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In this work we discuss fundamental aspects of Electrohydrodynamic (EHD) conduction pumping of dielectric liquids.
We build a mathematical model of conduction pumping that can be applied to all sizes, down to micro-sized pumps. In
order to do this, we discuss the relevance of the Electrical Double Layer (EDL) that appears naturally on non-metallic
substrates. In the process we identify a new dimensionless parameter, related to the value of the zeta potential of the
substrate-liquid pair, that quantifies the influence of these EDLs on the performance of the pump. This parameter also
describes the transition from EHD conduction pumping to electroosmosis. We also discuss in detail the two limiting
working regimes in EHD conduction pumping: ohmic and saturation. We introduce a new dimensionless parameter,
accounting for the electric field enhanced dissociation, that along with the conduction number, allows to identify in

which regime the pump operates.

I. INTRODUCTION

The future of fluidic heat transfer systems lies in innovative
solutions for fluid flow generation and control that can address
the evolving needs of modern high power systems, both ter-
restrially and in space. Traditional mechanical pumping tech-
niques, although efficient and well understood, are difficult to
miniaturize and suffer from mechanical breakdown, excessive
vibrations, and difficulty with pumping thin liquid films and
multi-phase flows. As an active method for flow control in flu-
idic heat transfer systems, Electrohydrodynamic (EHD) con-
duction pumping'~® has unique advantages over traditional,
mechanical methods for generation of flow. EHD conduc-
tion pumps have simple, compact designs with no moving
parts and therefore low vibrations and acoustic noise. These
pumps have been shown to enhance heat transfer at different
size scales, ranging from cm’#, mm® to hundreds of um!®
and in the presence and absence of gravity!'. It has been
shown to enhance significantly the heat transfer in pool boil-
ing systems' 112,

EHD flows are generated by electric forces acting on elec-
tric charges present in a liquid!3. There are three main mech-
anisms to generate a net volumetric electric charge in a lig-
uid: injection, induction and conduction'*. In the first case
electric charges are injected from the electrodes into the lig-
uid. The induction mechanism of charge generation is based
in the existence of a gradient or discontinuity of the electrical
conductivity. In conduction the charges are generated by dis-
sociation of a weak electrolyte in the liquid. The last one is
the mechanism used in EHD conduction pumping.

Under equilibrium conditions, with no applied electric field
or under the effect of only a weak electric field (less than
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100V /m, in order to not affect the dissociation process), the
electrolyte impurities found within a dielectric liquid undergo
reversible dissociation and recombination reactions at equal
rates. These reactions are described as,

dis.
AB — AT +B. (1)

—
Iec.

where AB is a simple neutral electrolyte species, while AT
and B~ are the positive and negative ions it dissociates into.
The bulk of the liquid, in equilibrium, is electroneutral, but
near a surface this equilibrium breaks, due to the presence of
the interface. As a consequence, near a surface an Electric
Double Layer (EDL) develops'>. This is true independently
of the application of an external electric field, or whether the
surface is metallic or dielectric. The simplest structure of an
EDL is comprised of a layer of ions stuck on the interface (the
Stern layer) and a diffuse layer in the liquid (the Debye layer),
with a net electric charge. The thickness of the diffuse layer,
the Debye length Ap, is determined by the equilibrium be-
tween charge diffusion and recombination. The typical diffu-
sion time is Tp = A3 /D, while the typical recombination time
is 7 = €/0. Here, D is the diffusion coeficient, € is the per-
mittivity and o is the electrical conductivity. In equilibrium
Tp = Tg, and we get, for the case of a univalent symmetric
electrolyte with equal ionic mobilities for both species'> !

eD eKkgT
Ap=1|— =] ———. 2)
o oe

We have used the Einstein relation D = KkgT/ 6()17, where
eo is the elementary charge, K is the ionic mobility, kp is the
Boltzmann constant and 7 is the absolute temperature. The
electroosmosis pumps, another type of EHD pump, operate
applying an electric field parallel to the surface to exert an
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FIG. 1. Illustration of the EHD conduction mechanism. The het-
erocharge layers locations are indicated in green and yellow. The
corresponding polarity with respect to the electrodes is shown. The
placement of the EDL on the substrate is indicated with red lines.

electrical force on the EDL near the electrodes, putting the
liquid into motion'#,

The charge distribution in the EDL is a result of the equilib-
rium between charge diffusion and ion recombination. When
an electric potential is applied between metallic electrodes im-
mersed in an electrolyte, this equilibrium is perturbed. The
applied electric field, perpendicular to the electrodes, pushes
away the ions of the same polarity than the electrode. Then,
some of the ions of the opposite polarity do not find a counter-
ion to recombine before arriving at the electrode. If the ap-
plied electric field is high enough, the Debye layer disappears
and a heterocharge layer develops, with a net electric charge
of opposite polarity to the electrode. The thickness of this het-
erocharge layer can be estimated as follows. The typical ionic
velocity is KEy, Eq being the order of magnitude of the com-
ponent of the electric field perpendicular to the surface. Then,
before recombining the ions typically travel a distance

eKE,
hi ~ KEgTo = — 0 3)

Let us stress that the EDL and the heterocharge layer have
fundamentally different physical origins. The EDL is the re-
sult from equilibrium between ionic diffusion and recombi-
nation, while the heterocharge layers arise from the balance
between recombination and the ionic electric drift created by
an external electric field. The heterocharge layers appear only
next to metallic electrodes where an applied electric potential,
producing a normal electric field, exists. The EDL appears
in equilibrium conditions next to any solid surface in contact
with an electrolyte, metallic or not.

In EHD conduction pumping, an electric field is ap-
plied across two electrodes immersed in the liquid, gener-
ating Coulomb forces acting on the heterocharge layers that
develop."'4. Since the force applied on the fluid is propor-
tional to the size of the layers, and the layers form near the
electrode surfaces, a simple way of affecting the size of each
layer is by controlling the geometry of the electrodes used. As
shown by Yazdani and Seyed-Yagoobi !®, under the assump-
tion of equal ionic mobilities, the force for flush electrodes
as shown in Figure 1 will always be directed toward the elec-
trode with the larger wetted surface area. In this figure, a sam-
ple neutral electrolyte is shown dissociating into negative and
positive ions, which drift toward the heterocharge layers over

the positively charged high voltage electrodes and the ground
electrodes, respectively. The electric force and the subsequent
flow and pressure generations can be controlled by varying the
potential applied to the electrodes.

