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CMOS Image Sensors (CIS) are key for imaging technol-
ogies. These chips are conceived for capturing optical
scenes focused on their surface, and for delivering elec-
trical images, commonly in digital format. CISs may incor-
porate intelligence; however, their smartness basically
concerns calibration, error correction and other similar
tasks. The term CVISs (CMOS VIsion Sensors) defines
other class of sensor front-ends which are aimed at per-
forming vision tasks right at the focal plane. They have
been running under names such as computational image
sensors, vision sensors and silicon retinas, among others. 

CVIS and CISs are similar regarding physical imple-
mentation. However, while inputs of both CIS and CVIS
are images captured by photo-sensors placed at the
focal-plane, CVISs primary outputs may not be images
but either image features or even decisions based on the
spatial-temporal analysis of the scenes. We may hence
state that CVISs are more “intelligent” than CISs as they
focus on information instead of on raw data. Actually,
CVIS architectures capable of extracting and interpreting
the information contained in images, and prompting reac-
tion commands thereof, have been explored for years in
academia, and industrial applications are recently ramp-
ing up.

One of the challenges of CVISs architects is incorporat-
ing computer vision concepts into the design flow. The
endeavor is ambitious because imaging and computer
vision communities are rather disjoint groups talking dif-
ferent languages. The Cellular Nonlinear Network Univer-
sal Machine (CNNUM) paradigm, proposed by Profs.
Chua and Roska, defined an adequate framework for
such conciliation as it is particularly well suited for hard-
ware-software co-design [1]-[4]. This paper overviews
CVISs chips that were conceived and prototyped at IMSE
Vision Lab over the past twenty years. Some of them fit
the CNNUM paradigm while others are tangential to it. All
them employ per-pixel mixed-signal processing circuitry
to achieve sensor-processing concurrency in the quest of
fast operation with reduced energy budget.
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I.  Introduction

 picture is worth a thousand words. The scope and mean-
ing of this sentence are evident for human beings. Images

carry the largest percentage of data involved in our interac-
tion with the environment, and we employ more than 50% of
our brain processing capabilities for handling visual scenes
[5]. The same happens for many animals, and we do not need
many arguments to get convinced of the advantages of con-
ferring vision capabilities to artificial sensory systems.

However, large-scale deployment of imaging technologies
was traditionally limited by cost, Size, Weight and Power
(SWaP) constraints. Sensors employed mostly CCD technol-
ogies and delivered analog images. Camera systems built
with these sensors were costly, bulky and power hungry.
These drawbacks were particularly notorious for systems
with visual analysis capabilities, thus rendering vision
unfeasible for many applications. This scenario has recently
changed owing to advances on CMOS pixels and CMOS
Image Sensors (CIS) architectures, semiconductor technolo-
gies, packaging technologies, heterogeneous integration,
and system-on-chip architectures, among others [6]-[9]. All-
in-all, these advances have enabled imaging systems with
reduced SWaP, low cost, large speed and large functional
capabilities and flexibility. Given the relevance of the visual
sense, it is not surprising that such increased availability had
resulted in imaging technologies flooding practically all
application territories. The growth rate of inventions and
revenues concerning these technologies have been impres-
sive; the number of IP assets and the revenue have been mul-
tiplied roughly by five in the last decade [6][10]. The imager
market is dominated by smartphones, notebooks, tablets and
other consumer equipment, but other sectors are rapidly
growing [6]. For instance, most modern automobiles include
several cameras to continuously monitor the outside and the
inside, and many are capable of detecting pedestrians, clas-
sifying road-signs, and other tasks.

CISs have progressed towards ever smaller pixel pitch, and
an ever larger image resolution (number of pixels). Besides
pixel scaling, other CIS challenges include [6]-[10]: 

• enhancing the image quality by improved readout, sig-
nal conditioning, and image enhancement circuitry; 

• boosting the image downloading speed by improved
communication techniques and; 

• reducing the area, power, and cost by on-chip circuit
embedding. 

Recent milestones include multi-million-pixel sensors
with pixel-pitch around 1m, data rates above 10Gpx/s [11],
reconfigurable A/D conversion and readout architectures
[12][13], image correction, thermal and energy manage-
ment, etc. [9].

The last few years have also witnessed ever-increasing
activities towards adding the estimation of depth, i.e. 3-D
information, to 2-D scenes. One main driver is human-
machine interfaces for the entertainment industry [14], but
these technologies are also applicable to surveillance, auto-
motive, industrial inspection and medicine, among other
sectors with huge development potentials. Besides tech-
niques based on stereoscopy, triangulation and the like, sig-
nificant efforts are being made towards modifying CMOS
pixels for capturing time information and estimate depth
through Time-of-Flight (ToF) techniques. Imaging arrays
consisting of Single Photon Avalanche Diodes (SPADs) pix-
els are receiving significant interest [15]-[18]. However,
ToF measurements require active illumination that compli-
cates system implementation. Also, 3-D sensors are still lag-
ging behind mainstream CISs regarding the incorporation of
on-chip processing circuitry.

A

Figure 1. Conceptual block diagrams for an imager  (top), a camera 
(mid) and an embedded vision system (bottom). 

