narrower the band for
which the synchronization index obtains non-null values. No
matter the r parameter, the plots in Fig. 2 are not symmetrical
around the tone frequency of s1(t); they decay linearly for
chirp frequencies below said tone but fall away more smoothly

Fig. 2. Synchronization indexes obtained through the DDA algorithm for
different selectivity parameters, using a sine wave and a swept-frequency cosine
as input signals. (a) Tos = 0; (b) Tos = 6.

for higher frequencies. This is because the number of absolute
differencesK is limited by the smaller frequency, fmin, of both
signals as K = �N · fmin/fs	 = �Tout · fmin	, where Tout is
the throughput period of the DDA index. In Fig. 2(a), it is also
observed that the peak value of the synchronization index de-
creases with the selectivity parameter. This can be compensated,
without drastically increasing the sampling frequency or the
number of samples per observation window, by means of the off-
set parameter Tos. This is illustrated in Fig. 2(b) where Tos = 6
making the synchronized indexes for all selectivity parameters
mostly cover the range between 0, indicating no coupling, and
an approximate 1 for perfect coupling. Note that too large of
an offset may eventually make the synchronization index larger
than 1, hence, a limiter, which can be easily implemented by an
overflow detector, should be used together with (2).

For comparison purposes, Fig. 3 shows the PLV index
(dashed line) for the same experiment as in Fig. 2 together with
the index S(4)

dda with no offset. Both approaches give comparable
results, with theDDAproducing a piecewise linear approximate
of the main lobe of the PLV index and eliminating the smaller
side lobes. This is reasonable because the PLV index can be
approximated as PLV 
 1 + α

∑N−1
k=0 |�ϕk|/N for small �ϕ

values, whereα is a fitting parameter (see (A.5) in the Appendix).
Given the relationship between phases and time delays as ex-
pressed in (1), a clear connection between the phase locking
value and the Delay Difference Analysis can be established.
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Fig. 3. Results from DDA and Hilbert transform approaches for the same
experiment in Fig. 2. The inset shows a zoom of the shaded area.

Fig. 4. Block diagram of the DDA circuit.

V. DDA CIRCUIT DESIGN

Fig. 4 shows the block diagram of the circuit implementing
the DDA algorithm. Initially both signals (assumed bandpass
limited off-chip) are smoothed by simple exponential filters (to
be discussed later), and, afterwards, they are passed through
corresponding event detectors for identifying the time instances
leading to the calculation of the transition periods. As men-
tioned, local minima will be considered as marker events in this
work. As shown in Fig. 4, each detector consists of (i) a digital

Fig. 5. (a) Combinational circuit for the minima logic in the event detection
blocks of Fig. 4. (b), Example of neural waveform and the detected minima
(encircled) based on the event detection system.

comparator driven by the current and previous samples of the
signal, sx(i) and sx(i− 1), (ii) a shift register, which stores
the M most recent results of the pair-wise comparison and (iii)
a combinational block which, based on the sequence stored in
the register, decides if a minimum is present. This latter block,
shown in Fig. 5(a), allows for a finite number Q of potential
outliers in the up and down transitions of the signal. This is
illustrated in Fig. 5(b). In spite of a short transition upwards in
the second event, the detection system is still able to identify
the correct local minimum. In the proposed implementation
M = 10 and Q = 2.

Based on the detected events, a finite state machine calculates
the differences between transition periods, �Tn. As shown in
Fig. 4, the finite state machine uses up-counters to determine
the number of clock cycles between two consecutive minima in
a signal. When a pair of minima are detected, the output of the
corresponding counter is stored in latches and, afterwards, the
counter is reset to start a new count. If a transition period in s1(t)
is preceded by a transition period in s2(t), the synchronization
indexing block calculates the absolute difference between the
two. Otherwise, if the transition period in s2(t) is yet to be stored,
the finite state machine continues searching for transition periods
in s1(t), overwriting the values in the latches until a transition
period in s2(t) is detected. The same procedure holds if the role
of s1(t) and s2(t) are swapped.