As a promising fluid flow control technique, EHD con-
duction pumping has been rigorously investigated by vari-
ous researchers over the past few decades. Atten and Seyed-
Yagoobi ! have formulated the initial theoretical models de-
scribing the phenomenon and its characteristic parameters,
and have compared experimental results with approximate
theoretical estimates for predicting pressure generation capa-
bilities. Dimensional numerical calculations of EHD conduc-
tion in a channel were performed by Jeong, Seyed-Yagoobi,
and Atten!®, for a hollow tube high voltage electrode and
ring ground electrode configuration, which provided a pre-
diction of the force distribution and pressure generation ca-
pabilities of EHD conduction pumping for certain electrode
geometries. Additional fundamental nondimensional numer-
ical studies performed by Yazdani and Seyed-Yagoobi2%-2!
have shown the profiles of the heterocharge layers over flush
electrodes in thin film flows driven by EHD conduction, the
heat transfer enhancement potential of the EHD conduction
pumping technology, and the effect of different charge mo-
bility ratios on the characteristic parameters and performance
of the EHD conduction mechanism. Mahmoudi, Adamiak,
and Castle?”> were able to predict pressure generation of a
macro-scale EHD conduction pump using a similar nondi-
mensional simulation model. Experimental studies by Jeong
and Seyed-Yagoobi’ have shown the effect of electrode ge-
ometry on pressure generation in more detail, with numeri-
cal models from Feng and Seyed-Yagoobi >* showing the pro-
files of the heterocharge layers in perforated electrode geome-
tries. Experimental studies by Mahmoudi ef al. >* and Ghar-
raei et al. > have also shown the effect of different working
fluids on pressure generations, and experimental studies by
Abe et al. > showed the effect of the surface characteristics of
the electrodes on the pressure generation performance of an
EHD conduction pump. It should be noted that the traditional
efficiency of EHD conduction pumps in terms of flow genera-
tion (defined as the flow power generated divided by the input
electric power) is very small since the transmission of elec-
trical energy into pressure is not direct, but passes through
the chemical reaction. In most cases, the traditional efficien-
cies recorded for EHD conduction pumps have been less than
5%, often even less than 1%'4. However, when considering
the total power consumption of these devices, which is on the
order of single watts or less, this traditional formulation of
efficiency becomes less relevant. When used in heat trans-
fer applications, it is better to consider the efficiency of EHD
conduction pumps in terms of heat transfer enhancement ver-
sus their input electric power. Past experiments have shown
that a single watt of input power can generate two or three
order of magnitudes enhancements in the resultant heat trans-
port capacity'"?’. Therefore, EHD conduction pumping effi-
ciency in heat transport systems is defined as the ratio of the
maximum additional heat removed from the system due to the
presence of the EHD conduction pump and the input electric
power to the pump.
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However, the effect of the operating regime on the effi-
ciency of EHD conduction pumps has not been investigated.
There are two regimes: ohmic and saturation. In the for-
mer case the ions have time to recombine inside the vol-
ume, and an electroneutral bulk is generated. In the latter
case the ions reach the electrodes before they have time to
recombine. Typically these regimes are characterized for the
non-dimensional conduction number, usually named Cj in the
literature!. In this paper we analyze in detail the dependence
of the generated pressure on Cy. The application of an ex-
ternal electric field enhances the dissociation of electrolytes,
this is the Onsager-Wien effect!3?8. We introduce a new non-
dimensional number, that we will call 3, that, along with Cp,
allows the characterization of the regime where a given EHD
conduction pump will operate.

Another point with interesting technology applications is
EHD conduction pumping in systems of micro scale, down
to some tens of um. Typically, in these geometries there is
a non-conducting substrate. As it is the case for all surfaces
immersed in a liquid, an EDL develops near this substrate. In
macro-sized systems this EDL can be safely ignored. How-
ever, if we want to work with smaller conduit sizes, its influ-
ence could be important. In this work, we build a model of
EHD conduction pumping that includes boundary conditions
suited to pumps of all sizes, down to tens of microns. As a
result of this analysis we introduce a new dimensionless pa-
rameter: the ratio between the natural electric field inside the
double layer and the applied field between the electrodes. This
parameter can also be used to describe the transition from an
EHD conduction pumping to electroosmosis, where the pres-
sure head is generated by the electric force on the EDL.

The reminder of this paper is organized as follows. In Sec-
tion II, we present the physical model. We describe the physi-
cal mechanisms involved and write down the non-dimensional
equations and associated boundary conditions. We also define
the non-dimensional parameters relevant for the problem. The
model includes the enhancement of the dissociation process
induced by the applied electric field, the Onsager-Wien effect.
In Section III, we discuss the two limit regimes in EHD con-
duction pumping: the ohmic regime and the saturation regime.
We discuss in particular the generated pressure in each regime.
Finally, in Section IV, we summarize the main conclusions of
this work.

Il. PHYSICAL MODEL

In this section we present the physical model for EHD con-
duction pumps. The relevant magnitudes are the ionic species
concentrations, the electric potential, the electric field and the
velocity and pressure fields. In the usual experimental condi-
tions, the Joule heating can be neglected, as the electric cur-
rents are very small. As there are no heat sources or sinks in
the experiments, the liquid can be assumed to be isothermal.
We present the dimensional and non-dimensional equations of
the model, the boundary conditions and the non-dimensional
parameters. In general, we will consider boundary condi-
tions for three types of surfaces: positive electrodes, negative

electrodes and non-metallic substrates. We give the bound-
ary conditions associated to each one of these types. The ap-
plication of the model to micro-sized pumps requires an spe-
cial care with the formulation of the electric boundary condi-
tions on non-metallic substrates. The main novelty introduced
here compared to previous works is the definition of two new
dimensionless parameters related to the Onsager-Wien effect
and the description of the EDL on non-metallic substrates, re-
spectively.

A. Dissociation - recombination

The only source of ions in the liquid are the dissociation-
recombination processes of the electrolytes present in the vol-
ume. The applied electric fields in EHD conduction pumping
are never high enough to produce charge injection from the
electrodes. We consider a simple model consisting of a re-
versible process of dissociation and recombination of a neutral
species into univalent positive and negative ions'. In equilib-
rium we have

kpco = kRn?Sn'fl = kg (I’leq)z s @)

where ¢ is the concentration of the neutral species, n! and
n°Y are the concentration of the positive and negative species
in equilibrium (electroneutrality implies ni! = n® = Neq)-
Their dimensions are m—>. The dielectric liquids used in EHD
conduction pumping are non-polar or weakly polar. Then, the
electrolyte is weakly dissociated and the concentration of the
neutral species, cg, can be considered constant. The magni-
tudes kp and kg are the rates of dissociation and recombina-
tion, respectively. When an external electric field, E, is ap-
plied, the rate of dissociation increases, this is the electric field
enhanced dissociation effect, or Onsager-Wien effect?8

kp(|E|) = kpF (w([E[)), 5)

where F is the Onsager function and w(|E|) is the enhanced
dissociation rate coefficient.

L(4w([E]))
Fow(E]) =S ))

Ly [ QE \"
wEp o UED ‘( ) |

Lo\ l6mek3T?