The trend is towards full integration of these systems. Progresses in 
semiconductor technologies, heterogeneous integration and packag-
ing enable compact implementations of these systems in the form of 

Systems-on-Chip and/or System-in-Package. 
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CVISs, the main characters of this paper, are
similar to CIS regarding physical implementation;
they both include photo-sensors and CMOS pro-
cessing primitives on a common silicon substrate.
Also, both CIS and CVIS chips are similar in that
they can be used as front-end devices of complex
hardware-software vision systems [19]-[21].
Roughly speaking the front-end captures images
and delivers data for subsequent processing by
digital processors. However, it is well known that
raw pixel data are largely redundant, and that
information contained into images can be
extracted from reduced subsets of the spatial sam-
ples [22]. Consequently, vision systems architec-
tures employing CISs at the front-end must read,
encode, transmit and store myriads of irrelevant
data.

However, CVISs are information-centric front-
ends conceived to deliver information, instead of
raw data [23]-[33]. Therefore, using CVISs at the
front-end of visions systems yields smaller SWaP
and larger throughput, as required for wireless
sensor networks, unattended surveillance net-
works, automotive, low payload UAVs, visual
prosthesis and internet-of-the-things, and in gen-
eral whenever portable vision is required.

While CISs are solid industrial assets, CVISs are still lag-
ging behind regarding industrial exploitation. Among other
obstacles, they are lacking standardization. However, their
concept has been already demonstrated through many sili-
con implementations and their industrial use is starting to
ramp up [20]. 

II.  CNNUM-based Visual Microprocessors

The Vision Processing Chain 

Retinas are considered key for the outstanding performance
of natural vision systems [34][35]. It is hence arguable that
artificial vision systems will largely benefit from using
front-ends with architecture and operation similar to retinas.
Actually, many CVISs are named silicon retinas in the liter-
ature [36]-[38]. Retinas contain photo-receptors and dynam-
ically-coupled processing cells of different types. They are
able to complete complex spatial/temporal processing tasks
to extract relevant information from the incoming sensory
data, thus reducing the amount of data before transmitting
them for subsequent processing. This data reduction strategy
is justified by the specifics of the processing chain of vision
 illustrated in Fig.3.

This figure highlights the steps to go from sensor raw data

to vision outcomes. The vertical axis represents data dimen-
sions while the horizontal one represents the abstraction
level of the data. The processing chain follows the diagonal
arrow in Fig.3(a). Top-left corresponds to input data cap-
tured by the sensor and bottom-right corresponds to output
data which support system actions. The first stage of the
vision processing chain is usually devoted to image
enhancement and restoration. During this stage, non-ideali-
ties of the sensing process are compensated and the quality
of captured images is improved in relation to selected image
features. This is achieved by applying several filters (convo-
lution masks, diffusion process, etc.) and by performing
point-to-point transformations. The output data provided by
enhancement and restoration tasks is still a matrix of real
numbers, which are the input of a second stage where feature
extraction tasks are performed. These operations typically
examine every pixel to verify if there is a feature present at
that pixel considering its neighborhood. Of interest for sub-
sequent processing are edges, corners or interest points,
blobs or region of interest, ridges, etc. Outputs of this second
stage form an irregular flow of data which are the inputs for
the high-level vision processing tasks [39] [40].

Fig.3(b) illustrates vision-chain data evolution by means
of an application example where the target is detecting

Figure 2. CISs and CVISs are front-end chips that embed photo-sensor arrays to cap-
ture scenes focused on the chip surface. 

CISs produce electrical images consisting of digitized raw pixel data (bottom-right side 
in the figureadapted from [39]).

CVISs, include processing structures in the focal plane to perform spatial/temporal 
tasks concurrently with acquisition, thus producing pre-processed, compressed imag-

es (top-right inset). 
Eye-RISTM is a Trademark of AnaFocus Ltd [20].
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defective parts as they move on a conveyor belt. This appli-
cation is entirely executed by the EyeRISTM system-of chip
visual microprocessor of AnaFocus Ltd. [20]; the only data
downloaded from the chip are those codifying the classifica-
tion decision. Images are acquired in an asynchronous man-
ner and analyzed on-line to extract several features on the
basis of which the pieces are classified as either defective or
correct and a corresponding trigger signal is generated. Data
reduction and increased abstraction levels as data progress
across the chain are highlighted at the figure lettering.

Dashed oblique lines in Fig.3(a) mark where front-end
borders are located in different vision system architectures.
The left-side line corresponds to systems that employ CISs
at the front-end; the right-side corresponds to systems that
employ CVISs. Operations at the left of each borderline are
performed by the corresponding system front-end while
operations at the right are completed by the remaining hard-
ware components using as inputs the front-end outputs. Note
that CVISs enable placing the border at a stage of the chain
where data have been reduced through early processing 
similar to what retinas do [35]. Hence vision systems built
with CVISs front-ends have the potentials for larger speed
and better SWaP than those built with CISs. 

Fig.4 highlights differences between architectures with
CIS and CVIS front-ends respectively. Note that CVISs
sense and pre-process in a concurrent manner, thus sending
for subsequent processing an amount of data, represented by

 that is much smaller  ( ) than the number  of raw
sensor data. Indeed, in the architecture of Fig.4(b), process-
ing is performed progressively by distributing processing
tasks between the front-end and the core processor sections. 

