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Abstract— This paper presents a binary search algorithm
to deal with binary variables in mixed integer optimization
problems. One example of this kind of problem is the optimal
operation of hydrogen storage and energy sale and purchase
into a microgrids context. In this work was studied a system
composed by a microgrid that has a connection with the
external electrical network and a charging station for electric
cars. The system modeling was carried out by the Energy
Hubs methodology. The proposed algorithm transforms the
MIQP (Mixed Integer Quadratic Program) problem into a QP
(Quadratic Program) that is easier to solve. In this way the
overall control task is carried out the electricity purchase and
sale to the power grid, maximizes the use of renewable energy
sources, manages the use of energy storages and supplies the
charge of the parked vehicles.

I. INTRODUCTION

A microgrid is defined as a hybrid system which includes
several sources and storage devices to fulfill the local loads
[3]. Microgrids can be composed by distributed generation,
renewable sources, storage devices, and local loads con-
nected to the external network. The use of storage systems
allows deciding the microgrid optimal operating point both in
islanded mode and connected to grid and makes possible to
manage the ideal time to exchange energy with the external
network. Specifically, the hydrogen storage together with
electric batteries and supercapacitors seems to be a suitable
solution for renewable generation [7].

In addition, V2G systems enable to set new business
models where new actors appear, such as load managers that
are responsible for the recharging infrastructure, providing
service to vehicles, buying or selling electrical energy. Mi-
crogrid managers have to provide the required demand to the
load, decide the optimal operating point and manage the sale
and purchase of energy with the external network.

In this work the case of study is composed by a microgrid
connected to a external network and a V2G system. The
microgrid manager and the load manager interact with each
other to use cars batteries as storage and to provide the
energy necessary to charge the cars batteries. On this scenery
a distributed control structure becomes a good option, for
sharing information about energy exchange to decide the
optimal operating point for all system. In the last years
many distributed model predictive control techniques were

1Paulo R. C. Mendes and Julio E. Normey-Rico are with
Department of Automation and Systems, Federal University of
Santa Catarina, Florianpolis, Brazil paulo.mendes@ufsc.br,
julio.normey@ufsc.br
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proposed on the literature [9]. In this work it will be used
the DMPC (Distributed Model Predictive Control) presented
in [12].

To model the system the concept of Energy hubs proposed
in [6] will be used. According to the different characteristics
of storages charge and discharge and the different prices
of energy sale and purchase, binary variables can appear
in the model characterizing a mixed integer optimization
problem, which is computationally complex. The standard
way to solve this kind of problem is to use a dedicated solver,
for example, the solver CPLEX [1].

There are on the literature other algorithms to deal with the
presence of the binary variables. In [15] and [2] the authors
use a technique called TIO-MPC (Time Instant Optimization
- MPC), where time instants are introduced as control inputs
in place of binary variables. The time instants when the
changes to the structures state should occur are optimized
for a selected number of changes, resulting in a real-valued
programming problem. In [14] and [13] a technique is pre-
sented that defines two new continuous manipulated variables
for each binary manipulated variable, which corresponds
to the duration of the activation/deactivation of the binary
variables on the prediction horizon. In this way the original
problem was turned into a non-linear optimization with
continuous variables that can be solved using sequential
quadratic programming (SQP).

The objective of this paper is to present an algorithm to
deal with the binary variables in distributed mixed integer
optimization problems and to illustrate its application to a
microgrid. The basic idea is to provide an easy way to
solve this kind of problem without a MIQP solver. The
proposed technique first decides about the values of the
binary variables and transforms the optimization problem
into a QP.

The rest of the paper is organized as follows. Section
II describes the model of the studied system. Section III
presents the distributed MPC structure. Section IV proposes
the algorithm to deal with mixed integer problem. Section
V illustrates the potential of the proposed algorithm in a
simulation study. Section VI concludes this paper.