An accumulator in the synchronization indexing block obtains
the sum of the absolute differences between transition periods
until the number of samples per observation window, N , is
reached. At this point, the synchronization index is obtained
according to (2). In practice, to avoid floating point arithmetic,
a scaled version of the index N · S(r)

dda(k) is used. Hence, only
comparators, shift registers and digital adders are needed for the
calculation.

Similar to that of the input signals at the pre-processing stage,
the synchronization index is smoothed by a simple exponential
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Fig. 6. Block diagram of the smoothing block.

Fig. 7. Correlation of the DDA synchronization index and the PLV proces-
sor in [20] with an ideal noise-free PLV calculation when the input signals are
contaminated by Gaussian noise.

filter for removing fast fluctuations [23]. This filter is defined by
the recursive equation:

y(k) = (1− α) · y(k − 1) + α · S(r)
dda(k) (3)

where y(k) is the filtered output and α is a smoothing factor
comprised between 0 (maximum smoothing) and 1 (no smooth-
ing). In practice, this parameter is chosen as a negative power of
two, so that multiplications reduce to simple shifting operations
in a register. Fig. 6, shows a block diagram of the filter which is
composed of only two shift right registers, which are responsible
for the power of two smoothing factor, a full subtracter and a full
adder. A similar smoothing approach has been recently proposed
in [35].

Fig. 7 illustrates the noise performance of the DDA circuit.
It shows the correlation between the ideal PLV values obtained
with two noise-free 60 minutes long neural signals, and the syn-
chronization indexes, derived from the DDA approach, when
the same signals are contaminated with white Gaussian noise.
The correlation is plotted against the spot Signal-to-Noise Ratio
(SNR), assuming 1 Hz bandwidth, at the maximum frequency
of the β band, i.e. 30 Hz. PS estimations are also derived on
the same frequency band. A Matlab model, closely matching
the circuit architecture in Fig. 4 forN = 1024,M = 10,Q = 2
and α = 1/32, has been used in the analysis, assuming 10-b

resolution and a sampling rate of 1024 S/s. Parameters r and Tos
have been adjusted for the best fit to the ideal PLV response.
Spot SNRs in the range between 10 dB and 70 dB at 5 dB
steps have been considered and, for each SNR, a Montecarlo
analysis (100 instances) has been carried out. The error bars
show both the mean value and the ±3σ of the synchronization
indexes. It is worth observing that for spot SNRs above 30 dB
the average correlation between the DDA approach and the
noise-free PLV technique is larger than 90%. Fig. 7 also shows
the correlation between the noise-free PLV values and those
obtained with a 16-tap Hilbert transformer with passband ripple
of 0.01 dB when input signals are corrupted by noise, following
the implementation in [20]. Similar to that of the DDA case,
performance worsens for SNRs below 20 dB, although the
DDA obtains better results with very noisy recordings thanks to
the outlier suppression technique used in the minima detectors.

Table II shows the mean value and the standard deviation of
the correlation between the PS values obtained with the DDA
processor with different parameter configurations and the ideal
PLV routine for a spot noise of 30 dB. Note that the correlation
performance is particularly sensitive to the smoothing factor α
and that only modest improvement is observed by increasing
the resolution of the input signals. Parameters M and Q mainly
affect PS calculations at low SNRs. The configuration marked
in bold has been selected for implementation as it offers a good
trade-off between hardware complexity and performance.

To assess the impact of the noise behavior shown in Fig. 7,
it must be emphasized that surface and intracranial EEG sig-
nals exhibit 1/fx-like power spectra at low frequencies [37],
[38]. This makes low frequency bands more tolerant to the
aggregated noise contributed by biological tissue, electrodes
and recording front-ends [39], [40]. Indeed, it has been shown
that even with modest amplifier noise specifications, without
suppressing flicker contributions, SNRs larger than 30 dB can
be obtained at low frequencies [41]. This suggests that PS
calculations can be relevant as a neurological biomarker in the
β and lower frequency bands although the reliability decreases
for the high-γ band and higher frequencies. This observation is
indeed confirmed in Section VI, where it is shown thatDDA and
PLV obtain similar PS results, while theDDA approach offers
light and modular hardware implementations, easily scalable to
large neural recording arrays.