Concept of CNN-Based Visual Microprocessors

There are two general classes of CVIS architectures:
• Specific-purpose ones pick up a specific task and

implement it on silicon. This is quite common also for
other neuro-morphic systems [36][37][41][42].

• “General-purpose” mixed-signal visual microproces-
sors [3]. That is, processors which combine optical
sensing with analog cellular spatial-temporal dynamic
circuits and some form of logic. These processors have
elementary instructions mapped onto receptive fields
[4], and embed the possibility of storing and executing
user-selectable sequences of instructions.

Visual microprocessors architectures based on the
CNNUM paradigm aim at combining the best of analog and
digital worlds. On the one hand, analog circuits are known
to excel concerning SWaP; they are smaller, faster and
require less energy than digital ones for tasks with limited
signal-to-noise-ratio requirements [43][44]. Among other
advantages, analog techniques fully exploit the functional
capabilities offered by basic VLSI design primitives, and

Figure 3. (a) Processing hierarchy, from left-top to bottom-right, in vision; (b) Illustrative example of vision processing chain [19].

(a) (b)

f f F« F

Figure 4. Conceptual vision system architectures with: (a) a CIS front-
end; (b) a CVIS front-end.

CVISs perform early vision tasks right at the front-end, thereby bring-
ing much less number of data into play and hence significantly reduc-

ing memory, bandwidth and computation payloads [19].

(a)

(b)
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particular by MOS transistors. to implement a large variety
of circuit blocks with a minimum number of devices [3][42].
On the other hand, digital circuits excel regarding controlla-
bility, flexibility, and robustness. 

Back in the 1960s, the building blocks for logic design had
been the various logic circuits (micro-modules) implement-
ing different “smart” logic tasks. These had also been used
to make digital computers. The digital computer has a key
attribute due to J. Von Neumann, namely stored programma-
bility. It means that the same core architecture, via algo-
rithms coded in software, can be used for a myriad of tasks.
Or, to put it in another way, the architecture is open to the
human intellect for millions of algorithmic innovations. This
is the functional secret behind the success of the digital
microprocessor, first made in the early 1970s. 

CNNUM-based visual microprocessors aim at mimicking
this functional secret. However, they are mixed-signal
devices which realize analog-and-logic spatial/temporal
processing tasks and hence require quite different building
blocks [3]. One key aspect of visual microprocessors is the
integration of sensing and stored programmable processing
(SPP) at the analog signal array level. Among other things,
this allows us to tune the sensors dynamically, pixel by pixel,
depending on the content and even on the context of the
changing scene.

CNNUM-based visual microprocessors belong to the gen-
eral class of topographic smart sensors processors formed
by an array of processing cores. Some features which make
CNNUM different from other topographic processors
include the following:

• They elementary processors (cells) are intrinsically
mixed-signal processors which mutually interact with
tunable interaction weight patterns.

• Data memories are embedded per-pixel to locally store
partial processing outcomes that are further employed
to either generate global processing outcomes or con-
trol the sequence of processing steps.

• This programmable and reconfigurable array is embed-
ded in a computer architecture resulting in CNNUM
general-purpose architecture.

• The CNNUM is stored programmable and capable of
implementing mixed-signal spatial/temporal algo-
rithms through the smart synergy of hardware and soft-
ware.

All the signal variables are continuous, except for the dis-
creteness in space (pixels). At the same time, visual micro-
processors retain the extraordinary strength of digital
computers, their unconstrained variability via programming
or software. Obviously, such software and related algorithms
are different from conventional ones.

Functional mechanisms underlying CNNUM processing
capabilities are briefly summarized at the top-right inset of
Fig.2. It shows that processing pixel cells include circuits
structures to control the dynamic evolution of a dynamic
state driven by:

• two-dimensional gain transformations of the inputs
(matrix );

• two-dimensional offset factors (parameter ); and
• subjected to dynamic interactions among the states of

neighbour cells (matrix ).
Complex spatial/temporal tasks can be performed by

proper setting of the parameters. Also, programs can be exe-
cuted by executing algorithms in a process where parameter
values are changed by software, thus covering a very large
variety of vision tasks [4].

Also, as Fig.5 illustrates, bio-inspired models that mimic
the way in which images are processed at retina visual path-
ways can be implemented by extending the CNNUM con-
cept to include two state variables per cell. Complex spatial-
temporal dynamics can be generated in this way to achieve
computation through waves. The outcome of such process-
ing can be used to develop control feedback actions to adapt
the response of photo-receptors to local image features.
Besides simple resistive grid filtering, it is possible to pro-
gram other spatial-temporal processing operators into the
model core, such as non-linear and anisotropic diffusion,
among others.