(6)
Here, I; (x) is the modified Bessel function of the first kind and
order 1. Lp and Ly are the Bjerrum and Onsager distances,
respectively?’

o= —D - [ (7)
8nekpT 4re|E|

Lp is the distance where the electrostatic energy between two
ions becomes of the same order as the thermal energy. Two
ions can be considered to be bounded in an ionic pair when
their separation is smaller than Lp, as in that situation the
thermal motion is not able to overcome their electrical attrac-
tion. The length L is the distance from a point charge where
the magnitude of the external electric field E becomes of the
same order as the electric field produced by the charge in the
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liquid. In the expressions above, € = €€y is the absolute per-
mittivity (€ and & being the dielectric constant of the liquid
and the permittivity of the vacuum, respectively). In order
for the external electric field to affect the equilibrium of an
associated ionic pair it has to be Lp < Lp, that is, the exter-
nal electric field has to be strong enough to affect the elec-
tric attraction between the ions in an associated pair. When
|[E| = 0 we have w(0) = 0 and F(0) = 1, and no enhance-
ment occurs. When there is enhancement, we will assume
the dissociation-recombination equilibrium is not appreciably
modified®®. Then, the equilibrium concentration of the ionic
species is

Neq = nog\/F(w(|E])), )

where ngq is the concentration of ionic species with no exter-
nal electric field applied. The electrical conductivity is pro-
portional to the concentration of ionic species at equilibrium.
For a symmetric electrolyte it is

0 = 2egKneq, 9

K being the ionic mobility. Then, the conductivity depends on
the electric field as

o = oo/ F(w(E[)), (10)

where oy stands for the electrical conductivity without field
enhanced dissociation. The dielectric liquids used in EHD
conduction pumping have conductivities in the range 107! to
10-7S/m.

B. Electric equations and boundary conditions

The electrical magnitudes are described by the Poisson
equation for the electric potential ®, and the electrostatic field
definition. In the volume of the liquid we have

V. (eVD) = —ep(ny —n_), E=-Vo. (11
Here, n; and n_ are the volume concentration of positive and
negative species, respectively.

With regard to the boundary conditions, the metallic elec-
trodes will have a fixed electric potential. Special considera-
tion must be given to the electric boundary conditions on the
non-metallic substrates. Whenever an electrolyte is in contact
with a surface, with no external electric field applied, an elec-
trical double layer (EDL) develops!>!'6. The simplest EDL
structure comprises one layer of ions rigidly adhered on the
surface of the solid, the Stern layer, and a diffuse layer near
the surface, the Debye layer. The length scale of this Debye
layer is given by eq. (2). For a working temperature of 300
K and a typical value of the dielectric constant & = 5, we
get values of the Debye length varying between 1 and 30 um
for the liquids typically used in EHD conduction pumping.
Hence, in macro and meso-sized pumps the effect of the EDL
can be safely ignored. However, this is not the case if we con-
sider systems with typical dimensions of tens of microns. The

electric field created by the imposed electric potential is going
to perturb the natural charge distribution in the EDL. And the
EDL next to the substrate can affect the performance of the
EHD conduction pump.

The ions in the Stern layer can be assumed to remain stuck
on the interface, unless very high electric fields are applied
(10°V/m)". Then, the right boundary condition on the sur-
face of the substrate is a uniform surface charge density, Oy,
representing the Stern layer, assumed to be constant. The
magnitude of this surface charge can be estimated from mea-
surements of the zeta potential, {, when the EDL is in its non
disturbed state, that is, with no normal external electric field
applied'®. The ¢ potential is the electrical potential difference
between the surface and the electroneutral bulk of the liquid.
Using the Debye-Hiickel approximation, the electric potential
of the non disturbed EDL can be approximated as

Oppy =~ (e M, (12)

where z is the distance to the interface. The volumetric charge
density in the Debye layer is

PEDL = -V (qu)EDL) = —%e_Z/AD. (13)
D

Now, we can estimate the total charge in the Debye layer

QepL :S/pEDL(z)dz: —%. (14)
0

Here S is the area of the interface. As the liquid is electroneu-
tral, the total charge in the Stern layer is —Qgpy, so the surface
charge is

eg
=
This expression corresponds to the surface charge on an infi-
nite plane that would produce an electric field §/Ap, that is,
the order of magnitude of the electric field across the unper-
turbed Debye layer.

Let us stress that we use the value of the zeta potential only
as a way to estimate the value of the intrinsic surface charge
appearing on the interface between a liquid and a solid sub-
strate. It is an experimental parameter characteristic of a given
substrate-liquid pair. The value of the electric potential on the
substrate during an EHD conduction experiment is not { in
general. This would mean that the electric field would be nor-
mal to the interface, and this is not the case. Also, we do not
use the Debye-Hiickel approximation in our model for EHD
conduction pumping. It is used here to estimate the value of
os from the value of { obtained from experiments where the
Debye-Hiickel approximation is valid.

Then, the electric boundary conditions for each type of sur-
face are

s 15)

positive electrode : & = Py,
negative electrode : @ =0, (16)

substrate : n-V® = oy/e.
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Here, n is the unit vector normal to the surface of the substrate
pointing from the liquid towards the substrate.

The volume of the substrate has to be included in the model
only if the polarization surface charge on the substrate is rel-
evant. This polarization charge is produced by the different
values of the dielectric constant in the liquid and the substrate.
Its magnitude is related to the jump of the normal components
of the electric field at both sides of the interface. If the exter-
nal applied field is mainly parallel to the substrates, the effect
of this polarization surface charge is already taken into ac-
count in the zeta potential. If this is not the case, the substrate
volume must be included in the computational domain.

C. Transport equations and boundary conditions

As we have discussed in Section IT A, in the liquids used
in EHD conduction pumping the concentration of the neu-
tral species, cg, can be considered constant. The conservation
equations for the concentration of the positive and negative
species, n4 and n_, are

on

T;+V-Fi:kl)(|E|)co—kRn+n,. (17)
The first therm on the right hand side corresponds to dissoci-
ation, while the second term represents recombination. The
fluxes densities F are

Fiy=+n K E+niu—DiVny, (18)

The first term represents the electric drift, the second one the
advection by the fluid and the third one the diffusion. In this
paper we will assume that the two ionic species have the same
values for the ionic mobility and diffusion coefficients, thus
K, =K =K and D =D_ = D. We will take for kg the
upper bound determined by Langevin, kg = 20K /€3!. With
all these assumptions, and using (6), the transport equations
read

ani

26‘0[((7’12 )2 nin_ (19)
= (F‘W(E') - (n+2q>2> |

We discuss now carefully the role of diffusion. In the elec-
troneutral bulk and inside the heterocharge layers diffusion is
negligible. In the bulk the ratio of the diffusive current and the
electric drift is

D|Vni\ N D/d - kBT/e() o (I)T

~ = = . 20
niK|E\ KE() Egd (I)() ( )

We have used the Einstein relation here, D = KkgT /ey. The
thermal potential is @7 = kBT /eg ~ 25mV at room temper-
ature. The applied potential is always much higher than ®7,
even for micro-sized systems. For example, for d = 10um
and Ep = 10° V/m it is &y = 10V. This is the reason why
diffusion is usually neglected in EHD bulk flows2.

Inside the heterocharge layer the length scale is given by
the heterocharge thickness, Ay, given by (3). Then the ratio is

DIVne| D/t _ ksl _ o 103 61077 < 1.
n:K|E| = KEy  eoKeE}

2D
We have taken op = 107! —1077S/m, K ~ 10~8m?/V s,
& ~ 5, T ~ 300K, Eg = 10°V/m. These are typical values
in EHD conduction pumping experiments. Hence, next to the
metallic electrodes, inside the heterocharge layers, we can ne-
glect diffusion.