VI. EXPERIMENTAL MEASUREMENTS

Fig. 8 shows a microphotograph of the chip implementing the
DDA algorithm. The chip has been fabricated in a 0.18 μm
CMOS process and occupies an active area of 0.05 mm2 in-
cluding the main processor core, two series-to-parallel input
(SPI) ports, one parallel-to-series output (PSO) port and some
additional buffers for testing intermediate nodes. The I/O ports
work 10 times faster than the rest of the ASIC in agreement
with the 10-b resolution used for the input signal samples.
The total number of integrated gates is 6053. Before integra-
tion, the processor core was verified on an ARTIX 7 FPGA.
Only 92 slices were required for implementing the proposed
algorithm.
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TABLE II
DDA CORRELATION TO IDEAL PLV MEASURED AT 30 DB SPOT SNR FOR

DIFFERENT CIRCUIT CONFIGURATIONS

Fig. 8. Circuit layout fabricated in a 0.18 μm CMOS process and occupies an
active area of 0.05 mm2.

Fig. 9. Laboratory functional test setup, showing the logic analyzer, power
supply and the laptop used to transfer data files.

The ASIC uses circuit elements from a full-custom digital
library for 0.5 V power supply operation, based on low-leakage
transistors in weak inversion. The library blocks were generally
designed using conventional CMOS logic, with device dimen-
sions close to minimum size, as they were found to offer an
acceptable trade-off between power dissipation and operating
frequency [42]. Indeed, the library was exhaustively verified and
characterized under PVT deviations assuming a maximum clock
frequency of 25 kHz, i.e., about twice the operation frequency
needed by the I/O ports of the ASIC. In spite of the reduced
noise margin and the slow switching transitions, post-layout
simulations of the chip showed complete functionality with no
data loss for 0.5 V operation.

Fig. 9 shows the test setup used for functional verification.
The chip was mounted on a dedicated PCB together with a set

Fig. 10. Illustration of the system response versus supply voltage for two input
tones at 25 and 30 Hz.

of adjustable level shifters and regulators for scaling the logic
levels and supply voltage of the ASIC. Low voltage operation
was experimentally verified by driving the chip with different
tones in the β band and comparing the generated synchroniza-
tion index stream with electrical and behavioral simulations. A
logic analyzer (Agilent 16823A) was used for synthesizing the
tones, sampled at 1024 S/s, and for serially retrieving binary
information from the output and other test points of the ASIC
through a pod connector. For two tones at 25 and 30 Hz (100 k
samples each), deviations from the ideal synchronization index
were noticeable for supply voltages below 0.35 V. At this point,
the index starts to drop and, for 0.2 V supply, the system breaks
down completely with no observed activity. The reset signal
generated in the ASIC after and-ing the latched outputs of the two
minima logic blocks (see Fig. 4) was also monitored along this
transition. This signal goes high every time a transition period is
computed. For supply voltages above 0.35 V, the train generated
by the ASIC is quite regular (only minor variations due to the
quantization of the inputs) in good agreement with the expected
response, however, pulses are eventually missed below 0.35 V
and, at 0.2 V supply, they are no longer observable.

Electrical simulations show that this behavior is compatible
with data transfer failures from the SPI input ports of the ASIC.
This is illustrated in Fig. 10 which plots: (i) the experimentally
observed degradation of the synchronization index as the supply
voltage decreases according toSmeas/Sid, whereSmeas andSid

denote, respectively, the measured and ideal values of the index
and, (ii) the simulated SPI register position, normalized to the
vector resolution, at which input data fails to be shifted. In both
cases, 1 indicates no error while 0 means complete breakdown.
It is worth observing the good agreement between both curves.
Similar behavior was obtained for other tones in the β band.