On CVIS Architectural Choices

Most efficient CVISs architectures employ mixed-signal
Multi-Functional sensory-processing PixelS (MFPS) for
fully-parallel completion of computational-intensive early
vision tasks, followed by sub-sampled topographic proces-
sor arrays (typically digital), processors-per-column and
scalar processors [33]. MFPSs actually make the next evo-
lutionary step of CMOS pixels, after passive pixels (PPS)
and active pixels (APS), by embedding within the pixel

B
z

A

Figure 5. Coupled processing layers and waves generated by the 
CACE CNNUM chip emulating the behavior of Inner and Outer Plexi-

form Layers in mammal retinas [45].
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resources for analog processing, memory and programming
and control of information flows [27]. However, embedding
circuitry per-pixel enlarges the pixel pitch and may result in
spatial sampling aliasing artifacts. Despite considerations
concerning the number of pixels required for vision tasks
[22], design trade-offs arise which may require alternative
architectural solutions. A sound strategy is resorting to 3-D,
vertically integrated technologies for improving the pixel
foot-print by distributing the different circuit types across
different physical layers [46][47]. This is already happening
in CIS-APSs and we are convinced that CVIS roadmap will
evolve towards 3-D architectures. Other alternatives include
using per column processors and a sub-sampled topographic
array of processors, among others.

Fig.6 illustrates the functional structures encountered
within an industrial MFPS, namely the Q-EyeTM pixel. This
CVIS is the front-end of the Eye-RISTM vision system from
AnaFocus Ltd [20], which picture is included at the top-right
in the figure. The figure inset at the bottom-right highlights
the different signal modalities included per pixel. 

III.  Illustrative CVIS Chips

ACE and CACE Chips

ACE (Analogic Cellular Engines) and CACE (Complex
ACEs) were devised and designed by the IMSE vision lab
over around ten years, following the proposal of improved
mixed-signal circuits for analog processing and memory
[3][44][48][49]. These chips employed the CNNUM para-
digm and were designed for robust analog behaviour owing
to the extensive use of dynamic biasing, error correction and
calibration loops. ACE and CACE chip milestones are
shown in the roadmap of Fig.7, which epitomes were the
CACE2 chip [45] and the ACE16k-v2 [50] chip. 

These chips demonstrated the concept of CNNUM and the

viability of ultra-fast vision front-ends with small SWaP.
Both were fabricated using standard 0.35m  CMOS tech-
nology. The ACE16k-v2 displayed peak computing figures
of 330GOPs with 3.6GOPs/mm2 and 82.5GOPs/W. It per-
formed linear convolutions on 3x3neighborhoods in less
than 1.5s, image-wise Boolean combinations in less than
200ns, image-wise arithmetic operations in about 5s, and
CNN-like temporal evolutions with a time constant of about
0.5s. Regarding CACE2, this chip opened vistas for appli-
cation of the CNNUM paradigm to the emulation of the
dynamic phenomena observed in mammalian retinas. 

ACE architectures prompted the launching of the start-up
company AnaFocus Ltd. in Sevilla-Spain; they were also
transferred to the hungarian start-up AnaLogic Ltd.

Eye-RISTM Visual Processor On-Chip 

Fig.8(a) shows the block diagram of the Eye-RISTM vision
system on a chip [20]. It embeds a CVIS front-end, a Digital
Image Processor (DIP), a microprocessor, memories and I/O
and communication ports. CVIS architecture follows a mod-
ified version of the CNNUM paradigm, similar to Single
Instruction Multiple Data (SIMD) processors, consisting of

Figure 6. (a) Concept of vision sensor with CVIS front-end; (b) Archi-
tecture of a Q-EyeTM cell [19][20][27].

Figure 7. Roadmap of vision chips with CNNUM architecture de-
signed at the vision lab of Institute of Microelectronics of Seville (The 
bottom-right one was designed in collaboration with CITIUS-Univer-

sidad de Santiago de Compostela).
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an array of interconnected mixed-signal processors, one per
pixel, that operate in parallel  see Fig.8(b). Since the CVIS
is software-controllable, the systems must include a dedi-
cated microprocessor to control and configure its operation.
Users can defined a particular algorithm or sequence of
operations through the NIOS microprocessor, and the micro-
processor of the CVIS controller sends the microinstructions
through the control interface.

Architecture and parameters of this CVIS are conceived
for efficient completion of pre-processing vision tasks. The
implementation of regular algorithms in hardware involves
mapping of operations onto dedicated processing elements
and representation of data dependencies by hardware inter-
connections or intermediate memories. For regular algo-
rithms of image processing, array processors are typically
derived as appropriated hardware structures. Favourable
properties of array structures are the incorporation of paral-
lel processing and pipelining and the locality of connections
between processing elements. Thus, high performance and
throughput are obtained at moderate hardware expense.

Parallelism and the use of mixed-signal circuitry enable
going from sensing to actuation at rates about 1kF/s rate with
around 60nW per pixel. Also, software programming of the

front-end features large flexibility to cope with a wide range
of machine vision applications.

Low Power CVIS for Gaussian Pyramid Extraction

Compatibility with computer vision tools is cornerstone for
CVIS adoption and can be achieved by focusing on the
embedding of pre-processing functions customarily used by
computer vision system engineers. This is actually the case
of image pyramids, such as the Gaussian pyramid [51].
Image pyramids are found at the initial stages of the process-
ing vision chain for a large variety of computer vision appli-
cations and algorithms such as the Scale Invariant Feature
Transform (SIFT) and variations thereof. Their calculation is
resource intensive because it involves repetitive operations
with the whole set of image data. As a consequence, calcu-
lating them with CVIS-SIMDs may represent a first step
towards embedding complete computer vision on a single
die with vision capabilities into SWaP sensitive systems
such as vision-enabled wireless sensor networks [52] or
unmanned aerial vehicles [53]. 