II. SYSTEM DESCRIPTION

This work considers the model of the HyLab microgrid,
located at the University of Seville, connected to a elec-
tric cars charging station. This microgrid was designed to
study control strategies applied to energy management of
a network that has hydrogen storage and renewable energy
sources ([16], [17], [18]). The facility has special features
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that allow implementing and studying different operating
modes and control strategies. Figure 1 shows the outline of
the studied system. To replicate renewable energy systems,

Fig. 1. Hylab Microgrid

the microgrid has a programmable power supply that can
emulate the dynamic behavior of a wind turbine and/or a
photovoltaic field, for example. It also includes a battery
bank, an electronic load to emulate different load profiles
and, finally, includes a hydrogen storage system comprising
a PEM (Proton Exchange Membrane) electrolyzer to produce
hydrogen, a metal hydride system to store hydrogen and
PEM fuel cell to produce energy. The electric car charging
station has the capacity to charge four cars simultaneously.

From the microgrid operation point of view, usually the
energy produced does not match the demand. Then, the
excess energy from renewable sources can be stored in
batteries or used to produce hydrogen through electrolysis.
The hydrogen produced is stored in the metal hydride tank.
Finally, when power from renewable sources is not available,
the fuel cell uses hydrogen to supplement the lack of demand.
Additionally, the microgrid has a connection to the main
network allowing the energy purchase and sale. The hybrid
storage allows operating strategies on two time scales: the
battery can absorb/provide small amounts of energy on
fast transients while hydrogen storage supplements biggest
oscillations. In this sense, when the cars are parked, the cars
batteries can be used by the microgrid to expand the buffer
capacity of fast transients.

In this work, it was used the energy hub modeling method-
ology to model the system. An energy hub can be used to
model the interface between energy production, consumer
and the transmission line. From the standpoint of the system,
an energy hub can be identified as a unit that provides the
following features: (1) Input and output power; (2) energy
conversion; (3) energy storage. The energy hub can be
expressed as a generic MLD (Mixed Logical Dynamical)
model described by

x(k + 1) = Ax(k) + Λu(k) (1)

y(k) = Γu(k) + Πinwin(k) (2)

Euu(k) ≤ E0 (3)

wout(k) = Πouty(k) (4)

with

u(k) =


uL(k)
uE(k)
δ(k)
z(k)

 z(k) = uE(k)× δ(k)

Eu =


0
−EEu

Eδ
Ez


Λ =

 es,1(k)
. . .

es,ns(k)


es(k) =

{
e+
s if uEs (k) ≥ 0 (charging)
e−s else (discharging)

where x is the system state; u is the input vector; uL is the
energy source input; uE is the storage interface input; δ is the
binary variable related with storage charge and discharge; z is
an auxiliary continuous variable related with storage charge
and discharge; win is the input interconnecting variable;
wout is the output interconnecting variable; y(k) is the
system output; A is the state matrix; e+

s and e−s are the
efficiencies of charging/discharging interface s of the Hub;
uEs is the storage interface output flow, where superscript
E is associated to hub variables related to storage; Λ is
the storage efficiency matrix; Γ is the coupling matrix,
Πin is the input interconnecting matrix; Πout is the output
interconnecting matrix; the matrices Eu,EEu , Eδ , Ez and the
vector E0 are used in MLD constraints. The binary variable
δ(k) and the auxiliary variable z(k) are used to deal with the
different efficiencies of a storage charging and discharging or
the different price of energy sale and purchase. More details
about this modeling framework can be found in [5] and [11].