At a signal input rate of 1024 S/s, a throughput period of
1 s and 0.5 V supply voltage, the power consumption of the
chip core is 15 nW. Table III shows the power budget of
the chip. Event detection and time stamp calculations by the
finite state machine are the two most power demanding tasks
of the processor due to the higher switching activity. Table IV
shows the normalized performance of the ASIC compared to
other designs in Table I. Variables have been normalized to a
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TABLE III
POWER BREAKDOWN OF THE SYNCHRONIZATION PROCESSOR BASED ON THE

BLOCKS IN FIG. 4

TABLE IV
NORMALIZED PERFORMANCE SUMMARY

Fig. 11. Test setup showing the ASIC mounted on a dedicated PCB, mbed
LPC1768 micro controller and dedicated level shifters.

single channel and, in the case of core area occupation, an addi-
tional normalization has been applied by arbitrarily assuming all
chips are fabricated in CMOS 65 nm. Accordingly, the original
area per channel has been scaled by (65 nm/Wmin)

2, where
Wmin is the feature size of the fabrication technology. Note that
the proposed implementation exhibits the smallest normalized
area and it is among the designs with lower energy consumption.

A. Experimental Setup With Neural Recordings

The processor has also been verified and validated using neu-
ral recording data available in the European Epilepsy database
[25]. This database contains recordings of over 275 patients
including 225 scalp recordings and 50 intracranial recordings.
As very long recording sessions, often lasting for more than 6 h,
are included in the database, a specific experimental set-up has
been devised. As shown in Fig. 11, it uses an mbed LPC1768
MCU based on a 32-bit ARM Cortex-M3 core from NXP

Semiconductors. The test platform has been expanded with an
application board which includes an RJ45 Ethernet connector
and a USB-A Host/Device port (in addition to the built-in USB
drag’n’drop FLASH programmer). The MCU defines settings
and transmits driving stimuli to the DDA chip through the
available GPIO ports and other I/O interfaces. Neural input
signals are stored as CSV files in a 32 GB Fat-32 formatted stick
memory plugged into the USB-A port of the test platform. These
files are sequentially read by the MCU and serially transmitted
to the SPI ports of the ASIC. Long testing sessions have been run
uninterruptedly using this setup with no need to split the database
recordings into smaller blocks (this would clear the internal
states of the ASIC). The synchronization index generated by
the chip is transferred back to the MCU and steered through the
USB port to a host computer where data are further analyzed
with MATLAB.

Neural recording signals from the database have to be pre-
processed prior to being used as stimuli in the described plat-
form. This involves the following steps: (i) bandpass-filtering
for selecting the frequency band of interest (fourth-order But-
terworth filters have been used), (ii) resampling for matching
the frequency rates of the recordings and the ASIC (only if
needed), (iii) adding noise for a given input-referred SNR value,
(iv) digitizing the samples to the resolution of the ASIC (10-b),
and (v) casting data in CSV format files for storing in the
stick memory. As mentioned, files as large as 10 GB have been
handled without any observed problem.

B. Epilepsy Detection Results

Different blocks of intracranial data from the referred database
were used for assessing the epilepsy detection capabilities of the
DDA chip. These blocks were selected for their high confirmed
seizure rate. No other considerations were taken into account.
For each block, signals were first pre-filtered in MATLAB into
conventional neuro-physiological bands. After a preliminary
computer analysis of the records, the frequency band with the
largest synchronization index activity was finally selected. For
each experiment, the set of valid values were plotted alongside
with the theoretical PLV value obtained through the Hilbert
Transform method.

For illustration purposes, Fig. 12 shows the synchronization
results obtained from two channels of a recording block mea-
sured in a 48 years old, female patient. In this block, one low
amplitude fast activity (lafa) seizure was annotated (dotted line).
Before driving the ASIC, Gaussian noise were added to the
signals for a spot SNR of 30 dB at 30 Hz. The plot shows the
experimental synchronization index (labeled as “ASIC SI”) and
the calculated PLV value (labeled as “SIM PLV”). The DDA
algorithm detects all major changes in synchrony and, indeed,
follows a similar trend as the PLV algorithm. This is verified
by the high correlation measure of approximately 91% (in line
with Fig. 7).

