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This article deals with incorporating the mean absolute 
deviation objective function in several robust single facil-
ity location models on networks with dynamic evolution 
of node weights, which are modeled by means of linear 
functions of a parameter. Specifically, we have consid-
ered two robustness criteria applied to the mean absolute 
deviation problem: the MinMax criterion, and the MinMax 
regret criterion. For solving the corresponding optimiza-
tion problems, exact algorithms have been proposed and 
their complexities have been also analyzed.
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1. INTRODUCTION

Standard network location models deal with problems of 
locating facilities on a network optimizing some objective 
function that involves distances from nodes to the facili-
ties. Edge lengths and node weights are parameters in the 
model and they are very often uncertain. Because there are 
a wide range of causes for the uncertainty there exist sev-
eral approaches to deal with it in optimization models, see

for instance Kouvelis and Yu [20]. A possible approach to
tackle uncertainty within this framework is by adopting a
minimax regret point of view. The regret or savage function
represents the opportunity loss and is the difference between
the objective function value and the optimal objective func-
tion value under the realized scenario. Although the resulting
criterion is a conservative one, it is not as pessimistic as pure
minmax. The state-of-the-art of the minmax regret discrete
optimization as well as a discussion on its potential applica-
tions up to 1997 is contained in the book by Kouvelis and Yu
[20]. Minmax regret optimization has been widely applied to
different location models as: median, center, and cent-dian
objective functions on networks (Averbakh [1–3], Averbakh
and Berman [4–7], Averbakh and Lebedev [8], Burkard and
Dollani [10,11], Chen and Lin [14], Conde [16,17], Ogryczak
[25], Puerto et al. [27, 28]).

In contrast, location problems in the public sector give
rise to consider equity aspects of location (such as the disper-
sion of the distribution of distances from the facility to the
demand points) which are not captured by either the median
and center objective functions nor even a convex combina-
tion of them. Assuming that customers have the same utility
function, the equity concept in location is usually quantified
by means of measures which gauge the level of inequality
of the distribution of distances, and the resulting problems
attempt to minimize such an inequality. In this way, equity in
location commonly represents “equality” (in fact both terms
are often synonymously used in the literature). From among
the 20 different measures described in Marsh and Schilling
[22], the mean absolute deviation (MAD) is a measure of
the absolute deviations of the customers from the average
distance, and it has been widely studied by several authors
with purposes of equity (see Berman and Kaplan [9], Tamir
[30], Mesa et al. [23]). Models incorporating this inequality
measure are structurally different from models based on the
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median function because, although both measures share the
same “weighted sum” operator, the distance function vector
considered in each model gives rise to different problems
with different behavior and properties.

This article deals with the incorporation of the above
inequality measure in a robust single-facility location model
on a network when the data change dynamically. Specifically,
we assume that the vertex weights are linear functions of a
parameter, time for example, and we study several robust
versions of the 1-mean absolute deviation (1-MAD) prob-
lem with respect to dynamic changes of the data. This type
of dynamic model is studied by Vairaktarakis and Kouvelis
[31] and Burkard and Dollani [10], which consider different
robust versions of the 1-median problem on a tree that com-
bine dynamically evolving and uncertain parameters. In this
article, two of such robustness criteria have been applied to
the mean absolute deviation objective: the MinMax criterion,
whose aim is to minimize the largest objective value, and the
MinMax regret (or the robust deviation) criterion, which min-
imizes the largest feasible deviation from the best objective
value. The study of the corresponding optimization problems
is the purpose of this work.

The remainder of the article is organized as follows:
Section 2 introduces the notation and formulates these two
problems. Section 3 is devoted to study the first one: the Min-
Max 1-MAD problem, in both a tree network and a cyclic
network. For each case, an exact algorithm is proposed and
its complexity discussed. Likewise, the MinMax regret 1-
MAD problem is studied and solved in Section 4 by also
considering both a tree network and a cyclic network. Our
conclusions together with some extensions of the models are
summarized in Section 5. Finally, in the appendix of the arti-
cle, we recall some known results used for our computational
complexity analysis.

2. PROBLEM FORMULATIONS

Let N(V , E) be a network with vertex set V , |V | = n
and edge set E, with |E| = m. Each vertex has associated a
nonnegative weight representing the intensity of its demand.
Each edge e = [u, v] is represented by a continuous rectifiable
arc with positive length �e. Therefore any real number x ∈
[0, �e] denotes the location in the edge e = [u, v] for which
the length of the subedge [u, x] is x. We let N denote the
continuum set of points of the network. The edge lengths
induce a distance function on N , such that the distance d(x, y)
between any two points x, y in N is defined as the length of
a shortest path connecting x and y. Therefore, N is a metric
space with respect the above distance function.

In this article, we consider that the weights are of dynamic
nature and they are modeled by means of linear functions of
a parameter t varying in a given interval. This way, we con-
sider each weight wi(t) = αit + βi ≥ 0, i = 1, . . . , n, where
t ∈ [t−, t+] (lower and upper bounds for t, respectively).
Each weight can be viewed as the demand rate at time t
(or other magnitude depending on a parameter t) at vertex
vi, i = 1, . . . , n. Let W(t) = ∑n

i=1 wi(t) = At + B be the

total weight, with A = ∑n
i=1 αi and B = ∑n

i=1 βi. Without
loss of generality, we can assume that W(t) > 0, for t ∈
[t−, t+]. Henceforth, let us also consider {wi(t)

W(t) , i = 1, . . . , n}
the normalized system of weights.

For t in [t−, t+], the dynamic median function is given by
M(x, t) = 1

W(t)

∑n
i=1 wi(t)d(vi, x), and the dynamic MAD-

function, by F(x, t) = 1
W(t)

∑n
i=1 wi(t)|d(vi, x) − M(x, t)|.