Figure 2 show the energy hub diagram of the system. The
system is divided in two hubs. The first is the microgrid
and the second is the charging station. There is an inter-
connecting variable that represents the power flow between
the both hubs. To model the first hub it is necessary to

Fig. 2. Energy Hub Diagram

define the variable zH2(k)=PH2(k)δH2(k) that it is related to
charging/discharging the hydrogen storage. As the battery
bank is considered to have the same charging/discharging
efficiency it is not necessary to define binary variables. To
manage the purchase and sale of energy to the external net-
work different weights for sale and purchase were used. To
make this possible a new variable was defined zNetwork(k)=

PNetwork(k)δNetwork(k) and introduced MLD constraints. The
model is represented by the following input vector and set
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of matrices.

u =


uL

uE

δ

z

 =



PSolar

PNetwork

Paux

PB

PH2

δH2

δNetwork

zNetwork

zH2


(5)

x =

[
SOC

MHL

]
A=

 1 0

0 1

Πout=
[

0 1
]

Λ =

[
0 0 0 ηB 0 0 0 0 0

0 0 0 0 ηFCH2,e
0 0 0 ηEe,H2

−ηFCH2,e

]
Γ =

[
ηSrad,e 1 −1 −1 −1 0 0 0 0

0 0 1 0 0 0 0 0 0

]
where η stands for the storage and conversion efficiencies
of the converters and storages; PSolar is the solar power
generated; PNetwork is the power of the external network;
PB is the power of the battery bank; PH2 is the power of the
hydrogen storage. The states are the SOC (state of charge)
of the batteries bank and the MHL (Metal Hydride Level)
of the hydrogen storage. The conversion efficiencies values
were obtained based on tests on the microgrid equipments.

The model of the second hub is defined by the following
equations.

u =


PBc1

PBc2

PBc3

PBc4

A=


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 (6)

Λ =


ηBc1 0 0 0

0 ηBc2 0 0

0 0 ηBc3 0

0 0 0 ηBc4


Γ =

[
−1 −1 −1 −1

]
Πin=1

where ηBc1,ηBc2, ηBc3 and ηBc4 are the storage efficiencies
of the car batteries; PBC1, PBC2, PBC3 and PBC4 are the
car batteries powers. The states are the SOC (state of charge)
of the cars batteries. In this case the output y will be zero
because this hub don’t have a external load demand, which
implies in win(k) = PBC1 + PBC2 + PBC3 + PBC4.

III. DISTRIBUTED OPTIMIZATON

This section gives details of the distributed predictive
control structure focusing on optimizing the system. In
this control structure, the global optimization problem is
distributed between agents in the form of local optimization
goals.

The optimization problem for the Hub 1 uses the following
objective function:

Jlocal1=
∑Np−1

l=0 û(k+l)TQû(k+l)+fT û(k+l)+ (7)∑Np−1

l=0 (û(k+l)−ûSolar−available(k+l))TQe

(û(k + l)− ûSolar−available(k + l)) +∑Np−1

l=0 (x̂(k+l)−x̂ref (k+l))TQx(x̂(k+l)−x̂ref (k+l))

subject to local dynamics (5) and the following constraints:

xi ≤ x̂i(k + l + 1) ≤ xi (8)
ui ≤ ûi(k + l) ≤ ui (9)

ŷi(k + l) = ydem(k) (10)
xi(k) = x̆i(k) (11)

for l = 0, . . . , Np−1, where Q, Qe, Qx are positive definite
weighting matrices, f is a vector and Np is the prediction
horizon. With respect to the notation, hat (â) over variables
is used to denote variables over the prediction horizon,
ai and āi denote minimum and maximum allowed values
respectively, and ăi refers to variables whose values are
supposed to be known, for example, initial conditions. In this
work we have assumed a bidirectional energy flow between
the hub and the network so that the negative threshold is
used.

The first term of the objective function is used for the man-
agement of the renewable energy sources and for purchasing
power for the network. The weights Q and f are tuned
according to the price of each energy source. The second
term is responsible for ensuring the maximum use of solar
energy source in order to minimize the error between the
amount of power available (ûSolar−available) and the amount
of energy used (u(1) = PSolar). The third term is responsible
for maintaining the load of storage around 50% of the total
load, and allows deviations from this value when there is
need to store more energy or use the stored energy.