Fig. 12 also shows that the seizure manifests with a remarkable
increase in the synchronization measures. This feature is in fact
on the basis of the detection mechanism presented in [20] and
[28] in which seizures are detected by applying thresholds on the
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TABLE V
RECORDS USED IN THE VERIFICATION OF THE PHASE SYNCHRONIZATION PROCESSOR

a(S/D/M/G) for surface, depth, strip and grid electrodes.

Fig. 12. Experimental synchronization index and simulated PLV value from
recordings at positions M5 and M8 of a 1× 8 EcoG strip implanted in patient
FR_1084. Signals were pre-filtered in the β-band. The input rate of the chip
was adjusted to the sample rate of the recordings, i.e., 1024 S/s. The Sdda curve
(labeled “ASIC SI”) was obtained at a sample rate of 1 S/s.

PLV indicators calculated between pairs of channels. In some
cases, as in Fig. 12, seizures are preceded by a sudden drop in
synchronization [18], however, we have not verified this feature
in all the analyzed blocks.

In this work, a similar thresholding approach has been fol-
lowed and, as in the previous experimental results, PLV values
were also calculated for comparison purposes. To this end,
a simulation experiment with 10 recording sets included in
the European Epilepsy database has been conducted. In total,
1803.2 hours of recordings and 61 annotated seizures have
been analyzed. Simulations were carried out in MATLAB using
mathematical models of the DDA and the PLV processors. In
the DDA case, the model closely follows the block diagram of
Fig. 4 while, in the PLV case, the model uses the architecture
presented in [28]. In both cases, an input signal resolution of
10-b has been assumed.

Table V shows the records used for the verification of the
proposed phase synchronization calculation approach. For each
patient the table shows the electrode configuration (both EEG
and invasive), sampling rate, number of seizures, recording
duration and dominant seizure pattern. The EEG data were ac-
quired using a Neurofile NT digital video EEG system, while the
invasive measurements were obtained with depth, strip or grid
electrodes from Ad-Tech. For each patient, three different phase

synchronization indexes, involving four intracranial electrodes,
were calculated. In all cases, the three contact pairs have one
electrode in common, located in the proximity of the epileptic
focus, while the other three electrodes, also close to the position
at which the seizure originates although not necessarily from
the same array, were used as reference. These electrodes are
identified in Table V as #F-{#R1, #R2, #R3}, where #F denotes
the electrode at the seizure focus and #Rx denote the references.
Prior to the calculation of the synchronization indexes, records
were bandpass filtered in the frequency bands where higher
activities were observed. This gave the selection ofβ-band for all
patients but patient #4, for which theα-band was most insightful.
In the case of patient #10, the β- and θ bands offered similar
results.

In order to estimate the sensitivity (number of seizures which
are correctly detected divided by the total number of real positive
cases) of the DDA and the PLV approaches in terms of the
False Positive Rate, FPR (number of wrong positive detections
along the interictal periods), different thresholds per contact
pair and patient have been applied over the corresponding syn-
chronization indexes. Thresholds for the DDA and the PLV
algorithms do not necessarily coincide even if applied on the
same electrode pair.

In our experiment, a detection is produced whenever one out
of three synchronization indexes (or PLV values) raise above
their corresponding thresholds. Hence, decisions are taken based
on the outcomes from three contact pairs, not just one. Addi-
tionally, the following considerations have been adopted [2].
An observation window of 15 min before the annotated seizure
has been defined for the detection of true positives. Hence, if a
crossing is detected any time within this window, which can be
associated to a preictal state, a true seizure detection is accounted
for. Further, in order to exclude effects from postictal states,
recording periods within 30 min after the onset of a seizure were
discarded from threshold calculations. If two successive seizures
are separated by less than 45 min, the preictal window before the
onset of the following seizure is preserved in the analysis. Any
period of time excluding the ictal events and the pre/post ictal
paddings is regarded as interictal. No cool-off period after false
positive alarms has been defined and, hence, all the wrong detec-
tions occurring in the interictal periods contribute to the FPR
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Fig. 13. Synchronization indexes for patient #7 during a clinically annotated
seizure and pre/post ictal padding at a false positive rate of 0.15 per hour.
(a) Pair TBA1-HRA4, (b) pair TBA1-HRA5, (c) pair TBA1-TBA2.