Fig.9 shows the block diagram of a MFPS micro-photo-
graph of a 176x120 resolution CVIS designed to extract the
Gaussian pyramid [26]. This pyramid is generated by using
a switched-capacitor network embedded per MFPS. In order
to shorten routing length and speed I/O operations up, the
image is read out through two frame buffers outside the
MFPS array. Each MFPS is connected to two 8-bit registers
in the corresponding frame buffer, allowing for reading out
pixels outside the chip as they are being A/D converted.

The scene is acquired with 4 3T-APS per MFPS with
nwell/p-subs. photo-diodes. Every MFPS contains the local
circuitry of an 8-bit single-slope ADC and one circuit to per-
form correlated double sampling. Also, the MFPS comprises
4 state capacitors with their corresponding switches along
the four cardinal directions to configure a double-Euler
switched-capacitor network that yields the Gaussian pyra-
mid.

Fig.10 shows the image acquired by the chip and several
snapshots of the Gaussian pyramid for different values of the

Figure 8. Eye-RISTM vision system: (a) Block diagram; (b) Architec-
ture [19][20][27].

(a)

(b)

Figure 9. MFPS block diagram of Gaussian pyramid CVIS chip 
[19][26].
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diffusion width, σ, and the number of clock cycles n. Devia-
tions between images filtered on-chip, on the one hand, and
filtered by a conventional computer, on the other hand are
tolerated by the SIFT algorithm [26].

This chip consumes 70mW with scene acquisition and the
Gaussian pyramid of 3 octaves with 6 scales each. The
Gaussian pyramid is executed in 8ms (A/D conversions
included), with 200s  per AD conversion, and 150ns as the
clock cycle for the switched-capacitor network. This leads to
26.5nJ/px at 2.64Mpx/s. As compared to conventional archi-
tectures consisting of a CIS front-end and a conventional
MPU (even a low-power MPU), this CVIS chip features
around three orders of magnitude energy consumption
reduction while having similar or faster processing speed. 

Multifunctional Feature Extraction Sensor

Embedded camera systems for markets like smart surveil-
lance or wearable devices need to operate with a tight power
budget. They also need to cope with a vast range of illumi-
nation conditions, and at the same time, they need to incor-
porate intelligent features dictated by high-level
specifications. This can be achieved by using CVISs with
MFPSs tailored for meeting these stringent requirements.
An example developed at IMSE vision lab for environmen-
tal monitoring is shown in Fig.11. 

There is also a growing demand for privacy-aware visual
systems. MFPS-based CVISs can implement privacy poli-
cies from the very beginning of the signal processing chain.
Fig.12 shows the architecture and the pixel of a CVIS con-
ceived specifically for dynamic range adaptation and pri-
vacy-aware Region-of-Interest (RoI) tracking. The central

Figure 10. Image acquisition and different snapshots of the on-chip 
Gaussian pyramid. The upper left image is the input scene, the rest of 

the images from left to right and top to down correspond to σ=1,77 
(clock cyles n=19), σ=2,17 (n=29), and σ=2,51 (n=39) [19].

Figure 11. Ultra-low-power smart surveillance for forest fire detection 
as an application scenario of CVISs [54].

Figure 12. Functional diagram of the chip architecture and schematic of the pixel of a CVIS for privacy-aware applications [19] [55].
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element is an array of 4-connected mixed-signal MFPSs.
Each MFPS contains two photo-diodes. One of them is
responsible for generating the pixel value by integrating the
photo-current in a sensing capacitance. The other photo-
diode generates a replica of this voltage value that is initially
stored. This stored voltage at this node will be employed
later to evaluate the average value of different neighbour-
hoods. The array can be divided into different regions by
means of control lines distributed along the horizontal and
vertical edges of the array [55], which are operated by
peripheral control blocks and selection registers. These reg-
isters can be serially updated with different interconnection
patterns. There is also the possibility of setting up six differ-
ent successive pixelation scales, with patterns that can be
loaded in parallel for fast reconfiguration.

On-chip programmable pixelation can be implemented in
this chip by combining focal-plane reconfigurability, charge
redistribution and distributed memory. Right after photo-
current integration, all the pixels in the image are repre-
sented by their respective voltages; then these values are
copied and stored in parallel, what takes only 150ns and is
non-destructive. This is important to avoid artifacts due to
obfuscation. Once the stored voltages are set, the adequate
interconnection pattern must be established. Parameters like
RoI address and the required degree of obfuscation are pro-
vided by the algorithm. These patterns, activated by the cor-
responding control signals, enable charge redistribution
among the connected capacitors, thus averaging selected
areas of the image. The rest remains the same, so privacy-
protection is implemented at chip level. No sensitive infor-
mation is delivered by the sensor.