Therefore, for each t the corresponding single facility loca-
tion problems are formulated as MED(t): minx∈N M(x, t) and
MAD(t): minx∈N F(x, t), respectively.

For each t, let φ F∗(t) = minx∈N F(x, t) be the optimal
value of the MAD(t) problem. This solution is found on a
cyclic network in O(mn log n) time by Tamir [30], and on a
tree network in O(n2) time by Mesa et al. [23].

With these definitions, the incorporation of the dynamic
MAD-function into the aforementioned robust models gives
the following two problems:

1. The MinMax MAD location problem:

(MM-MAD) min
x∈N

max
t∈[t− ,t+]

F(x, t)

2. The MinMax-Regret MAD location problem:

(MMR-MAD) min
x∈N

max
t∈[t− ,t+]

{F(x, t) − F∗(t)}

Remark 1. Observe that in the formulations above, we have
considered that the weights are linear functions of a para-
meter t to model the dynamic evolution in the data. However,
we are looking for a unique solution in the entire inter-
val [t−, t+], an alternative interpretation of these dynamic
weights is that demand of the nodes is linearly correlated
and uncertain so that using the minimax criterion one looks
for a robust solution simultaneously for all values of t.

We now analyze separately each of these problems.

3. THE MINMAX MEAN ABSOLUTE DEVIATION
PROBLEM

In this section, we consider the (MM-MAD) location prob-
lem. We first study the problem on a tree network, and later
the results will be applied to solve the problem on a general
network.

3.1. The Problem on a Tree Network

Before solving the (MM-MAD) problem on a tree net-
work, we are interested to know if the solutions of this
problem (globally viewed) keep the same properties as
the solutions obtained for this model with other objective
functions.

For the median function, Vairaktarakis and Kouvelis [31]
studied several dynamic robust problems on a tree with lin-
ear and positive weights, and they solved them using a result
by Erkut and Tansel [19]. This result states that, on a tree



network, the solutions of MED(t) problem belong to the
unique path connecting the 1-median solutions of MAD(t−)

and MAD(t+), respectively (nestedness property). Besides,
such an interval can be reduced to a finite set of t-values for
which all median solutions are obtained. However, this prop-
erty does not hold for the MAD(t) problem, as the following
two examples show. The first one is very simple and can be
easily checked by the reader. The second one, borrowed from
a talk based on an earlier version of this article presented at
EWGLA XVIII (see [13]), is more sophisticate and it will be
used to illustrate the results of the next sections.

Example 2. Let v1, v2, v3 be tree vertices on the segment
[0, 6] placed at the points 0, 2 and 6, respectively, and let
w1(t) = t +2, w2(t) = 2t −1, w3(t) = −t +5 be the respec-
tive linear weights, with t ∈ [1, 4]. It is easy to see that the
solutions of the problems MAD(1) and MAD(4) are located
at the points x∗(1) = 13/4 and x∗(4) = 5/4 respectively,
whereas the solution of the MAD(3) problem is attained at the
point x∗(3) = 7/2, which is outside the segment [5/4, 13/4].

Example 3. Consider the tree network with eight vertices
displayed in Figure 1, whose edge lengths are the numbers
on the edges and whose linear weights {wi(t), i = 1, . . . , 8}
are: {2t + 1, 3t − 2, −t + 8, 4t + 3, −2t + 11, 5t + 1, −3t +
20, 6t−4}, with t ∈ [1, 4]. (This example appears in [13].) The
solutions of the problem MAD(t) for t− = 1 and t+ = 4 are
respectively the points x∗(t−) = 7.3125 and x∗(t+) = 8.0,
both solutions lying in the edge [v2, v3] and measuring the
distance from the left vertex v2. However, for t = 1.5, the
corresponding MAD(1.5) problem reaches the minimum at
point x∗(1.5) = 11.9714 of the edge [v2, v3] (this point also
measured from the left vertex v2). Clearly, this last minimum
is outside the path linking the 1-MAD solutions x∗(1), x∗(4).

In addition, the dynamic median function for a fixed
x̄, M(x̄, t), is either strictly increasing, strictly decreasing
or constant on the entire interval [t−, t+]. Consequently,
the problem maxt∈[t−,t+] M(x̄, t) attains its maximum value
at either t− or t+. However, this does not occur with the
MAD-function.

Indeed, for a fixed x̄ the function F(x̄, t) =∑n

FIG. 1. Path linking the MAD-solutions for the extreme t-values.

at either one of the breakpoints or at the endpoints of the
edge, which implies that the set of breakpoints (together with
the endpoints of the edge) is a finite dominating set (FDS)
for the restricted problem minx∈e F(x, t̄). Note that from the
structure of F(x, t̄), the points of the FDS are obtained from
the “zeros” of the absolute values which appear in the addends
of the MAD-function.

We next study the MinMax MAD problem on a tree. As
usually occurs in this kind of problems, the general strategy
is based on solving (independently) a restricted problem on
each edge, and then selecting the global solution among all
local solutions thus obtained.

3.1.1. Solving the Problem on a Given Edge. For a given
edge e = [u, v] with length �e, we now consider the restricted
problem

(MM-MAD)e min
x∈[0,�e]

max
t∈[t−,t+]

F(x, t).

The main idea for solving it is to identify, for each x, a finite set
of t-values for which the function F(x, t) attains its maximum.