Fig. 14. Average Sensitivity against FPR for DDA + SI and PLV + HT
including 95% confidence analysis obtained via 1803.2 hours of recordings and
61 annotated seizures.

calculation. Thresholds are obtained by firstly scanning the
synchronization results in the interictal periods and sorting the
highest peaks into a descending order. Thresholds are then set to
the values of the smallest peaks for a given FPR performance.
In order to reduce the risk that short periods of strong PS activity
are counted as sets of individual false positives, a clustering
approach has been followed by which a false positive is actually
defined by the range of samples for which the synchronization
index remains abovePSFP − 5LSBs, wherePSFP denotes the
local PS maximum. With this safeguard, the average duration of
FP clusters is around 10 s.

Fig. 13 illustrates a true positive detection identified in pa-
tient #7. In this case, the synchronization indexes calculated
with DDA from the three contact pairs pass their respective
thresholds during the preictal period. Fig. 14 shows the sensi-
tivity variation with respect to FPR, averaged over all the 10
patients in Table V, according to the one out of three detection
rule described before. Five different FPR values, in units of
number of events per hour, have been considered. Both DDA
and PLV detectors were analyzed. Error bars indicate the 95%
confidence interval limits per method and FPR value. The
average detection threshold variation along the FPR range

was 8.8% for DDA and 14.5% for PLV . As can be seen,
there are little differences between the two approaches (only
4.6% sensitivity variation averaged over all FPR), with DDA
slightly outperforming PLV detection, except at 0.45 FP/hr for
which both methods obtain similar results. As the constraint
is relaxed in terms of FPR, it is observed that the sensitivity
rises and the confidence levels get tighter. In fact, at 0.75 FP/hr,
DDA achieves 84% sensitivity whilst its upper confidence level
reaches as much as 92%. These results are comparable to those
in [28].

Although results can be hardly generalized, it was observed
in the analysis that certain seizure patterns tend to offer better
sensitivities than others. In particular, those patients showing
low-amplitude, fast activity or rhythmic β waves, obtained some
5% better sensitivity inβ band. This was observed both forDDA
and PLV PS detection.

It was also observed that if the #R reference electrode is
located far from the #F focus, there is a significant drop in the
calculated sensitivity. Hence, to some degree, this indicates that
the closer the reference electrodes are to the epileptic origin the
higher the correct detection rate.

C. Functional Connectivity Results

The proposedDDA prototype has been also used for estimat-
ing functional brain connectivity. As in the previous section, chip
results were later compared with computer simulations of the
Hilbert Transform approach with PLV indexing. Recordings
from patient #7 have been considered. This patient suffers from
simple and complex partial seizures which originated from
temporal lobe. Among the recordings, a block including one
rhythmic β wave episode has been analyzed. This has been the
only aspect taken into account for the selection.

To assess the functional connectivity strength between neural
assemblies, a mapping approach has been followed in which syn-
chronization indexes for every possible electrode combination
at a given observation window were arranged into a symmetric
matrix. A 1 h long recording block including inter-ictal, pre-
ictal, ictal and post-ictal periods was examined. Signals were
band-pass filtered in the β band.

Both EEG and ECoG recordings are available from patient
#7, however, only the results from EEG analysis are herein
presented. The EEG recordings consisted of neural signals from
16 EEG electrodes arranged in a standard 10:20 format. The
resulting 120 pairwise combinations were arranged in a 16× 16
matrix. For easy visualization, index values were color-coded
between yellow (index close to 1) and dark blue (no coupling).