However, the situation is different on non-metallic sub-
strates. The applied electric field generated by the electrodes
is typically parallel to the substrates. Then the EDL naturally
present does not disappear completely, as it is the case near
metallic electrodes. In macro-systems this EDL can be safely
ignored!. However, we want to develop a model that can be
applied to EHD pumps of all sizes. Then we have to keep the
charge diffusion in the model, in order to describe the distri-
bution of electric species next to the non-metallic substrates.

We discuss now the boundary conditions for the ionic
species. On the positive metallic electrode, any positive ion
created by dissociation near the electrode is pushed away by
the Coulomb force. Therefore, we have n,. = (. As we retain
the diffusive term, we need a boundary condition for the flux
of the negative species on the positive electrode. The elec-
tric current through the positive electrode is sustained by the
flux of negative species given by the electric drift term, dif-
fusion being negligible as we have discussed above. Hence,
we impose as boundary condition a normal zero gradient of
the species concentration. This boundary condition implies
that there is no accumulation of species next to the electrode.
Once the ions get neutralized they move with the flow and
reenter the dissociation-recombination process. This discus-
sion is valid for the negative metallic electrode with the polar-
ities reversed.

As for the non-metallic substrate, there is no transfer of
charge between the ionic species and the substrate. Then, the
flux of ionic species must be null on the substrate. Thus, the
general boundary conditions for each of the typical physical
boundaries are

positive electrode : ny =0, n-Vn_ =0

7

negative electrode : n_ =0, n-Vn, =0, (22)

substrate : FL-n=0.

D. Hydrodynamic equations and boundary conditions

The hydrodynamic equation are the momentum equation
and the continuity equation

Pm (@ +u.Vu) = —VP+I.,LV2U+FE,
ot (23)
V-u = 0.

Here, u is the fluid velocity, P is the pressure, py, is the fluid
density and u is the dynamic viscosity. The electric force Fg
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has three components: the Coulomb force, the dielectric force
and the electrostriction force%-33

1 1 e

Fr =gE— 5EZVe +V <2pm (apm> TE2> . (24)
As we are assuming the liquid to be isothermal, the permittiv-
ity is uniform and the dielectric force does not appear. The
electrostriccion force, being the gradient of a scalar mag-
nitude, can be included in the pressure. Hence, only the
Coulomb force has to be considered. The expression in terms
of the species densities is:

Fg =q¢E =¢o(ny —n_)E. (25)

The hydrodynamic boundary conditions are no-slip for the
three types of physical surfaces.

E. Dimensionless governing equations, boundary conditions
and parameters

In this section, the dimensionless physical magnitudes are
expressed with an asterisk. We choose these scales for each
physical magnitude

xy~d, ne~ng, E~Ey o ®~Ed o0
u~KEy, t~d/KEy, P~ p,K’E}.
Here, d is a typical length characterising the size of the sys-
tem. This model is intended to be applied to EHD pumps
sized from centimetres to tens of micrometers. We have cho-
sen the order of magnitude of the imposed field, Ey as the
relevant electrical magnitude, and we derive the scale for the
applied electric potential from it. The reason is that, in the ex-
periments, we will be working at the maximum electric field
without charge injection from the electrodes, in order to get a
greater electric force. So it is Ey who is going to characterize
the regime. In EHD conduction pumps Ej if of the order of
several MV/m. The time scale is the transit ionic time.

With these scales the non-dimensional equations are

on’y
ar*

+ V- (ni(u* £E%)) - aVin =
=2Co(F(w(|E*|) —n’n®), (27)

V20" = —Co(n} —n*), (28)
E* = -V, (29)
a *
Y v Ve = VP (30)
ot
1 2. % 2 * * *
+@V u* +M-Cy(n}, —n* )E*,
(31)
V.u* =0. (32)

@)}

The non-dimensional parameters in these equations are

0 /
o eoneqd _ kBT E __ meEOd _ S/pm
Co= eky &= eoEod’ Re” = u , M= K -
(33)

The number Cy is the conduction number. Using (9) it can be
written as

_ God
"~ 2¢KEy

0 (34)
This number is a key parameter to differentiate the two limit
regimes in EHD conduction: ohmic and saturation. We dis-
cuss thoroughly these regimes in the next section. The number
« is the diffusion number. It can be understood as the ratio of
the thermal electric field generated by the thermal agitation,
Er =kgT /eod, and Ey. As we have discussed in Section II C,
diffusion is always negligible in the electroneutral bulk and
inside the heterocharge layers. However, we keep diffusion to
be able to apply the model to micro-sized pumps where the
effect of the natural surface charge on non-metallic substrates
can be relevant. The number Reg, the electric Reynolds num-
ber, is a Reynolds number built with the ionic velocity. Typ-
ical values in EHD conduction pumps range from 5000 for
centimeter sized pumps to 5 for sizes of the order of 10 um.
Let us stress that this is not the hydrodynamic Reynolds num-
ber. The electric Reynolds number plays the role of a non-
dimensional applied electric field. The mobility number M is
the ratio of the so-called hydrodynamic mobility and the ionic
mobility**. It only depends on the liquid properties. In the ex-
periments, the value of M is typically lower than 10, although
for very viscous liquids can be of order of 1000.

The Onsager function with the non dimensional electric
field can be written as

1 (4W)

F(w)= o w(|E*]) = 0'? |E*|1/2a (35)

where the Onsager non-dimensional number O is

eSE()

=00 36
167ek3T? .

When O > 1 the enhanced dissociation by the electric field is
relevant. Therefore, the typical value of the applied electric
field where this happens is

e

O=1=Ey= ~9MV/m. (37)
This value has been computed with & = 5 and room temper-
ature. In the experiments the value of this number is in the
range O € [0.1,2].

However, for a given pump the value of O changes with
the applied voltage. It would preferable to define a non-
dimensional number that characterizes the behavior of a given
pump. The relevant non-dimensional number related to Ey
here is the conduction number, Cy. We then define a new non-

dimensional number as
1/2
3
oopd
€090 ) . (38)

32me’Kk3T?

0:/32/00=>[3=<



AlP

Publishing

EHD conduction pumping of dielectric liquids

This number depends only on operational values of the EHD
pump. In this way, the Onsager function can be computed as
- I 1 (4W)
2w

F(w) w(E) = pCy BT (39)
We will see in Section III that B can be used to identify
the regime the operating regime for a given EHD conduction
pump. In experiments, 8 is small for micro-sized pumps and
around 30 for pumps in the centimeter range.

The non-dimensional boundary conditions on each bound-
ary type are

pos. electrode : n} =0, n-Vn* =0,
=1, u =0,
neg. electrode : n-Vn} =0, n* =0,
d* =0 ut = 0,
substrate : n- (+niE*—aVni) =0,
n-Vo* = A u*=0.

(40)
The parameter A is a new dimensional number defined as

4

" Eohp

(41)

The dimensionless surface charge density A describes the ef-
fect of the Stern surface charge. It can be written as A =
Es/Ey, where Es = {/Ap is the order of magnitude of the
electric field created by the Stern layer. This parameter has
an interesting physical interpretation for micro-sized pumps.
When A < 1 itis Ey < Ej and the external field dominates
the charge distribution near the substrate. This is the regime
where EHD conduction pumps work. When A >> 1 the electric
field generated in the EDL dominates. This is the situation for
electroosmosis pumps. Then, A characterizes the transition
from electoosmodis pumping to EHD conduction pumping.