Let De = [0, �e]× [t−, t+] be the feasible domain for this
restricted problem. Assuming that each point x in the edge
represents the length of the subedge [u, x], then for any vertex
vi ∈ V , d(vi, x) = d(vi, u)+x if u belongs to the (unique) path
from vi to x, otherwise d(vi, x) = d(vi, u) − x. Equivalently,
for all vi ∈ V , d(vi, x) = d(vi, u) + δix, with δi ∈ {−1, 1}.
Therefore, since W(t) = At + B > 0, ∀t ∈ [t−, t+], we can
write

F(x, t) = 1

W(t)2

n∑
i=1

wi(t)

×
∣∣∣∣∣(d(vi, u) + δix)W(t) −

n∑
i=1

wi(t)(d(vi, u) + δix)

∣∣∣∣∣ .

Once each term has been expanded, the function F(x, t) for
any x ∈ [0, �e] can be expressed as follows

F(x, t) = 1

W(t)2

n∑
i=1

wi(t)|aixt + bit + cix + di|

= 1

W(t)2

n∑
i=1

wi(t)|fi(x, t)| (1)

where fi(x, t) = aixt + bit + cix + di, with ai, bi, ci, di ∈ R,
∀i = 1, . . . , n.

1 
i 1 wi(t)|d(vi, x̄) − M(x̄, t)| is a continuous function W(t)

of t, but
=

in general it is neither concave nor convex when
t varies in the overall interval [t−, t+]. Besides, F(x̄, t) can
have at most n breakpoints on the t argument, and each of the 
n “pieces” composing F(x̄, t) can be nonlinear.

If we now consider a fixed value t̄, the resulting function 
F(x, t̄) is the classical MAD measure whose behavior and
properties have already been widely studied (Berman, Kaplan 
[9], Mesa et al. [23], Tamir [30]). On each edge e of the tree
F(x, t̄) is a continuous, convex and piecewise linear function 
with at most n breakpoints. Each of such breakpoints is the 
intersection point of the median function M(x, t̄) with some 
distance function. These breakpoints can be computed and 
sorted in O(n log n) time by using the procedure in Tamir 
[30]. Besides, the local solutions of the problem are reached



FIG. 2. P(De) for edge [v3, v5], with stationary curves G3(x, t) = 0 and
G4(x, t) = 0. [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]

The breakpoints of F(x, t) belong to the curves fi(x, t) = 0,
i = 1, . . . , n. Each fi(x, t) = 0 is a hyperbola (a straight line
if ai = 0), and it will be called “breakpoint curve.” The
collection of breakpoint curves {fi(x, t) = 0, i = 1, . . . , n}
induces a subdivision P(De) of the feasible domain De into
a set of full dimensional cells Rj, j = 1, . . . , re, such that in
the interior of each subregion Rj, the functions fi(x, t) are not
null for i = 1, . . . , n. Consequently, F(x, t) is a differentiable
function on the interior of each subregion Rj of P(De).

Figure 2 shows the subdivision of the feasible domain for
the edge [v3, v5] of the tree given in Figure 1. In this case there
are only two breakpoint curves with nonempty intersection
with De = [0, 5] × [1, 4], obtained from f4(x, t) = 0 and
f7(x, t) = 0. The remaining hyperbolas lie outside of De.

Each element Rj of the subdivision is a closed and compact
set whose boundary may be composed by both several arcs of
breakpoint curves (“pieces” of hyperbolas and/or segments)
and line segments of the boundary of De, and whose vertices
are the endpoints of such pieces. Let V(P(De)) be the set of
vertices of the subdivision P(De). Clearly, the elements of
V(P(De)) are the vertices of the rectangle De together with
the intersection points between breakpoints curves as well as
between breakpoint curves and the boundary of De.

For example, Figure 2 shows (with black dots) the vertices
of the set V(P(De)) for the edge e = [v3, v5]. The break-
point curves f4(x, t) = 0 and f7(x, t) = 0 intersect at the
point ( 1

2 , 32
19 ). Besides, the endpoints of these curves on the

boundary of De are {(0, 50
41 ), ( 57

26 , 4)} and {(0, 69
34 ), ( 35

18 , 1)},
respectively. All these points together with the vertices of
the rectangle De, (0, 1), (5, 1), (0, 4), (5, 4), define the set
V(P(De)). Moreover, two cells of P(De) are adjacent if they
share a common boundary, which is either a vertex of P(De)

or an arc (or piece) of some breakpoint curve limited by two
different vertices of V(P(De)), such that it does not contain
any vertex of V(P(De)) in its interior. In Figure 2, cells R2

and R4 are adjacent to R3 by different pieces of arcs, whereas
R1 and R3 are adjacent by the vertex (1/2, 32/19).

In contrast, for a fixed value x̄ ∈ [0, �e], F(x̄, t) =
1

W(t)2

∑n
i=1 wi(t)|fi(x̄, t)| is a continuous function of t but in

general it is neither concave nor convex on the t-interval
[t−, t+]. The breakpoints of F(x̄, t) in such interval are
obtained from the solutions of fi(x̄, t) = 0, i = 1, . . . , n.
The following result establishes that such breakpoints can
not be local maxima of F(x̄, t).

Theorem 4. For a given x̄ ∈ [0, �e], let ti ∈ (t−, t+) be a
breakpoint of F(x̄, t) such that fi(x̄, ti) = 0. Then, ti is not a
local maximum of F(x̄, t).