Figure 15 shows the connectivity maps obtained through the
Hilbert Transform (first column) and the DDA chip (second
column) for observation windows in the four mentioned time
segments. Both sets are clearly correlated as verified by the ab-
solute differences between the two methods (third column). This
is particularly noticeable during the ictal stage (first row), where
the difference across all neural combinations is almost null. This
shows that for high values of synchronization,DDA retains the
detectability of high synchronization changes when compared to
other more complex algorithms. For smaller synchrony levels, as
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Fig. 15. EEG connectivity maps for patient #7. Columns 1 through 2 are colour maps representing the mean values for both the PLV and DDA for all possible
combinations of EEG signals. Column 3, shows the absolute difference between columns 1 and 2. EEG data were organized into a standard 10–20 format.

occurs in the pre-ictal, post-ictal and inter-ictal periods, the vari-
ations between both methods become a little more pronounced.
The biggest difference can be seen in the post-ictal period (third
row) between electrodes T3–F8 at approximately 10%.

Similar conclusions were drawn from the analysis of ECoG
maps on the same recording block (not shown). Good correlation
between both approaches was also observed. Nevertheless, it
was noticed an overall increase in synchrony for all the obser-
vation windows. This is consistent with the closer proximity of
ECoG electrodes compared to surface electrodes. In any case,
the ictal-period was still clearly identifiable.

VII. CONCLUSION

A dedicated processor, fabricated in a 0.18 μm CMOS pro-
cess, has been proposed for the estimation of phase synchroniza-
tion between neural signals. It obtains similar results as those
achievable with more computationally demanding algorithms,
but it consumes much less power and it is highly scalable. This
makes the proposal suitable for parallel multi-channel phase
synchronization calculations on-chip which may be used in

the feature extraction stage of neural interface processors for
brain-state classification [35]. Complementarily, PS event de-
tections could be made patient-adaptive and tolerant to the brain
non-stationary behavior, by regularly adjusting the threshold
of the different synchronization indexes based on the observed
sensitivity and specificity performance.

In some sense, the proposed algorithm can be regarded as an
inexact computing paradigm [43] in which a small amount of
errors can be tolerated, without sensibly degrading the quality
of results, but attaining considerable efficiency gains.

Although the processor performance has been demonstrated
for surface and intracranial EEG signals, its usage can be ex-
tended to other wearable/implantable scenarios where a low-
cost, low-complexity, programmable and portable solution for
computing functional connectivity is needed.

APPENDIX

PHASE SYNCHRONIZATION METHODS

This appendix briefly describes some benchmark techniques,
grouped in transform-based and numerical methods, for the
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calculation of phase synchronization. The list is not intended
to be comprehensive, yet it aims to illustrate the computational
complexity involved in the algorithms.

A. Transform-Based Methods

Two main closed-form approaches have been proposed for
the estimation of phase angles. One is based on the Hilbert
Transform and the other on the Wavelet Transform.

The Hilbert transform (HT) creates a projection of the original
signal on to the imaginary plane in such a way that positive
frequencies are phase shifted by −π/2 and negative frequencies
by +π/2, while keeping the amplitude unaffected. Analytically,
the Hilbert transform s̃(t) can be interpreted as the convolu-
tion of s(t) with the function h(t) = 1/(πt) and is given by
[24]:

s̃(t) =
1

π

∫ +∞

−∞

s(τ)

t− τ
· dτ (A.1)

where the integral is taken in the sense of Cauchy principal value.
From (A.1), the instantaneous phase can be extracted as

ϕs(t) = arctan
s̃(t)

s(t)
(A.2)

A similar approach for estimating phase angles [44] uses a
definition based on the Wavelet Transform (WT). Here, the phase
variable is defined as,

ϕs(t) = arctan
Im(W (t))

Re(W (t))
(A.3)

where Im(·) and Re(·) denote imaginary and real part, respec-
tively, and W (t) is the convolution of the band-limited signal
s(t) with a Morlet wavelet ψ(t),

W (t) =

∫ +∞

−∞
ψ(t− τ)s(τ) · dτ

ψ(t) = exp

(−t2
2σ2

)
· exp (jω0t) (A.4)

where σ is the decay rate of the wavelet and ω0 is the cen-
ter frequency of the signal band. Both analytical methods
give similar results when applied to neurophysiological data
[45].