Equations (27)-(32) along with definition (35) and bound-
ary conditions (40) define the mathematical model for EHD
conduction pumping. These equations can only be solved nu-
merically, even for the simplest configurations.

F. Comparison with experimental data

In order to validate the model, we compare the outcome of
our simulations with the results from experiments described
in Pearson and Seyed-Yagoobi '°. In that work, the authors
use as liquid the refrigerant R-123. In the provided specifi-
cations, the values of the physical magnitudes are & = 4.9,
U =43x10"*Pa-s, p, = 1.47 x 10°kg/m>. We estimate
the ionic mobility from the Walden’s rule®, and it is K ~
5x 1078m?/V-s. The conductivity can vary in the range
1077 —1078S/m. All the simulations presented in this section
have been made with 6y = 10~7 S /m and the other properties
values provided above. The typical size of the micro-pump
described in the paper is d = 50 um. The temperature for the

simulations is 7 = 293 K. These computations do not pretend
to obtain accurately the experimental values of electric cur-
rent and generated pressure, as there are physical properties
not well known, notably the ionic mobilities of the species.
Our aim is to obtain the correct orders of magnitude and
overall trends of the physical quantities. The numerical sim-
ulations have been performed with COMSOL Multiphysics
uses the finite element method. The Navier-Stokes equations
are solved with streamline and crosswind stabilization3%37.
The transport equations are solved using the Transport of Di-
luted Species module with the scheme from Gomes Dutra Do
Carmo and Galedo3®. The computations were performed on
progressive refined meshes until the maximum variation in the
results were smaller than 5%.

Figure 2 depicts the geometric configuration used in the
computation. The configuration is two dimensional. It has
been constructed with the same relative dimensions as the ex-
perimental pump described in Pearson and Seyed-Yagoobi '°.
The location of the metallic electrodes and the substrate is in-
dicated. We impose periodic boundary conditions at the left
and right borders and symmetry boundary condition at the top
border. The color plot corresponds to the non-dimensional
charge density computed as g, = ny —n_. The heterocharge
layers next to each electrode are clearly visible. The stream-
lines of the fluid velocity are also plotted. The computation
was done with Eg = 12MV /m and zeta potential { = 25mV.

Figure 3 plots the results from numerical simulations along
with experimental data. The first plot shows the values of the
electric current. We see that the numerical simulation gives
the right order of magnitude of the measured current. The
second plot shows the maximum generated pressure measured
when there is no net flow in the circuit. We see that the fit is
acceptable. To obtain the values of AP, in the numerical
simulation, we apply an adverse pressure gradient Ap at the
right border, increasing the value of Ap until the net flow is
zero. In order to apply this pressure drop COMSOL fix the
pressure to be zero at a point on the left border of the domain,
while imposing at the right border a normal stress correspond-
ing to the given value of the pressure drop. An alternative
way of achieving this is to impose a uniform force on the do-
main, along the X direction, of absolute value Ap/L,, L, be-
ing the horizontal length of the domain. We have performed
some computations using these technique to check that we get
the same results with both methods. Once the value of AP,
has been computed for a pair of electrodes, we multiply this

Substrate Ground HY

FIG. 2. Geometric configuration for the numerical simulations of
Section IIF. The color plot shows the non-dimensional net electric
charge. The streamlines of the flow are also plotted. The geometry
is two dimensional.
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FIG. 3. Comparison of experimental values from the micro-pump in
Pearson and Seyed-Yagoobi 10 with computed ones. The first plot
shows the electric current and the second plot shows the maximum
generated pressure without net flow.

number by 10, accounting for the 10 non-interacting pairs of
electrodes in the experiment. In this way, we reproduce the
pressure drop produced by the hydraulic circuit outside the
pump. Figure 4 plots the evolution of the computed dimen-
sionless average velocity versus the adverse pressure gradi-
ent. The evolution is quasi linear, indicating that the structure
of the flow changes very little as the value of the adverse pres-
sure gradient is increased. In order to confirm this, Figure
5 shows the streamlines of the flow, along with the net non-
dimensional net electric charge, for different values of the ad-
verse pressure gradient Ap. The global structure of the flow
changes very little as the value of Ap is increased. Only the
plot at the bottom, for Ap = 0.10, shows a new roll at the left
of the domain. For this value the average net velocity is almost
zero. This correspond to the region of closer to horizontal axis
in the line in Figure 4, where the evolution diverges more from
linearity.

We have also included in Figure 4 one series of experimen-
tal data of the maximum generated pressure vs applied poten-
tial from the meso-pump in Pearson and Seyed-Yagoobi !°.
They do not provide these data for the micro-pump. Anyway,
we have included the data from their biggest pump to show
that the trend is similar to what we obtain with our numerical
simulations for the micro-pump. The slope is different, due to
the different sizes of the pumps.

04 :
035 DX
03
025
0.2
0.15
0.1
0.05

Micro ==
»< Pearson Meso Ej = 10 MV/m X

Uave

FIG. 4. Evolution of the non-dimensional average velocity with the
adverse pressure gradient for the computed values for the micro-
pump compared with data from the meso-pump from Pearson and
Seyed-Yagoobi !0, The behavior is similar, although the slope is dif-
ferent.

FIG. 5. Streamlines of the flow and net non-dimensional charge for
several values of the adverse pressure gradient imposed. The bottom
case corresponds to an average flow velocity almost null.

Ill. CONDUCTION REGIMES

Here we analyze in detail the characteristics of the
EHD conduction mechanisms in the two limiting regimes:
ohmic and saturation. These regimes have been discussed
elsewhere-1430 We show that the new parameter 3, along
with the conduction number Cy, are the relevant parameters to
characterize the regime that EHD conduction pumps operate
in, including the enhanced dissociation by the electric field.
Here, we are particularly interested in the dependence of the
generated pressure with Cy and . This has not been discussed
in the aforementioned works. In this section, all the equations
are dimensionless. We drop the asterisks for the sake of clar-
ity.

Let’s consider a simple 2D planar geometry with two par-
allel electrodes a distance d apart as depicted on Figure 6. An
electric voltage Vj is applied between the electrodes, so that
the typical electric field is Ey = Vy/d. There is no motion of
the liquid, as the electrodes are symmetric and the ionic mo-
bilities of the species are assumed to be identical. We can also
neglect diffusion, as there is no substrate. We look for sta-
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tionary solutions. Also, the physical magnitudes depend only
on the coordinate x, hence, the mathematical problem is 1D.
Then, equations (27)-(32) reduce to

d(niE)

LS oy (Fw(ED) ~nen), @)
d’®
w2 —Co (ny —n-), (43)
do
E = I (44)

The Onsager function F(w) is defined in (35). The boundary
conditions are

ny(0)=0, n_(1)=0, ®0)=1, d(1)=0. (45

The numerical results presented in this section have been
computed numerically using a 1D model of the problem de-
scribed by equations (42)-(44) and boundary conditions (45).
The computations have been made with COMSOL Multi-
physics.