Proof. In order to stress the fact that x̄ is fixed in this
proof, let us denote Fx̄(t) := F(x̄, t). The proof is based on
studying the left and the right derivatives of Fx̄(t) at ti. Let
us suppose that fj(x̄, ti) �= 0, ∀j �= i. The function Fx̄(t) can
be written as the sum of the following two functions

Fx̄(t) = 1

W(t)2

⎛
⎜⎝ n∑

j=1
j �=i

wj(t)|fj(x̄, t)| + wi(t)|fi(x̄, t)|
⎞
⎟⎠

= 1

W(t)2
(F1,x̄(t) + F2,x̄(t)),

where F1,x̄(t) := ∑n
j=1
j �=i

wj(t)|fj(x̄, t)| and F2,x̄(t) :=
wi(t)|fi(x̄, t)|. Let I ⊂ [t−, t+] be an open interval (small
enough) such that ti ∈ I and for t ∈ I, fj(x̄, t) �= 0,
∀j �= i. Clearly, fj(x̄, t) has constant sign on I, therefore
|fj(x̄, t)| = δjfj(x̄, t), with δj ∈ {−1, 1}. This implies that
F1,x̄(t) is a sum of products of two linear functions of t, con-
sequently, F1,x̄(t) is a positive parabola on I. Let s1 = F ′

1,x̄(ti)
be the slope of F1,x̄ at ti. On the other hand, ti is a local min-
imum of F2,x̄(t) (as it is a breakpoint of |fi(x̄, t)| for which
fi(x̄, ti) = 0). Without loss of generality we can assume that ti
is a root of order 1 of the parabola or straight line wi(t)fi(x̄, t)
(since fi(x̄, t) is linear on t and the weights are non-negatives
on [t−, t+]). Let s2 �= 0 be the slope of wi(t)fi(x̄, t) at ti.
Since F2,x̄(t) = wi(t)|fi(x̄, t)|, the left and the right deriva-
tives of F2,x̄(t) at ti are F ′

2,x̄(t
−
i ) = −|s2| and F ′

2,x̄(t
+
i ) = |s2|,

respectively. Moreover, the derivative of Fx̄(t) is given by

F ′̄
x(t) = 1

W(t)2

( − 2AW(t)Fx̄(t) + F ′
1,x̄(t) + F ′

2,x̄(t)
)
,

∀t ∈ I, t �= ti.

Let F ′̄
x(t

−
i ), F ′̄

x(t
+
i ) be the left/right directional derivatives

of Fx̄(t) at ti. By hypothesis, W(t) = At + B > 0, for all
t ∈ [t−, t+], thus we have

F ′̄
x(t

−
i ) = 1

W(ti)2
(Qi + s1 − |s2|), and

F ′̄
x(t

+
i ) = 1

W(ti)2
(Qi + s1 + |s2|)



with Qi = −2AW(ti)Fx̄(ti). Clearly, F ′̄
x(t

−
i ) < F ′̄

x(t
+
i ) which

implies that Fx̄(t) can not have a local maximum at ti. This
concludes the proof.

Note that the proof would be similar if there were more
functions which canceled out at ti. Indeed, let Ix̄ ⊆ {1, . . . , n}
be the set of subindices such that fj(x̄, ti) = 0, ∀j ∈ Ix̄,
and fj(x̄, ti) �= 0, ∀j /∈ Ix̄. In this case, Fx̄(t) decom-
poses as above, but now F1,x̄(t) = ∑n

j=1
j/∈Ix̄

wj(t)|fj(x̄, t)| and

F2,x̄(t) = ∑
j∈Ix̄

wj(t)|fj(x̄, t)|. ■

This result implies that, for each x, the local maxima of
F(x, t) do not lie on the relative interior of any breakpoint
curve.

Corollary 5. For each x ∈ [0, �e], the solutions of
maxt F(x, t) are attained at either an interior point of a cell
Rj for some j = 1, . . . , re or at a point of the boundary of De.

Let int(Rj) denote the interior of Rj. We now study the
solutions of maxt{F(x, t)} on each cell Rj. Note that in each
Rj, the following facts hold:

1. All functions fi(x, t), i = 1, . . . , n have constant sign.
Therefore, ∀i = 1, . . . , n we can write |fi(x, t)| =
δifi(x, t), ∀(x, t) ∈ Rj .

2. Consequently, the objective function F(x, t) can be
expressed as follows

F(x, t) = Fj(x, t)

= Pj1(x)t2 + Pj2(x)t + Pj3(x)

(At + B)2
, ∀(x, t) ∈ Rj

where each Pji(x) is a linear function, for i = 1, 2, 3.

In the interior of each Rj, for a fixed x, Fj(x, t) is a con-
tinuous and differentiable function with at most one critical
point and two additional candidates for maximum if the
boundary of Rj has not empty intersection with t = t− and
t = t+. For each x-value such that the vertical straight line
at x crosses int(Rj), if the maximum t-value which solves
maxt∈[t−,t+]{Fj(x, t)} belongs to int(Rj) then it should belong
to the j-th curve of stationary points Gj(x, t) = 0 (or j-th
stationary curve), given by

Gj(x, t) = ∂Fj(x, t)

∂t
= P̂j1(x)t + P̂j2(x)

(At + B)3
= 0

Property 6. A solution of minx∈e maxt∈[t−,t+]{F(x, t)} is
either a point of some stationary curve Gj(x, t) = 0, j =
1, . . . , re, or a point in one of the two extreme t-segments
t = t− and t = t+ of De.

Clearly, both F(x, t−) and F(x, t+) are functions of x. In
contrast, when (x, t) moves over a stationary curve Gj(x, t) =
0 the function F(x, t) can be expressed as a function of x
by isolating (if possible) t = gj(x) from Gj(x, t) = 0 and
replacing it in the objective function. Let Ij be the projection
of Gj(x, t) = 0 over the x-edge. Therefore

(x, t) ∈ Gj(x, t) = 0 =⇒ Fj(x, t) = F(x, gj(x)),

with Gj(x, gj(x)) = 0, for x ∈ Ij.