The Phase Locking Value (PLV ), also denoted as mean phase
coherence, usually accompanies the HT or WT methods as an
index for quantifying the amount of synchronization between
two signals [24]. It is defined as,

PLV =

∣∣∣∣∣ 1N
N−1∑
k=0

exp(j�ϕk)

∣∣∣∣∣ (A.5)

ThePLV converts instances of the relative phase�ϕ into unit
vectors on the complex plane. If N of said vectors all have the
same instantaneous phase (i.e. the same vector direction) then
the PLV will average out to 1 which equates to fully coupled
oscillations for that period. However, in the case that the relative
phase angles are very different the PLV will result in a value
close to 0.

One limitation of PLV for phase synchronization estimation
when applied to brain signals is its sensitivity to volume conduc-
tion artifacts. These artifacts arise when neural recordings pick
up activity from a common source [46]. Assuming there is no
time-lag to the underlying source activity, the problem can be
alleviated by taking the imaginary part, instead of the absolute
value, in (A.5) [11].

B. Numerical Methods

Phase synchronization measures can be alternatively derived
from the phase space trajectories of the signals. Using time-delay
embedding procedures [47], the phase space trajectory of a time
series {s(k)} is obtained by constructing the vectors,

Si = {s(j), s(j + d), . . . , s(j + (m− 1)d)} (A.6)

where i = 1 . . . N , j = i+ mod[N − (m− 1)d], m ≥ 1 is the
embedding dimension and d ≥ 1 is an arbitrary but fixed time
increment.

Based on this topological representation, the phase synchro-
nization between two signals can be estimated by computing
the cross-correlation between the probabilities of recurrence
in their respective phase spaces [48]. This approach has been
used recently for quantifying functional connectivity in EEG
recordings [49]. The probability of recurrence of a signal mea-
sures the likelihood that each phase space vector returns to its
neighborhood after a time delay τ . It is calculated as:

pr(τ) =
1

N − τ

N−τ∑
i=1

Θ
(
ε− ‖Si − Si+τ‖

)
(A.7)

where ε is a pre-defined distance threshold, ‖ · ‖ is a norm to
calculate the distance between vectors and Θ is the Heaviside
function. The cross-correlation CPR of two trajectories is cal-
culated as:

CPR =

〈
(pr,1(τ)−m1) · (pr,2(τ)−m2)

〉
σ1 · σ2 (A.8)

where m1 and m2 are the mean, and σ1 and σ2 are the standard
deviations of pr,1(τ) and pr,2(τ), respectively. If both signals
are in synchrony, their probabilities of recurrence will peak at
the same time and CPR ∼ 1. Contrarily, if the signals are not
synchronized, low values of CPR can be expected.

Numerical techniques have been also proposed for the quan-
tification of synchrony, as an alternative to the PLV index
in (A.5) [26]. Assuming that the phase angles of both signals
have been previously estimated, a synchronization index can be
calculated based on the Shannon entropy of the phase difference
distribution. Having an estimate Pse(l), l = 1, . . . , L of the rel-
ative frequency of finding a phase difference �ϕ = ϕs1 − ϕs2

in a certain bin l, the index is given by,

Sse = 1 +
1

ln(L)

L∑
l=1

Pse(l) · ln[Pse(l)] (A.9)

where L is the number of bins. Note that Sse is comprised in
the interval [0, 1], where Sse = 0 corresponds to a uniform
distribution (no synchronization) and Sse = 1 corresponds to
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a distribution localized in one point. The estimate of this index
heavily depends on L [26].

Another synchronization index is based on the conditional
probability Pcp(k, l) to find the phase of a first signal in a bin
k when the phase of the second signal falls in the l-th bin, l =
1, . . . , L. Denoting asMl the number of hits of the second signal
in the l bin, a synchronization index can be defined as,

Scp =
1

L

L∑
l=1

∣∣∣∣ 1

Ml

Ml∑
k=1

exp[jPcp(k, l)]

∣∣∣∣ (A.10)

It has been found that this index is particularly suitable for
reveling weak interactions between signals [26].
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