A. Regime characterization

The number Cy, from the expression (34), can be written
as the ratio of two typical times: the ionic transit time Tx =
d/KEy, which is the typical time needed by the ions to travel
from one electrode to the other, and the ohmic time 72 = £/ 0y
which is the typical time the ions take to recombine, in ab-
sence of the Onsager-Wien effect. Hence Cy = 7x/279. The
distance an ion created by dissociation near one of the elec-
trodes typically travels before recombining is

1
Ar ~ KEyt2 = Tcod' (46)

When Cy > 1 we have ‘L'g < Tx and Ay < d, this is the ohmic
regime. In this case, the heterocharge layers are very thin and
the bulk is electroneutral. The first plot in Figure 7 shows
the distribution of positive and negative species along with
the electric field. These profiles have been computed with
Co =10 and B = 0, that is, without Onsager-Wien effect. The
heterocharge layers and the electroneutral bulk are well de-
limited. The color plot in Figure 6 represents the distribution
of net electric charge for the same configuration, computed as
(ny —n_).

When Cy < 1, it is 7x < 72 and Ay > d. This means that
the heterocharge layers overlap, and there is no electroneu-
tral bulk. The ions typically leave the liquid before they have
time to recombine. This is the saturation regime. The second
plot in figure 7 plots the distribution of positive and negative
species along with the electric field for Cyp = 0.1 and 8 = 0.
We can see that the concentrations of species are very low, as
the ions leave the domain before they have time to recombine.
As a consequence the value of the net electric charge is small,
and the non-dimensional electric field is very close to 1 in the
whole domain.

9
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FIG. 6. Dimensionless configuration for the 2D parallel plates case,
along with the net electric charge distribution in the ohmic regime,
with no flow motion. The heterocharge layers at each electrode are
clearly visible. The computation has been made for Cy = 10, with no
Onsager-Wien effect.

In fact, when electric field enhanced dissociation is consid-
ered, we have to replace the ohmic time above by 7, = €/0 =
70 //F (w), where we have used (10). That is, the conduction

regimes are better described by the combination3®

Cg ZC()\/F(W())7

Here, wq is given by (35) when the magnitude of the non-
dimensional electric field E is 1. We will use Fy = F(wy). If
CE > 1 we are in the ohmic regime. If C5 < 1 we are in the
saturation regime.

wo=BC, P =V0. (47

B. Ohmic regime

The ohmic regime, where Cg > 1, is characterized by the
existence of two heterocharge layers next to the electrodes and
an electroneutral bulk. As it is discussed in Atten and Seyed-
Yagoobi !, we can use a boundary layer approximation. The
analysis made by these authors is an extension to liquids of
the boundary layer analysis applied in gas phase by Thom-
son and Thomson3°. We will work only with the left half of
the domain, as the distribution of species and electric field are
symmetric. Then, we have an heterocharge layer for 0 <x < 4
and an electroneutral bulk for A < x < 1/2. Here, A = Ay /d.
The heterocharge layers appear because ions produced near
the electrodes of opposite polarity typically travel a distance
A before they recombine. The ions of the opposite polarity
to the electrode have few counter-ions around them to recom-
bine. Then, inside the heterocharge layers recombination can
be neglected. Mathematically, the recombination terms nn_
in the equations (42) are negligible compared to the dissocia-
tion term because of the boundary conditions p =0 and n =0
at the electrodes. The Onsager function is not constant inside
the heterocharge layer, but we simplify the problem assuming
that F(w(|E|)) ~ F(w(JE(x = 0)|)) = F,, that is, it takes the
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FIG. 7. Non-dimensional values of the concentration of positive and
negative species and the electric field, without Onsager-Wien effect.
For Cp = 10 (top), in the ohmic regime, the heterocharge layers and
the electroneutral bulk are clearly delimited. For Cy = 0.1 (bottom),
in the saturation regime, there is no electroneutral bulk. Also, the
non-dimensional electric field in the saturation regime is very close
to 1.

value at the electrode®’. We also neglect diffusion, as we are
inside the heterocharge layer (see Section I C). With these as-
sumptions, equations (42)-(44) inside the heterocharge layer,
corresponding to the positive electrode, 0 < x < A, reduce to

LI0E) e (48)
(49)

dE
T Co(ny —n_). (50)

with boundary conditions

n(0)=0, n-(A)=+/F, EA)=E,. ()

Here, E, is the electric field in the bulk and F, = F(E},). The
second equation expresses that, in the electroneutral bulk, the
dissociation-ionization process is in equilibrium. Then the
values of the concentrations of ionic species are the equilib-
rium ones, given by (8). These equations are easily solved to

10

E,°F,/F,

FIG. 8. Factor EI%F;, /F. vs. Cy for different values of 3.

O0<x<A:

F
E(x) = \/ 4C3F,x* — 4Co/FoEpx + <1 + Fb> EZ,
e

e (x) = 2CoF,x
+ - E(x) )
(52)
ZX/EEb - 2C0Fex
n_(x)=
E(x)
A<x<1/2:
E(x) = Eb,
ny(x) = /Fp.
The width of the heterocharge layer is
E, VF
A= LoV (53)

T 20 F,

In this symmetric configuration there is no net electric force
on the liquid. However, we can explore the dependence of
the generated pressure computing the electric force on the left
half of the fluid domain, delimited by the dotted rectangle in
Figure 6. We have

A

1/2
E} F
AP, = /(n+—n_)de:/(n+—n_)de:—ﬁéy.
0 0
(54

We have used (52) to compute the integral. The negative sign
implies that the force is directed towards the left electrode.
From now on, AP, will mean the absolute value of the gener-
ated pressure.

In experimental conditions, 3 has a wide range of values.
For pumps of centimeter size it can be f ~ 30. Figure 8
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plots the evolution of the factor EIEF;, /F. vs. Cy. These plots
have been obtained integrating numerically equations (42)-
(44) along with boundary conditions (45). When Cy > 1 this
factor becomes independent of Cy and equal to 1. Therefore,
in this limit the dimensionless generated pressure scales as

1

AP, ~ —.
“T 20,

(55)
This asymptotic law will be more accurate for small and mod-
erate values of B. Actually, it is exact if there is no enhanced
dissociation. However, in the experiments, high values of
implies high values of Cy. For example, if § = 30, typically
Cp ranges from 700 to 12000. From Figure 8 it can be seen
that for these values of Cy the factor depends only weakly on
Co.
In this limit the dimensionless current density is

J=n_(0)E(0) ~2. (56)

The reference scale for the current density is Jo = 6Eg /2.
The dependence of the corresponding dimensional magni-
tudes on the applied electric field is

APIM o B} o< VE, AJIM oc B o< V. (57)

C. Saturation regime

In this regime, we have Cg < 1. From equation (46), the
heterocharge layers span all the volume between electrodes,
overlapping, as it can be seen in the second plot in Figure 7.
Hence, there is no electroneutral bulk. Also, the ions typically
leave the liquid before they have time to recombine. Then, we
can again neglect recombination, but now in the entire vol-
ume. For Cg to be very small, it is necessary that Cp < 1,
because the value of the Onsager function is not small in this
limit. Then, the source term in the Poisson equation (28) is
very small and the non-dimensional electric field is very close
to 1, the value corresponding to no net charge in the volume.
The electric field can be expanded in powers of the small pa-
rameter Co>0

1
E(x) ~ 1+2C¢F (xz—x+6>. (58)
For completeness, this expression is derived in Appendix A.

In the limit Cy < 1, equations (42)-(44) become

dni
+— =2CyFp. 59
o oFo (59)

with boundary conditions
n+(0) =0, n_(1)=0. (60)
Solving these equations we find
nt(x) = 2CoFox, n_(x) =2CFK(1—x). (61)

These are linear functions on x spanning all the volume be-
tween electrodes.