Analyzing only the part of the objective function in (7)
related to the energy flow exchanged with the network, we
have

Jlocal1=
∑Np−1

l=0 P̂Network(k+l)TQsaleP̂Network(k+l)+ (12)

ẑNetwork(k+l)T (Qpurchase−Qsale)ẑNetwork(k+l)+

fsaleP̂Network(k+l)+(fpurchase−fsale)ẑNetwork(k+l)

When power PNetwork>0 we have δNetwork=1 and zNetwork(k)=

PNetwork(k), which means that energy is purchased to the
network and therefore the purchase weight is used. Otherwise
PNetwork<0 implies δNetwork=0 and zNetwork(k)=0 and the
sale weight is used. This makes it possible to use different
weights for the same variable. The values of the weights
were adjusted according to the price of energy.

The optimization problem for the Hub 2 uses the following
objective function:

Jlocal2=
∑Np−1

l=0 (x̂(k+l)−x̂ref (k+l))TQx(x̂(k+l)−x̂ref (k+l))+ (13)
(x̂(k+Np)−x̂ref (k+Np))TQNp (x̂(k+Np)−x̂ref (k+Np))

subject to local dynamics (6) and the constraints (8).
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The objective function is used only to charge the batteries
of electric vehicles according to the charging type, as will be
explained below. The first term minimizes the error between
the state and the state reference. The second term relative to
the final state weights is introduced to ensure that the vehicle
batteries will be fully charged at the end of the charging time.

To use the battery of electric vehicles over the network a
supervisory algorithm that determines the charging type and
the charging time was designed. When vehicle connect to
the charge station, the user must inform the charging type
(slow or fast) and the time the vehicle will be parked. If
slow charge is chosen the battery charges over the parking
time using low-power charge. In the case of fast charge the
battery is charged with maximum power in a half hour period
before the pre-set parking time, and in the rest of the time
the battery is available for use as a storage for microgrid.
During the period slow or fast charge the weights Qx and
QNp are tuned to a positive value in order to ensure that
the load is charged on time. When the battery is used as a
storage these weights are zero.

As both hubs are interconnected by the interconnection
variable, both optimization problems have to satisfy the
constraint wout1(k) = win2(k). To ensure that this constraint
will be satisfied it is necessary to apply a distributed control
algorithm based on communication between the agents. In
this work, the Lagrange-based DMPC control structure with
synchronous parallel communication presented in [12] was
used. In a Lagrange-based control scheme, each control
agent incorporates terms related with the interconnecting
constraint in its local objective function. In order to divide the
overall problem into local sub problems, the interconnecting
constraints are removed from the constraint set and added to
the objective function of the overall problem. This way, each
local problem can be written as follows:

min Jlocal,i(x̂i(k+1),ûi(k),ŷi(k))+

x̂i(k+1),ûi(k),ŷi(k), Jinter,i(ŵin,i(k),ŵout,i(k))

ŵin,i(k),ŵout,i(k)

(14)

where Jlocal,i is the local objective function defined in (7)
for the first hub and in (13) for the second hub, and Jinter,i
is the following interconnection function:

Jinter,i(ŵpin,i(k),ŵ
p
out,i

(k))=

 λ̂
p
in,i←j(k)

λ̂
p
out,i→j(k)


T  ŵ

p
in,i←j(k)

ŵ
p
out,i→j(k)

 (15)

+
γc
2

∥∥∥∥∥∥∥∥
 ŵ

p−1
in,j←i(k)−ŵ

p
out,i→j(k)

ŵ
p−1
out,j→i(k)−ŵ

p
in,i←j(k)


∥∥∥∥∥∥∥∥
2

2

+
γb−γc

2

∥∥∥∥∥∥∥∥
 ŵ

p
in,i←j(k)−ŵ

p−1
in,i←j(k)

ŵ
p
out,i→j(k)−ŵ

p−1
out,i→j(k)


∥∥∥∥∥∥∥∥
2

2

where γc and γb are positive constants, ŵp−1
in,i←j(k) and

ŵp−1
out,i→j(k) are the own information set of the previous

iteration, ŵp−1
in,j←i(k) and ŵp−1

out,j→i(k) are the information set
collected from the neighboring agent j ∈ Ni at the previous
iteration, the superscript p represents the actual iteration at
the time instant k and λ̂pin,i←j(k) and λ̂pout,i→j(k) are the
Lagrange multipliers.