If it is not possible to isolate t from Gj(x, t) = 0, which
happens when P̂j1(x) = 0, then the stationary curve has
the form x = xe,j where xe, j is a constant. In this case,
the maximum on Rj is attained at a single point (xe, j, te, j),
that is, F(xe, j, te, j) = maxt{F(xe, j, t) : (xj, t) ∈ Rj}. For the
sake of simplicity, we maintain the notation gj(x) = te, j and
Ij = {xe, j} for this case.

Note that after substituting t = gj(x), F(x, gj(x)) can be

expressed as 1
W(t)2

Q(3)
j1

(x)

Q(2)
j2

(x)
, where Q(3)

j1
(x), Q(2)

j2
(x) are poly-

nomials in x, and the superindex (3) and (2) indicate the
maximum degree of each polynomial.

From the above argument, the collection of all the func-
tions {F(x, gj(x)), j = 1, . . . , re} together with F(x, t−),
F(x, t+) provides the objective value over the stationary
curves and the extreme t-segments.

Theorem 7. The solution of minx∈e maxt∈[t−,t+] F(x, t) is
the pointwise minimum of the upper envelope Ue(x) of the
collection of re + 2 functions

{{F(x, gj(x)), x ∈ Ij, j = 1, . . . , re}, F(x, t−), F(x, t+)}
where re is the number of cells of P(De) of the feasible
domain.

In conclusion, the main procedure for solving the
restricted problem on a given edge e involves the following
steps:

Step 1: Obtain the O(n) breakpoint curves (in O(n) time).

Step 2: Construct P(De), i.e. the arrangement of the break-
point curves (hyperbolas). The arrangement of n hyper-
bolas in the plane can be done in O(n2α(n)) time and
O(n2) space (see Edelsbrunner et al. [18], McKenna and
O’Rourke [21]), where α(n) is the inverse of the Ack-
ermann function, see Appendix. On the other hand, since
each two breakpoint curves intersect in at most two points,
the subdivision P(De) has O(n2) vertices and O(n2) cells.
Note that the closed form of the objective function F(x, t)
in each cell, as a continuous and differentiable function,

where P̂j1(x) = 2BPj1(x)−APj2(x), and P̂j2(x) = BPj2(x)− 
2APj3(x). This expression implies that there exists (at most) 
one stationary curve on each cell of the subdivision. In the 
example illustrated in Figure 2 we have only two stationary 
curves: G3(x, t) = 0 and G4(x, t) = 0 (drawn in dashed 
lines), because the remaining ones are out of the feasible 
domain.

By extending this analysis to all cells of P(De), Corollary 
5 can be rewritten as follows:



can be computed by updating from one cell of the arrange-
ment to any adjacent one in constant time. Indeed, there
are a fixed number of functions fi(x, t) with i = 1, . . . , n,
changing their sign from one cell to any adjacent one.
In particular, this number is given by the number break-
point curves that are common boundary of the two cells
(in most cases only one). Thus, this computation does not
increment the overall complexity.

Step 3: Apply Theorem 7, which requires to construct the
upper envelope Ue(x) of the collection of re + 2 func-
tions {F(x, gj(x)), j = 1, . . . , re, F(x, t−), F(x, t+)}. On
each Rj, the stationary curve Gj(x, t) = 0 and the the
subsequent function F(x, gj(x)) is obtained in constant
time. The functions F(x, gj(x)) could be partially defined
over the x-interval [0, �e], therefore they must be consid-
ered as arcs. Moreover, as such functions are the product
of W(t)−2 and the quotient of two polynomials with
maximum degree bounded above by three and two, respec-
tively, then the number of intersection points between any
pair of them is at most five. By [29, Theorem 6.1], the
upper envelope of these functions can be computed in
O(λ6(re + 2) log(re + 2)) time, and the complexity of
computing the minimum on x is dominated by the number
of transition points, O(λ7(re + 2)), on the upper envelope
(see Appendix for further details).

Because the complexity of computing the upper enve-
lope (Step 3) dominates the complexity of Step 1 and 2
and re + 2 = O(n2), we conclude that the restricted prob-
lem (MM-MAD)e can be solved in O(λ6(n2) log n) time,
which gives a complexity of O(nλ6(n2) log n) for solving the
problem over the overall tree.

3.2. The Problem on a Network

We now consider the (MM-MAD) problem on a general
network N(V , E). In this case, each edge of the network is
partitioned in several subedges such that on each subedge all
distance functions are linear. Therefore, the global problem
is treated by solving a collection of independent optimiza-
tion subproblems obtained by restricting the problem to each
subedge of the partition.

Let e = [u, v] be a given edge of the network. For each
vi ∈ V , the distance function d(vi, x) is piecewise linear and
concave in e with at most one maximum x̄i for which d(vi, x)
is the same via vertex u as via vertex v. This point (if any) is
called “edge bottleneck point” with respect to vertex vi (see
Church and Garfinkel [15]). Henceforth we will say bottle-
neck point instead of edge bottleneck point. Each edge has
O(n) bottleneck points, which can be computed and sorted
in O(n log n) time. These points together with the end ver-
tices u and v determine a partition of the edge e, and each
closed subedge [x̄i, x̄i+1] delimited by two adjacent points of
this partition is called a “primary region”. Note that on each
primary region the behavior and properties of the involved
functions is the same as on each edge of a tree. For example,

for a fixed t-value, F(x, t) is a convex, piecewise linear func-
tion on each primary region on the edge (although in general
F(x, t), as function of x, is neither concave nor convex on the
overall edge).

Therefore, on each primary region we consider the res-
tricted subproblem

min
x∈[x̄i ,x̄i+1]

max
t∈[t−,t+]

F(x, t),

which can be solved in O(λ6(n2) log n) time by applying
the procedure described in the previous subsection. Because
there are O(mn) primary regions on the network, the final
complexity is O(mnλ6(n2) log n).