11
From and (58) and (61), the generated pressure is
1/2 .
AP, = /(n+ —n_)Edx| ~ ECOFO. (62)
0

In the limit Cy < 1, the argument of the Onsager function, wy,
is large. The Bessel function can be substituted by the Hankel
asymptotic expansion*’. Thus, the value of Fj in this limit is

1 3/4 apc;\/?
F~—C) P> | 63
0 4 /72717ﬂ3/2 0 ( )

The generated pressure using this asymptotic expression is

—1/2
AP Cg/4e4ﬁco

e — 8\/ﬁﬁ3/2.

For the electric current density we have

(64)

J~n_(0)E(0) =2CyFp, (65)
and the asymptotic expression is

7/4 apcy'/?
a. (0 *PCo

o~ 72\/2?[53/2 .

If no Onsager-Wien effect is included, we get

(66)

1
AP; >~ —EC(), J ~ ZC(). (67)
In this case, the corresponding dimensional magnitudes,
APY™ and J4m are independent of Ej, that is, of the applied
potential.

D. Discussion on the conduction regimes

The first plot in Figure 9 shows the behavior of the com-
puted dimensional electric current, I o< J/Cy, with the dimen-
sional average electric field, Eg o< C; ! The values in these
plots have been obtained solving numerically equations (42)-
(44), along with boundary conditions (45). The line § =0 cor-
responds to the case where the Onsager-Wien effect has been
discarded. In this situation the regimes are fully characterized
by the value of Cy. The ohmic regime, Cy '« 1, corresponds
to low values of the electric field. Here, the electric current
is proportional to the electric field. In the saturation regime,
Cy S 1, the dimensional electric current reaches a saturation
value, independent of the applied electric field.

When the enhanced dissociation is considered, we have
B > 0. For small values of 3 the effect of the enhanced dis-
sociation is to increase the current in the saturation regime.
As B increases, the saturation regime disappears. The current
increases always with the electric field. For all values of 8
the current becomes proportional to the electric field for small
enough values of Ej. This behavior can be explained observ-
ing the second plot in Figure 9. There, we plot the value of
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FIG. 9. The first plot shows the behavior of the dimensional current
vs. the dimensional average electric field, for different values of .
The dashed lines correspond to the asymptotic expression (66). The
second plot shows the value of Cg vs. Cp. In both cases, B =0
corresponds to non enhanced dissociation. Although the magnitudes
represented in both axes are non-dimensional, they have been chosen
to be proportional to the dimensional current and the dimensional
electric field.

Cg = Co+/Fo as a function of Cy for different values of S3.
For high values of 3, it is always Cg > 2. Then, saturation
regime is never attained. This means that the structure of het-
erocharge layers and electroneutral bulk depicted in the first
plot of Figure 7 exists even for high values of the electric field,
that is, for Cy small. The enhanced dissociation is able to cre-
ate enough ions in the volume to compensate the ions leaving
the domain.

For small values of 8, when decreasing Cy (which means
increasing Ep) the system goes from the ohmic to the satura-
tion regime. The dashed lines in the second plot correspond to
the approximation given in the saturation regime by (66) for
each value of 8. The asymptotic expression for Fy in (63) is
valid up to a 5% of the real value when

BC,'? =07 > 2=y < p2/4. (68)

Then, as 3 increases, the maximum value of Cy for which the
asymptotic expression is accurate increases. Although, for the
sake of clarity, it is not showed in the plot, if the integral in
(62) is used to compute the generated pressure the match is

12

[AP|
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FIG. 10. The first plot shows the generated pressure vs. Cy for dif-
ferent values of §. The dashed lines correspond to the asymptotic
expression (66). The line B = 0 corresponds to non-enhanced dis-
sociation. The second plot shows the behavior of the dimensional
generated pressure vs. Ep. Although the magnitudes represented
in both axes are dimensionless, they have been chosen to be pro-
portional to the dimensional generated pressure and the dimensional
electric field.

excellent for all values of § while in the saturation regime.

The first plot in Figure 10 shows the absolute value of the
generated pressure as a function of Cy. For the case f =0
the generated pressure is proportional to Cy in the saturation
regime (Cp < 1) and to C; "in the ohmic regime (Cp > 1).
When the Onsager-Wien effect is included, and in the ohmic
regime, the generated pressure is proportional to Cy’ ! for small
and moderate values of 3. The reason is that in the approxi-
mate expression (54), the factor ElfFo /F. is very close to one
for all values of . For higher values of 3 we observe a de-
viation, although if the value of Cy is high enough the same
dependency is recovered. Similarly to what is observed in the
current, for B > 1 there is no saturation regime. The gener-
ated pressure keeps increasing when the applied field Ej is
increased. The second plot shows how the dimensional pres-
sure depends on the applied electric field for the same values
of B.

When f is small, a saturation regime is observed for small
values of Cy. Here, the approximated expression (67) is valid
only for very small values of 3, and for Cyp not much smaller
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than 1. The dashed lines correspond the asymptotic values
given by (64). As it was the case with the electric current,
the maximum value of Cy for this expression to be accurate
increases with 5. Again, although it is not included in the plot,
if the approximate value given by (62) is used to compute the
generated pressure the match is excellent, while we stay in the
saturation regime.

This analysis shows that the working regime of an EHD
conduction pump, including enhanced dissociation by the
electric field, can be characterized by two non-dimensional
parameters: 3 and Cy. For a given system, 3 only depends
on the physical properties of the liquid, the size of the system
and the temperature, not on the applied electric potential. For
B Z 1, the system remains always in the ohmic regime, and
the generated pressure is proportional to C;; ! for high enough
values of Ey. We can explain this in terms of the structure of
the heterocharge layers. The ohmic regime is characterised by
the existence of two heterocharge layers separated by a elec-
troneutral bulk. When the applied field increases (decreas-
ing Cy), the heterocharge layers tend to become thicker and
overlap. The ions have time to recombine before leaving the
liquid. However, the Onsager-Wien increases the number of
ions. For B > 1 the enhanced dissociation produces enough
ions to preserve the structure of non-overlapping heterocharge
layers with an electroneutral bulk. For small 8 (small systems
and/or very non-conducting liquids) the enhanced dissociation
cannot preserve this structure, the heterocharge layers overlap
and a saturation regime arises, although somewhat affected by
the enhanced dissociation.