IV.  Conclusions

Applications targeting image analysis instead of just capture
are gaining relevance within the ecosystem of imaging tech-
nologies and are expected to grow at rapid pace in the near
future. Advances in sensor technologies, heterogeneous
packaging and processor embedding help to reduce the
SWaP of vision systems. However, architectural changes
may also be required for large-scale deployment of vision
systems in applications demanding minimum SWaP and
large speed. It is well known that the front-end is key for the
outstanding performance and energy efficiency of natural
vision systems. CVIS are meant to emulate functional attrib-
utes of these natural front-ends, namely parallelism, sensor-
processor concurrency, and data reduction. CVISs embed
computer vision techniques at the sensor focal plane, and are
suitable candidates for replacing conventional imagers (CIS)
as front-ends of efficient vision systems. The CNNUM par-
adigm, devised by Profs. Chua and Roska, provided a unify-

ing framework for conciliating CVIS chip design with
digital processor concepts, on the one hand, and computer
vision concepts, on the other hand. CVISs chip prototypes
devised at IMSE Vision Lab and AnaFocus Ltd. demonstrate
the suitability of compact, fast and energy efficient vision
systems.

Acknowledgements

This research has been partially funded by Junta de Anda-
lucía, Proyectos Excelencia-Conv. 2012 TIC 2338, Spanish
government projects MINECO TEC2015-66878-C3-1-
R&TEC2015-66878-C3-3-R. Support from different ONR-
USA contracts is also acknowledged.

Contributions of the teams from CITIUS (V. Brea, M.
Suárez, P. López, D. Cabello) and AnaFocus (F.J. Jimñenez-
Garrido and R. Domñinguez-Castro) are also acknowledged.

References

[1] L. O. Chua and T. Roska, “The CNN Paradigm”.  IEEE Transactions
on Circuits and Systems I: Fundamental Theory and Applications,
Vol. 40, No.3, pp. 147-156, March 1993.

[2] T. Roska and L.O. Chua, “The CNN Universal Machine: An Analogic
Array Computer”. IEEE Tran. on Circuits and Systems-II: Analog and
Digital Signal Processing, Vol.40, pp. 163-173, March 1993.

[3] T. Roska and A. Rodríguez-Vázquez. Towards the Analogic Visual
Microprocessor. John Wiley & Sons, Chichester 2001. 

[4] L.O. Chua and T. Roska, Cellular Neural Networks and Visual Com-
puting. Cambridge University Press, Cambridge-UK 2002.

[5] L.M. Chalupa and J.S. Werner, The Visual Neurosciences. MIT Press
2004. 

[6] Yole Development, 2016. http://www.yole.fr

[7] 2015 International Technology Roadmap for Semiconductors. https://
www.semiconductors.org/main/2015_international_technology_roadmap_-
for_semiconductors_itrs/

[8] Smithers Apex’s Image Sensors events Image Sensors Europe and
USA Conferences. https://www.image-sensors.com/

[9] Proc. 2017 Int. Image Sensing Workshop. Hiroshima, June 2017.
[10] R. Fontaine, “The State of the Art of Mainstream CMOS Image Sen-

sors”. Proc. 2015 Int. Image Sensor Workshop, Vaals, June 2015.
[11] I. Takayanagi and J. Nakamura, “High-Resolution CMOS Video

Image Sensors”. Proceedings of the IEEE, Vol. 101,  pp. 61-73, Jan.
2013.

[12] S. Kawahito et al., “A CMOS Image Sensor Integrating Column-Par-
allel Cyclic ADCs with On-Chip Digital Error Correction Circuits”.
IEEE Int. Solid-State Circuits Conf., pp 56-595, Feb. 2008.

[13] J.A. Leñero-Bardallo and A. Rodríguez-Vázquez, “Review of ADCs
for Imaging”. Proc. Image Sensors and Imaging Systems 2014-SPIE
Electronic Imaging 2014, January 2014.

[14] A. Paybe et al., “A 512×424 CMOS 3D Time-of-Flight Image Sensor
with Multi-Frequency Photo-Demodulation up to 130MHz and 2GS/s
ADC”. Proc. IEEE Int. Solid-State Circuit Conference, February
2014.

[15] P. Seitz and A.J.P. Theuwisen (Ed.), Single Photon Imaging. Springer
2011.

[16] A. Tosi and F. Zappa, “MiSPiA: Microelectronic Single-Photon 3D
Imaging Arrays for Low-light High-speed Safety and Security Appli-
cations”. Proc. SPIE, vol. 8899, p. 88990D, Nov. 2013.

[17] G.F. DallaBetta et al., “Avalanche Photodiodes in Submicron CMOS
Technologies for High-Sensitivity Imaging”. Advances in Photodi-
odes. Rijeka, Croatia: InTech, 2011, pp. 225–248.



FIRST QUARTER 2018 IEEE CIRCUITS AND SYSTEMS MAGAZINE  

[18] I. Vornicu et al., “Real-Time Inter-Frame Histogram Builder for
SPAD Image Sensors”. IEEE Sensors Journal, Vol. 18, pp. 1576-
1584, February 2018.

[19] A. Rodríguez-Vázquez et al., “In the Quest of Vision-Sensors-on-
Chip: Pre-processing Sensors for Data Reduction”.  Proc. IS&T Elec-
tronic Imaging: Image Sensors and Imaging Systems 201,  pages 96-
101, IS&T, Springfield, VA, 2017.

[20] Anafocus Ltd. http://www.anafocus.com/

[21] A.N. Belbachir, Smart Cameras. Springer, ISBN:978-1-4419-4419-
0952-7, 2009. 