4. THE MINMAX REGRET MEAN ABSOLUTE
DEVIATION PROBLEM

We now consider the (MMR-MAD) location problem, i.e.,

(MMR-MAD) min
x∈N

max
t∈[t−,t+]

{F(x, t) − F∗(t)},

with F∗(t) = min
x∈N

F(x, t).

As in the previous section, we first study the problem on a
tree network T(V , E).

4.1. Solving the Problem on a Tree Network

On a tree network, T = (V , E), the solution strategy is
again based on solving the problem restricted to each edge
of the tree. Thus, for a given edge ē = [u, v] with length �ē,
let us consider the restricted problem

(MMR-MAD)ē min
x∈[0,�ē]

max
t∈[t−,t+]

{F(x, t) − F∗(t)},

with F∗(t) = min
x∈T

F(x, t).

4.1.1. Computing F∗(t) First of all, we give a procedure
for computing the function F∗(t). It is known (Section 3.1)
that for each t, F(x, t) is a piecewise linear and convex func-
tion of x ∈ [0, �e] for any e ∈ E, and its breakpoints belong
to the breakpoint curves. This means that, for each t, the
minimum F∗(t) is attained at either some breakpoint curve
of P(De) or at an extreme segment x = 0, x = �e of the
feasible domain De = [0, �e] × [t−, t+] for some e ∈ E.

To obtain domains where F∗(t) has a differentiable
expression, we consider the projections over the t-edge of
V(P(D)) := ⋃

e∈E V(P(De)) (recall that V(P(De)) is the
set of vertices of the subdivision P(De)). From these points,
we define the list 	 = {t1, . . . , tσ } of t-points, where t− = t1,
t+ = tσ and tk ≤ tk+1 for any k = 1, . . . , σ −1. Observe that
σ = O(n3).

In contrast, when (x, t) ∈ e × [tk , tk+1], with k =
1, . . . , σ − 1, moves along a piece of breakpoint curve

fe,i(x, t) := ae,ixt + be,ix + ce,it + de,i = 0,



FIG. 3. L(t) (left), and breakpoint curves providing F∗(t) (right). [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]

is obtained from the objective function over some piece of
breakpoint curve (or over an extreme x-value), we have the
following result.

Lemma 9. Let tk, tk+1 be two consecutive breakpoints of
L(t) with k = 1, . . . , g − 1. For all t̄ ∈ [tk , tk+1], F∗(t̄) is
attained over either the same piece of breakpoint curve or
the same extreme segment x = 0, x = �e of De, for some
edge e ∈ E.

Figure 3 (left) shows the lower envelope L(t) correspond-
ing to the tree of Figure 1. In this particular example, it
happens that for all t ∈ [t−, t+], all the functions F (̂fe,i(t), t)
composing this envelope move over breakpoint curves which
belong to the same edge e = [v2, v3] (with length 14). (Note
that in general different pieces of this lower envelope L(t)
may belong to breakpoint curves in different edges.)

In Example 3, the set V(P(D)) contains the points
(15/2, 49/31), (12, 48/31), (25/2, 135/53) (obtained from
[v2, v3]), (0, 50/41), (0, 69/34) (obtained from [v3, v4]),
(12, 31/14) and (6, 40/33) (obtained from [v5, v6] and
[v5, v7], respectively), (1/2, 32/19), (0, 69/34), (0, 50/41)

(obtained from [v2, v3]), and eventually some others that will
project onto t− = 1 or t+ = 4 that can be omitted because
these elements are always included in τ . The list 	 contains
the ordinates of these points, and the list τ of the breakpoints
of L(t) is given by

τ =
{

1, 1.173,
40

33
,

50

41
, 1.427,

48

31
,

49

31
,

32

19
,

69

34
,

31

14
,

135

53
, 4

}
.

Figure 3 (right) displays all the breakpoint curves of this
edge and, in thicker lines, it also shows the pieces of these
breakpoint curves corresponding to the respective arcs of
L(t) over which F∗(t) is attained. For example, in the first
t-subinterval [1, 1.173] of the left picture, the right picture
shows that F∗(t) is attained over the first piece fe,1(x, t) = 0,
and so on.

F(x, t) can be expressed as a function of t by isolating (if pos-
sible) x = f̂e,i(t) from fe,i(x, t) = 0. Let Îe,i be the projection 
of fe,i(x, t) = 0 over the t-edge. Therefore, when t ∈ Îe,i and 
x satisfies fe,i(x, t) = 0, we have F(x, t) = F(f̂e,i(t), t). The 
case in which it is not possible to isolate x from fe,i(x, t) = 0 
means that the equation fe,i(x, t) = 0 does not depend on x. 
Hence, fe,i(x, t) is a linear function of t, it has the form t = te,i, 
where te,i is a constant. In this case, the optimal value F∗(te,i) 
is attained at a single point (xe,i, te,i) (which can be obtained 
in O(n) time, Mesa et al. [23]). For the sake of simplicity, we 
maintain the notation f̂e,i(t) = xe,i and Îe,i = {te,i} for this 
case.

By construction, the lower envelope of the collection of 
all these functions gives, at each t, the function F∗(t).