At each time step k, each local agent must perform the
iterative algorithm described below with parallel communi-
cation. One of the main drawbacks of Lagrangian methods is
the slow convergence. The algorithm convergence speed can
be improved through the so-called warm start by initializing
the interconnecting inputs and the Lagrange multipliers every
step to the values obtained from previous decision making
step rather than initializing these values arbitrarily. The
algorithm is implemented according to the following steps:

1) Make a measurement of current state x̂i(k)
2) Compute the optimal control sequence ũ∗i (k). To do

so, perform the following steps:
a) Parameter initialization:
• for k = 0

p = 1

ei � 1

λ̂0
in,i←j(k) = 0

λ̂0
out,i→j(k) = 0

ŵ0
in,i←j(k) = 0

ŵ0
out,j→i(k) = 0

• for k > 0 use warm start

λ̂0
in,i←j(k) = λ̂pin,i←j(k − 1)

λ̂0
out,i→j(k) = λ̂pout,i→j(k − 1)

ŵ0
in,i←j(k) = ŵpin,i←j(k − 1)

ŵ0
out,j→i(k) = ŵpout,j→i(k − 1)

p = 1

ei � 1

for all i ∈ N .
b) Solve the optimization problem in equation (14),

subject to local dynamics and constraints.
c) Send ŵpin,i←j(k) and ŵpout,i→j(k) to neighbor-

ing agents j ∈ Ni and collect ŵ0
in,j←i(k) and

ŵpout,j→i(k) from them, where ŵpout,i→j(k) is
calculated as:

wpout,i→j(k) = Πout,i→jy
p
i (k) (16)

d) Upgrade the multipliers:

λ̂
p+1
in,i←j(k)=λ̂

p
in,i←j(k)+γc(ŵ

p
in,i←j(k)−ŵ

p
out,j→i(k)) (17)

λ̂
p+1
out,i→j(k)=λ̂

p
out,i→j(k)+γc(ŵ

p
out,i→j(k)−ŵ

p
in,j←i(k)) (18)

e) Evaluate the stopping conditions:

p > p̄ (19)

ei =
∥∥∥λ̂p+1

in,i←j(k)− λ̂pin,i←j(k)
∥∥∥ ≤ ē (20)

where p̄ is the maximum number of iterations
allowed and ē is the maximum error allowed.
If both conditions are false, move on to next
iteration p → p + 1 and go to step 2b. If (19)
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is true, go to step 3. If (20) is true, set agent i
termination flag flagi(k) = 1. If all neighboring
agents j ∈ Ni termination flags are equal to 1,
go to step 3. If not, move on to next iteration and
go to step 2b.

3) Implement the optimal control action û∗i (k).
4) Start a new control cycle k ← k+ 1 and go to step 1.

IV. PROPOSED ALGORITHM

The optimization problem formulated in preview sections
includes binary variables related to the hydrogen storage
charging and discharging and energy sell and purchase to
the external network. The presence of binary and contin-
uous manipulated variables characterizes a mixed integer
optimization, which is computationally complex and should
be solved with dedicated MIQP solver. In this section a
algorithm to deal with this kind of optimization problem will
be presented. The basic idea is to decide the values of the
binary variables and then solve the optimization problem as
a QP. The algorithm is implemented at each energy hub by
the following steps.

1) Define the prediction horizon (Np) and the binary
decision horizon (Nb) to test the possible combinations
of each binary variable. The horizon Nb should be loser
or equal than the prediction horizon.

2) Initialize a loop for i = 1 until Nb
3) Define the four possible combinations between the

instants i and i+ 1 on the horizon N for each binary
variable. For the next instants the value should be equal
to the second instant value.1

a) Initialize a loop for j = 1 until 4.
b) Introduce the j line of each δref variable trough

the following constraints:

δ = δref (21)
z = δref × P

c) Solve the optimization problem with a QP solver.
d) Compute the cost for this combination.
e) Increment j and return to the item b.