[22] A. Torralba, “How Many Pixels Make an Image?”. Visual Neurosci-
ence, vol. 26, n. 01, pp. 123-131.

[23] A. Rodríguez-Vázquez et al., “ACE16k: The Third Generation of
Mixed-Signal SIMD-CNN ACE Chips Toward VSoCs”. IEEE Tran.
on Circuits and Systems-I, vol. 51, no. 5, pp. 851-863, May 2004.

[24] J. Fernández-Berni et al., “FLIP-Q: A QCIF Resolution Focal-Plane
Array for Low-Power Image Processing,” IEEE Journal of Solid-State
Circuits, vol. 46, no. 3, pp. 669-680, March 2011.

[25] S. Vargas-Sierra et al. “A 151dB High Dynamic Range CMOS Image
Sensor Chip Architecture with Tone Mapping Compression Embed-
ded in-Pixel". IEEE Sensors Journal, Vol. 15, pp. 180-195, January
2015.

[26] M. Suárez et al., “Low Power CMOS Vision Sensor for Gaussian Pyr-
amid Extraction”. IEEE Journal of Solid-State Circuits, Vol. 52, pp.
483-495, February 2017.

[27] A. Rodríguez-Vázquez et al., “A CMOS Vision System On-Chip
withMulti-Core, Cellular Sensory-Processing Front-End”. Chapter 6
in Cellular Nanoscale Sensory Wave Computers (edited by C. Baatar,
W. Porod and T. Roska). Springer 2010.

[28] S.J. Carey et al., “A 100,000 fps Vision Sensor with Embedded
535GOPS/W 256 x 256 SIMD Processor Array”. Proc. 2013 Sympo-
sium on VLSI Circuits (VLSIC), pp. C182-C183, 2013.

[29]  S. Park et al., “243.3 pJ/Pixel Bio-Inspired Time-Stamp-Based 2D
Optic Flow Sensor for Artificial Compound Eyes”. Proc. 2014 IEEE
International Solid-State Circuits Conference Digest of Technical
Papers (ISSCC), pp. 126-127, 2014.

[30] A. Dupret et al., “A DSP-like Analogue Processing Unit for Smart
Image Sensors”. Int. J. of Circuit Theory and Applications, Vol. 30,
pp. 595-609, 2002.

[31] A. Paasio et al., “A 176 x 144 Processor Binary I/O CNN-UM Chip
Design”. Proc. 1999 European Conference on Circuit Theory and
Design-ECCTD, 1999.

[32] M. Laiho et al., “MIPA4k: Mixed-Mode Cellular Processor Array”.
Focal-Plabe Sensor-Processor Chips. Springer 2011.

[33] A. Zarandy (editor). Focal-Plabe Sensor-Processor Chips. Springer
2011.

[34] B. Roska and F. S.Werblin, “Vertical Interactions Across Ten Parallel,
Stacked Representations in the Mammalian Retina”. Nature, Vol. 410,
pp. 583–587, Mar. 2001.

[35] F. Werblin et al., “The Analogic Cellular Neural Network as a Bionic
Eye,” Int. J. Circuit Theory Applicat., Vol. 23, pp. 541–549, 1995.

[36] C. Koch and H. Li, Eds., Vision Chips, Implementing Vision Algo-
rithms with Analog VLSI Circuits. IEEE Press 1995.

[37] A. Moini, Vision Chips. Kluwer 2000.
[38] P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128 ×128 120 dB 15

μs Latency Asynchronous Temporal Contrast Vision Sensor”. IEEE J.
Solid- State Circuits, vol. 43, no. 2, pp. 566–576, Feb. 2008.

[39] R.C. González and R.E. Woods, Digital Image Processing. Prentice
Hall 2002. 

[40] R.C. González et al., Digital Image Processing Using MATLAB - 2nd
Ed. Gatesmark Publishing 2015.

[41] A. Rodríguez-Vázquez et al., “A Modular Programmable CMOS Ana-
log Fuzzy Controller Chip”. IEEE Tran. Circuits and Systems - II, Vol.
46, pp. 251-265, IEEE March 1999.

[42] R. Saspeshkar, Ultra Low-Power Bioelectronics: Fundamentals, Bio-
medical Applications and Bio-Inspired Systems. Cambridge 2010.

[43] B. J. Hosticka, “Performance Comparison of Analog and Digital Cir-
cuits”. Proceedings of the IEEE. Vol. 73, pp. 25-29, January 1985.

[44] A. Rodríguez-Vázquez et al., “MOST-based Design and Scaling of
Synaptic Interconnections in VLSI Analog Array Processing Chips,”
J. VLSI Signal Process. Syst. Signal, Image Video Technol., Vol. 23,
pp. 239–266, Nov./Dec. 1999.

[45] R. Carmona et al., “A Bio-Inspired 2-Layer Mixed-Signal Mixed-Sig-
nal Flexible Programmable Chip for Early Vision”. IEEE Tran. on
Neural Networks, Vol. 14, pp. 1313-1336, September 2003.