Property 8. The function F∗(t) is obtained from the lower 
envelope L(t) of the collection

{{F(f̂e,i(t), t), t ∈ Îe,i, i = 1, . . . , n, F(0, t), F(�e, t)},
e ∈ E, t ∈ [tk , tk+1], k = 1, . . . , σ − 1}. (2)

This collection has at most (σ − 1)(n + 2)(n − 1) = O(n5) 
functions, which can be partially defined on the interval 
[t−, t+], and each function is given by the factor W(t)−2 

multiplied by the quotient of two polynomials with maxi-
mum degree bounded above by 3 and 1, respectively, then 
the number of intersection points between any pair of func-
tions in the collection (2) in its corresponding t-interval is at 
most four. By Theorem 6.5 in Sharir and Agarwal [29] (see 
Appendix), the complexity of L(t) is bounded by O(λ6(n5)) 
and it can be computed in O(λ5(n5) log n).

The lower envelope is described by a connected sequence 
of arcs (ordered from left to right). Let τ = {t1, . . . , tg} be the 
breakpoints of L(t), with g = O(λ6(M5)). By construction, 
τ contains the set 	 together with the intersection points of 
those functions of collection (2) which appear in the envelope. 
Moreover, ach arc composing the envelope L(t) is a function 
of the collection (2). Because each function of such collection



4.1.2. Solving (MMR-MAD)ē The list τ defined in the
previous subsection induces a new subdivision of the feasi-
ble domain Dē obtained when the cells {Rj, j = 1, . . . , rē} in
P(Dē) are crossed by the set of lines t = tk , ∀tk ∈ τ . Let
P ′(Dē) be this new subdivision, in which each Rj is subdi-
vided into a set of smaller cells, and let {R′

s, s = 1, . . . , r ′̄
e}

be the set of cells of P ′(Dē). By construction, each cell of
P ′(Dē) is a subset of (or coincides with) a cell of P(Dē).

Figure 4 shows, for the edge ē = [v3, v5], the subdivision
P ′(Dē) obtained from the above set τ . The points of τ define
the horizontal dashed lines displayed in this figure.

The following facts hold:

1. The function F∗(t) is differentiable on (tk , tk+1), for k =
1, . . . , g − 1.

2. In the interior of each cell of P ′(Dē), F(x, t) − F∗(t) is
a differentiable function, and F∗(t) is attained over the
same piece of breakpoint curve fe,i(x, t) = 0, (for some
e ∈ E).

These properties of the objective function on each R′
s

provide similar conditions to those established for the prob-
lem analyzed in Section 3.1.1 (Theorem 4 is still valid for
F(x, t) − F∗(t) with t ∈ (tk , tk+1), k = 1, . . . , g − 1). Thus,
we will apply the same strategy as in that case. This is based on
identifying on each subregion the set of points where the max-
imum on t is attained, and then solving the restricted problem
by finding the minimum over all set of points obtained from
all subregions.

In each subregion R′
s of P ′(Dē), the solutions of

maxt{F(x, t) − F∗(t) : (x, t) ∈ R′
s} satisfy

Hs(x, t) = ∂(F(x, t) − F∗(t))
∂t

= 0

Let Js be the projection of Hs(x, t) = 0 over the x-edge,
and t = hs(x) be the function of x obtained by isolating
(if possible) t from such equation. Because P ′(Dē) is finer
than P(Dē) and R′

s⊆Rj, for some cell Rj ∈ P(Dē), then
∂F(x,t)

∂t = Gj(x, t). In contrast, F∗(t) = F (̂fe,i(t), t) for some

i = 1, . . . , n, therefore ∂F (̂fe,i(t),t)
∂t = 1

W(t)3

B(3)
e,i,s(t)

(as
e,i t+cs

e,i)
2 , where

B(3)
e,i,s(t) is a polynomial in t of maximum degree 3, and as

e,it+
cs

e,i �= 0 (the case as
e,it + cs

e,i = 0 corresponds to F∗(t) =
F∗(te,i,s), thus ∂(F(x,t)−F∗(t))

∂t = ∂F(x,t)
∂t ). Therefore, Hs(x, t) =

0 is a bivariate polynomial in x, t of maximum degree 3 in
t and 1 in x. This implies that one can always obtain t =
hs(x) as a function of x by using the closed expression of
the solutions of the equation of 3rd degree. Over each curve
Hs(x, t) = 0 the objective function F(x, t) − F∗(t) can be
expressed as a function of x in the following way

F(x, hs(x)) − F∗(hs(x)), for x ∈ Js.

If it is not possible to isolate t from Hs(x, t) = 0,
then the curve Hs(x, t) = 0 can be expressed as x =
xs, where xs is a constant. In this case, the solution of
maxt{F(xs, t) − F∗(t) : (xs, t) ∈ R′

s} is attained at a single

FIG. 4. New subdivision P ′(Dē), and cells R′
k , for edge ē = [v3, v5].

[Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

point (xs, ts). For simplicity, we also maintain the notation
for this case, that is, hs(x) = ts and Js = {xs}.

The function F(x, hs(x)) − F∗(hs(x)), for x ∈ Js pro-
vides the objective value over the curve Hs(x, t) = 0 of
stationary points in each cell R′

s. Therefore the problem
maxt∈[t−,t+]{F(x, t) − F∗(t)} can be expressed as the upper
envelope U ′̄

e(x) of the following collections of functions
{F(x, hs(x)) − F∗(hs(x)), x ∈ Js(x)} over all cells of the sub-
division of the feasible domain. Consequently, the solution
of the restricted problem can be established as follows:

Theorem 10. The solution of Problem (MMR-MAD)ē:
minx∈[0,�ē] maxt∈[t−,t+]{F(x, t) − F∗(t)} is the pointwise min-
imum of the upper envelope U ′̄

e(x) of the collection of
functions

{F(x, hs(x)) − F∗(hs(x)), x ∈ Js(x), s = 1, . . . , r ′̄
e,

F(x, tk) − F∗(tk), k = 1, . . . , g} (3)

where r ′̄
e is the number of subregions of P ′(Dē).