It must be pointed out that, for a given system, with fixed
B, not all the values of Cy plotted in figure 10 can be reached
experimentally. In typical conditions, the applied electric field
cannot be greater than 15MV /m, approximately. For greater
values injection of electric charge at the electrodes occurs, and
the model has to be modified in order to account for charge
injection.

0'1...1 1 1 PR S ST S S T |

Ey'! (m/MV)

FIG. 11. Dimensionless maximum generated pressure vs. applied
electric field computed with fluid motion. The trend line for the
ohmic regime is included.
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E. Influence of the motion of the fluid

The discussions in the previous sections did not include the
fluid motion. Furthermore, real EHD conduction pumps have
a more complicated geometry. We have performed some sim-
ulations computing the whole flow to explore the applicability
of the regime discussion when the the motion of the fluid is
included and a more realistic geometry is considered. We have
used a computational domain similar to the one discussed in
Section IIF with d = 50 um. We have computed the maxi-
mum generated pressure for three liquids with electrical con-
ductivities 6 = 107%,1077,1078 S /m. The first value is quite
high, but it was chosen to get a high value of the parameter
B for this given value of d. The dynamic viscosity of the lig-
uid was 4 =2 x 1073Pa-s. We choose a high value of the
viscosity in order to assure a small value of the Reynolds
number, As we have discussed in Section IIF, in this way the
structure of the flow changes very little when an increasing
adverse pressure gradient is imposed. The ionic mobility was
computed from the Walden rule to be K =5 x 1077 m?/V -s.
The simulations were done with an applied electric field Ey
ranging from 1 to 15 MV/m. These values correspond to
the micro-pump experiment discussed in Pearson and Seyed-
Yagoobi 1. This figure has to be compared with the first plot
in Figure 10. We can see that the trends are similar. In particu-
lar, for high values of 8 in the ohmic regime we get AP¢ o< C;; !
with a good approximation. For § = 3.68 the system never
enters the saturation regime. For f = 1.16 there is a slight
saturation, but the Onsager-Wien effects quickly compensates
the charge depletion. The curve for § = 0.37 is quite similar
to the line for B = 0.3 in Figure 10. The pump enters the sat-
uration regime quickly, and only for higher values of the ap-
plied electric field the Onsager-Wien effect is able to change
the trend.

These simulations have been performed for a small pump,
where the velocity of the liquid is not very high. For larger
pumps the velocity of the liquid can overcome the electric drift
velocity of the ions and perturb significantly the heterocharge
layers. Anyway, in this case, both 8 and Cy are very high. The
pumps will always operate in an approximate ohmic regime
with a clearly define electroneutral region between each elec-
trode pair. In that case the dependence of the generate pres-
sure with respect to Cp predicted in Section III B should still
be valid.

IV. CONCLUSIONS

In this paper, we have examined EHD conduction pumping
in liquids with low conductivity. We have built a model of
EHD conduction pumping that can be applied to pumps of
all sizes, down to some tens of microns. The model assumes
a weakly dissociated symmetric electrolyte, with two species
with the same ionic mobility and diffusivity. The enhanced
electric field dissociation, the Onsager-Wien effect, is also in-
cluded. At the electrodes, the electrical boundary conditions
are given by the imposed voltage. On the non-conductive sur-
faces, the electrical boundary condition consists of a fixed sur-
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face charge, representing the Stern layer of the electrical dou-
ble layer. The value of this surface charge can be estimated
from experimental measurements of the § potential when the
external applied electric field has no normal component to the
substrate. The value of { is characteristic of a given combi-
nation substrate-liquid. The inclusion of this surface charge
in our model introduces a new non-dimensional number, A,
the ratio between the magnitudes of the natural electric field
in the electrical double layer and the external applied field.

There are two typical regimes in EHD conduction pump-
ing: the ohmic regime and the saturation regime. When elec-
tric enhanced dissociation is taken into account, the number
CE = Cy\/F (wp), determines which one dominates, Cy being

the conduction number, wo = BC,, 2 and F (wo) the Onsager
function for wy. These regimes have already been discussed
in previous works. However, here we have highlighted how
the generated pressure behaves in each regime. Two dimen-
sionless numbers, 8 and Cy, characterize this behavior. The
number 8 depends on liquid physical properties, the size of
the system and the temperature. The number Cj includes the
influence of the applied electric field. When 8 Z 1, the sys-
tem is always in the ohmic regime even for high values of
Ey (low values of Cp). In this case, the Onsager-Wien effect
is able to replenish the ions extracted from the liquid when
the applied electric field is very high. Therefore, there are al-
ways two heterocharge layers and an electroneutral bulk. In
this regime the non-dimensional generated pressure is propor-
tional to Cy ! for all values of B for a high enough value of
Ey. Then, the dimensional generated pressure is proportional
to Eg. For small values of 8, the Onsager-Wien effect is not
able to preserve the electroneutral bulk, and, when the applied
electric field is increased, the system enters into the saturation
regime. In that case, the dimensionless generated pressure is
approximately proportional to Cy. The dimensional pressure
would become independent of the applied electric field, but
the enhanced dissociation introduces a small deviation. For
intermediate values of f there is no saturation, although the
increasing of the generated pressure with the applied electric
field is slower than in the ohmic regime. Although the regime
analysis has been performed without fluid motion, we have
performed several computations to verify the predictions of
the analysis when the motion of the fluid is considered.
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Appendix A

We show here how to obtain the expression (58) for the
electric field in the saturation regime. We provide a simplified
version of the derivation described in Castellanos and Pon-
tiga®". In this regime it is Cy < 1. The ions leave the liquid
before they have time to recombine. Therefore, we can ne-
glect recombination in eqs. (42)-(44). Also, the electric field
must be close to 1, as the source term in the Poisson equation
is very small. Then, we can take F(w(E)) ~ Fy. With these
approximations these equations can be written

d E
(’;; ) 200, (A1)
d(n_E
(’:bc ) 2o, (A2)
dE
a :C() (n+—n_). (A3)

Subtracting (A2) from (A1) and introducing (A3) we get

dE?
—— =A+8CiFyx. A4
e +o8Cglox (A4)
Here, A is a constant. In order to get boundary conditions for
this equation we multiply (A3) by E. Then, using (60) we get

dE?

= | =-2Con_(0)E(0) = —2CyJ, (AS)

dx x=0

dEZ

| =26 (DE(1) =2Co]. (A6)
x=1

Here, J = n_(0)E(0) = ny(1)E(1) is the stationary current
density. From (A4), (A5) and (A6) we obtain
J=200F, A=-4CF,. (A7)

Introducing the value of A in (A4) and integrating we obtain
the electric field

E(x) = \/B +A4CEFy(x2 —x). (A8)

The constant B is obtained imposing that the non-dimensional
potential drop between the electrodes is 1. Expanding E(x) in
powers of Cp < 1 we get

1

_ 5. RG _
O/E(x)dx_f s (A9)

Solving for B up to order Cg itis
2. 2
B=1 +§F0C0. (A10)

Introducing this expression in (A8) and expanding again in
powers of Cyp < 1 we obtain (58).
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