4) Choose the combination with the minimum cost.
5) Fix the i column of the δref with the value of j line

and i column that implied in the minimum cost.2

6) Increment i and return to the item 2.

1For example, using Np = 5, Nb = 2 and i = 1 each binary variable
will be set as:

δref =

 0 0 0 0 0
0 1 1 1 1
1 0 0 0 0
1 1 1 1 1


2For example, the small cost was obtained with third line of δref and

the value of j line and i column is 1, for the next iteration all elements of
column i will have this value as:

d =

 1 0 0 0 0
1 0 1 1 1
1 1 0 0 0
1 1 1 1 1



7) At least choose the combination that obtained the
minimum cost and apply the calculated control signal
to the process.

As introduced on item (b), new equality constraints relating
the binary and continuous variables, it is not necessary to
use anymore the MLD constrains on (3).

V. RESULTS

The proposed control strategy was applied to the system
model. A simulation with a period of 24 hours and a
sampling time of 5 minutes was performed using the software
Matlab [10] with Yalmip toolbox[8]. A prediction horizon of
Np = 5 and a binary decision horizon of Nb = 1 were used.
The performance of the proposed binary search algorithm
is compared with the solver CPLEX. Both algorithms were
implemented with the distributed optimization framework
described on section III. The control objective is to maximize
the use of renewable energy sources, make the purchase
and sale management of electricity to the external network,
use the storage to minimize the oscillations between the
production and demand, perform the charging of electric
vehicles and ensure the load demand at all periods of time.

In the Fig. 3 the graphs with dashed line are the results
obtained with the proposed algorithm and the graphs with
continuous line are the results obtained with CPLEX. From
the analysis of Fig. 3(a), it can be verified that when there is
no solar radiation the microgrid uses the storages and buys
energy from external network. In the period where there is
a surplus of solar energy the storages are charged and the
excess energy is sold to the external network. Analyzing Fig.
3(b) the proposed algorithm had a different behavior with
respect to hydrogen storage dynamic, this may be due by the
choice of Nb horizon. The results of charge and discharging
performed by the both algorithm were the same. Cars 1 and 3
use fast charge so that during the period of the time they are
connected to the microgrid they function as storage and only
in the last 30 minutes the batteries are loaded. Cars 2 and 4
use slow charge and take longer for charging. According the
simulation both methods had similar results.

The difference between both methods is presented in Fig.
4. As the proposed algorithm computes four QP for each
iteration of the distributed controller, it can be implemented
in a parallel way. In this case, each QP may be computed
by one core of the processor, and the total calculation time
of one iteration will be approximately the time required to
compute only one QP. In this scenery the proposed algorithm
took 3.03 minutes to compute all simulations results versus
the 6.04 minutes used by CPLEX. When analyze the total
iterations and cost, the proposed algorithm obtained 1960
iterations and a cost of 6.6261e+006 against 1982 iterations
and cost of 8.2502e + 006 reached by CPLEX. There is
no guarantee that the proposed algorithm always will have
smaller cost, but probably the value of Nb horizon has a
important influence. According to these results the proposed
algorithm is a good alternative to solve MIQP optimization
problems when the sampling time is not too small.

2624



(a) Energy sources

(b) Storages Level

(c) Cars

Fig. 3. Simulations results (cplex(-) and proposed algorithm (–)).

VI. CONCLUSIONS

The proposed strategy obtained satisfactory results, man-
aging properly the purchase and sale of energy to the external
network and making the charge of the electric cars batteries
and ensuring the load demand. The proposed algorithm
appears as a good alternative to deal with the binary variables
in a distributed hybrid optimization problems. Further work
will be done to implement the control framework on the real
system and get some experimental results. A more exhaustive
analysis will be carried out to assess the performance of the
proposed approach in different operating conditions and with
different systems.
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