From Section 3.1.1, we can assume that in a preprocessing
phase, the arrangement of the n breakpoint curves together
with the computation of the closed form of the objective
function as a continuous and differentiable function on each
cell of the initial subdivision P(Dē) is already obtained in
O(n2α(n)). Besides, we note in passing that the maximum
number of intersections of any two curves of the above family
(3) is bounded above by a constant which does not depend
on n. Then, to discuss the complexity of solving Problem
(MMR-MAD)ē, it is necessary to analyze each phase in the
procedure below:



Phase 1: Compute F∗(t), given by the lower envelope L(t).
As we have already pointed out, L(t) can be constructed
in O(λ5(n5) log n) time, and its complexity is O(λ6(n5)

(Sharir and Agarwal [29], Pach and Sharir [26]).

Phase 2: Obtain the subdivision P ′(Dē). This is done by
intersecting the τ -partition with the O(n2) cells of P(Dē)

obtained from the preprocessing phase. The cardinality
of τ is g = O(λ6(n5)), and the subdivision P ′(Dē) has
O(n2λ6(n5)) cells, which is the complexity of r ′̄

e.

Phase 3: Construct U ′̄
e(x), the upper envelope of the collec-

tion of O(n2λ6(n5)) (partially defined) curves described in
Theorem 10. This can be done in O(n2λ6(n5) log∗ n log n)

time, see Appendix.

This last complexity dominates the previous ones,
therefore solving the (MMR-MAD)ē problem requires
O(n2λ6(n5) log∗ n log n) time, which implies that the
complexity for solving the problem over the tree is
O(n3λ6(n5) log∗ n log n).

4.2. The Problem on a Network

As in the previous section, on a general network the prob-
lem is analyzed by applying the above procedure for solving
the problem restricted to each primary region of the network.
The complexity of each restricted problem dominates the pre-
processing phase (for computing the distance matrix), conse-
quently the overall complexity is O(mn3λ6(n5) log∗ n log n).
We would like to remark that this complexity is higher than
O(n9). This high complexity may suggest to consider alter-
native approaches to analyze these problems which may lead
to better complexity bounds.

5. CONCLUDING REMARKS

reader may note that using the same notation as in (1), we
obtain the following representation:

M(x, t) + αF(x, t) = 1

W(t)

n∑
i=1

wi(t)d(vi, x)

+ α
1

W(t)

n∑
i=1

wi(t)|d(vi, x) − M(x, t)|

= 1

W(t)2

n∑
i=1

wi(t)((d(vi, u)

+ δix)W(t) + α|fi(x, t)|).
From this expression, we can reproduce a similar argument
as the one done in the article for the function F(x, t).

Different open problems arise when edge lengths can
change dynamically with the parameter and also if one con-
siders alternative functions for describing the dynamic nature
of the parameter. For example, in certain periods of time,
the evolution of some populations can be better represented
by piecewise linear or polynomial functions than by linear
ones. Also, modeling the deviation from a nominal value of
the weights may require more complex functions than linear.
However, these problems clearly lie out of the scope of this
article and therefore, they are left for a follow up article.

APPENDIX

In this Appendix, we include, for the sake of completeness
and readability, an important result that is used in the article.

Theorem 11 (Sharir and Agarwal (1995), Theorem 6.5).
Given a set of n x1-monotone Jordan arcs with at most s
intersections between any pair of arcs, its lower envelope
has an O(λs+2(n)) complexity, and it can be computed in
O(λs+1(n) log n) time.

λs(n) is the maximum length of a Davenport-Schinzel
sequence of order s on n symbols. The reader is referred
to Chapter 3 in Sharir and Agarwal (1995) for the exact
definitions and properties of the functions λs(n). We note
that λ1(n) = O(n), λ2(n) = O(n), λ3(n) = θ(nα(n)), and
λ4(n) = θ(n2α(n)), where α(n) is the inverse of the Acker-
mann function which grows very slowly. Observed that α(n)

is essentially a constant, like α(n) ≤ 4 for all “practical”
values of n, see Pach and Sharir [26].

The problem of estimating λs(n) for s > 4 is more com-
plicated. For any constant s, it is well-known the bound
λs(n) = O(n log∗ n). Recall that log∗ n is the minimum
number of times q such that q consecutive applications of
the log operator will map n to a value smaller than 1, i.e.,

(q)︷ ︸︸ ︷
log . . . log n ≤ 1. Actually, log∗ n is the smallest height of
an exponential “tower” of 2’s, 222...

which is ≥ n (nothing
changes if 2 is replaced by another base b > 1). Observe that,
log∗ n is much smaller than log n and it can be considered

In this article, we considered two robust versions of the 
mean absolute deviation problem on networks with dynamic 
evolution of node weights, which are modeled by means 
of linear functions of a parameter. For each robust crite-
ria, we have studied the corresponding optimization problem 
on both tree networks and cyclic networks, we have pro-
vided exact algorithms for solving them and discussed their 
corresponding complexities.

As pointed out by Erkut [12], direct minimization of typ-
ical inequality measures (including MAD) contradicts the 
minimization of individual outcomes, and the facility located 
at (or near) infinity will provide (almost) perfectly equal 
service (in fact, rather lack of service) to all the clients. Nev-
ertheless, some absolute inequality measures like MAD can 
be combined with the mean itself into optimization criteria 
that remain in harmony with both inequality minimization 
and minimization of distances (Ogryczak [24] and references 
therein). The results in this article allow to tackle with the 
same tools the minimization of the combined median and 
MAD objective function M(x, t) + αF(x, t) with α > 0 
which guarantees equitable minimization of distances. The



almost constant for “practical” values of n, see Sharir and
Agarwal [29], Pach and Sharir [26].
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