[46] A. Rodríguez-Vázquez et al,  "A 3-D Chip Architecture for Optical
Sensing and Concurrent Processing". SPIE Photonics Europe 2010
Symposium - Conf. on CMOS and Detector Technology, Proc. of
SPIE, Vol. 7726, CCC 0277-786X, pp. 772613-1-12, April 2010.

[47] M. Suárez et al., "CMOS-3D Smart Imager Architectures for Feature
Detection". IEEE J. on Emerging and Selected Topics in Circuits and
Systems, Vol. 2, pp. 723-736, December 2012.

[48] A. Rodríguez-Vázquez, et al., “Current Mode Techniques for the
Implementation of Continuous and Discrete-Time Cellular Neural
Networks”. IEEE Tran. on Circuits and Systems, Vol. 40, pp. 132-146,
IEEE March 1993.

[49] R. Carmona et al., “A 0.5m CMOS Random Access Analog Mem-
ory Chip for TeraOPS Speed Muitimedia Video Processing”. IEEE
Tran. on Multimedia, Vol.1, pp. 121-136, IEEE June 1999. 

[50] G. Liñán et al., “A 1000 FPS at 128 x 128 Vision Processor with 8-Bit
Digitized I/O". IEEE Journal of Solid-State Circuits, Vol. 39, pp.
1044-1055, IEEE July 2004. 

[51] D. Lowe, “Distinctive Image Features from Scale-Invariant Key-
points”. International Journal of Computer Vision, Vol. 60(2): 91-110,
2004.

[52] J. Fernández-Berni et al., Low-Power Smart Imagers for Vision-
Enabled Sensor Networks.  Springer Science & Business Media, 2012.

[53] M. Nathan et al. ”The Grasp Multiple Micro-UAV Testbed,” IEEE
Robotics & Automation Magazine, Vol. 17, no. 3, pp. 56-65, 2010.

[54] J. Fernández-Berni et al., “Early Forest fire Detection by Vision-
Enabled Wireless Sensor Networks”. Int. J. of Wildland Fire,Vol. 21,
pp. 938–949, July 2012

[55] J. Fernández-Berni et al.,“Bottom-up Performance Analysis of Focal-
Plane Mixed-Signal Hardware for Viola-Jones Early Vision Tasks”.
Int. Journal of Circuit Theory and Applications. Vol. 43, pp. 1063-
1079, 2015.

Ángel Rodríguez-Vázquez (IEEE Fellow, 1999)
received the bachelor’s (Univ. de Sevilla, 1976)
and Ph.D. degrees in physics-electronics (Univ. de
Sevilla, 1982) with several national and interna-
tional awards, including the IEEE Rogelio Segovia
Torres Award (1981). After research stays in Uni-
versity of California-Berkeley and Texas A&M
University he became a Full Professor of Electron-
ics at the University of Sevilla in 1995. 

He co-founded the Instituto de Microelectrónica de Sevilla, a joint under-
taken of the Consejo Superior de Investigaciones Científicas (CSIC) and the
Universidad de Sevilla and started a Research Lab on Analog and Mixed-
Signal Circuits for Sensors and Communications. He was the main promo-
tor of the start-up company AnaFocus Ltd. and served as CEO, on leave
from the University, from 2004 until 2009, when the company reached
maturity as a worldwide provider of smart CMOS imagers and vision sys-
tems-on-chip. AnaFocus was founded on the basis of his early patents. Dr.
Rodríguez-Vázquez holds eight patents.
While in Academia, he conducted R&D activities on mixed-signal microe-
lectronics for massive sensory data, including vision chips and neuro-fuzzy
controllers. He also pioneered the application of chaos to instrumentation
and communications. His team designed the first, world-wide, integrated
circuits with controllable chaotic behavior and the design and prototyping



FIRST QUARTER 2018 IEEE CIRCUITS AND SYSTEMS MAGAZINE 11

of the first world-wide chaos-based communication MoDem chips. His
team made also significant contributions to the area of structured
analog and mixed-signal design and the area of data converter design,
including the elaboration of advanced teaching materials on this topic
for different industrial courses and the production of two widely quoted
books on the design of high-performance CMOS sigma-delta convert-
ers.
His research work has received some 8,900 citations; he has an h-index
of 48 and an i10-index of 173 according to Google Scholar. Dr.
Rodríguez-Vázquez has received a number of awards for his research:
the IEEE Guillemin-Cauer Best Paper Award, two Wiley’s IJCTA Best
Paper Awards, two IEEE ECCTD Best Paper Awards, one IEEE-
ISCAS Best Paper Award, one SPIE-IST Electronic Imaging Best
Paper Award, the IEEE ISCAS Best Demo-Paper Award, and the IEEE
ICECS Best Demo-Paper Award.
He has served as Editor, Associate Editor, and Guest Editor for IEEE
and non-IEEE journals, is on the committee of several international
journals and conferences, and has chaired several international IEEE
(NDES 1996, CNNA 1996, ECCTD 2007, ESSCIRC 2010, ICECS
2013) and SPIE conferences. He served as VP Region 8 of the IEEE
Circuits 1087 and Systems Society (2009-2012) and as Chair of the
IEEE CASS Fellow Evaluation Committee (2010, 2012, 2013, 2014,
and 2015). He has been appointed General Chairman for IEEE ISCAS
2020.


