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Abstract
Our understanding of the mechanisms by which nonalcoholic fatty liver disease (NAFLD)
progresses from simple steatosis to steatohepatitis (NASH) is still very limited. Despite the
growing number of studies linking the disease with altered serum metabolite levels, an obstacle to
the development of metabolome-based NAFLD predictors has been the lack of large cohort data
from biopsy-proven patients matched for key metabolic features such as obesity. We studied 467
biopsied individuals with normal liver histology (n=90) or diagnosed with NAFLD (steatosis,
n=246; NASH, n=131), randomly divided into estimation (80% of all patients) and validation
(20% of all patients) groups. Qualitative determinations of 540 serum metabolite variables were
performed using ultra-performance liquid chromatography coupled to mass spectrometry (UPLC-
MS). The metabolic profile was dependent on patient body-mass index (BMI), suggesting that the
NAFLD pathogenesis mechanism may be quite different depending on an individual’s level of
obesity. A BMI-stratified multivariate model based on the NAFLD serum metabolic profile was
used to separate patients with and without NASH. The area under the receiver operating
characteristic curve was 0.87 in the estimation and 0.85 in the validation group. The cutoff (0.54)
corresponding to maximum average diagnostic accuracy (0.82) predicted NASH with a sensitivity
of 0.71 and a specificity of 0.92 (negative/positive predictive values = 0.82/0.84).

The present data, indicating that a BMI-dependent serum metabolic profile may be able to reliably
distinguish NASH from steatosis patients, have significant implications for the development of
NASH biomarkers and potential novel targets for therapeutic intervention.
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1. INTRODUCTION
Most body fat is stored as triacylglycerides (TAG) in white adipose tissue. Impaired lipid
buffering within the enlarged adipocyte leads to the exposure of nonadipose tissues such as
the liver to an increased influx of nonesterified fatty acids (NEFA)1. Such metabolic stress
can lead to an imbalance between NEFA supply and hepatic NEFA disposal pathways,
causing excess lipids to accumulate in the form of TAG, a condition known as nonalcoholic
fatty liver disease (NAFLD)2,3. Further lipid excess in the sensitized fatty liver is
metabolized through alternative pathways that result in the production of toxic reactive
species, increased oxidative stress, and disturbances in membrane phospholipid composition
- all of which are processes that may contribute to the progression of NAFLD through
nonalcoholic steatohepatitis (NASH)2,4,5, which can then lead to cirrhosis and hepatocellular
carcinoma2,6,7.

While obesity is well established as the main cause of NAFLD, we do not know why fatty
liver also develops in lean subjects8,9. Our understanding of why only a relatively small
proportion of NAFLD patients develop NASH is also very limited2,4,5. Modern wide-
coverage metabolite profiling technologies provide access to portions of biomolecular space
that sample genetic, environmental and lifestyle factors which may help to explain some of
these observations10,11. The technique is particularly well suited to liver injury assessment
applications, where serum or urine are the most common types of sample made available for
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laboratory tests, as opposed to other disease scenarios, such as cancer, where tissue is readily
made available for transcriptomic and proteomic analysis.

A recent study by Kalhan et al.12 compared the plasma metabolome in nonbiopsied lean
controls with that found in obese NAFLD patients, showing no discernible differentiation
between steatosis and NASH plasma. Puri et al. analyzed a similar set of patients, focusing
on the plasma lipidome by quantifying derivatized fatty acids after lipid hydrolysis13 to
reveal new evidence for the role of fatty acid traffic directed away from TAG synthesis in
disease pathogenesis12,13. Our group has set up multiple ultra-performance liquid
chromatography coupled to mass spectrometry (UPLC-MS) based platforms able to
qualitatively analyze fatty acid derived moieties in their intact form as serum lipids,
covering a wide range of molecular species also including bile acids, nonesterified fatty
acids, and amino acids. The techniques are particularly useful for profiling subtle molecular
diversity, over species such as for example ether-/acyl- linked glycerophospholipids, or the
various subclasses of sphingolipids. These specific elements of the lipidome are potentially
important role-players in the context of modern lipotoxic models of metabolic syndrome
related disease pathogenesis, which may not be captured efficiently by the lipid hydrolysis/
fatty acid analysis methodology. This approach was used recently to describe common
serum metabolic alterations observed in a NAFLD knock-out animal model and a small-
scale cohort of morbidly obese human NAFLD patients, closely matched in key clinical
features such as gender, age, and body-mass index (BMI)14. Encouraged by these results we
have implemented recently published15 analytical processing methods that allow qualitative
LC-MS metabolite profiling to be performed over multiple analysis batches, thus permitting
the inclusion of large cohorts of human patient samples suitable for clinical studies. The aim
of the current study was to characterize the serum NAFLD metabolic profile as a function of
patient BMI, exploring the differences among histological groups of patients with different
grades of obesity.

2. MATERIALS AND METHODS
2.1. Chemicals

HPLC/MS-grade solvents were purchased from Sigma Aldrich (St. Louis, MO). Reference
metabolite standard compounds were obtained from Sigma Aldrich, Avanti Polar Lipids
(Alabaster, AL), and Larodan Fine Chemicals (Malmö, Sweden).

2.2. Patients
A total of 467 biopsied patients seen at 11 participating hospitals were recruited for the
study using the following inclusion criteria: (1) age 18–75 years; (2) no known acute or
chronic disease except for obesity or type 2 diabetes based on medical history, physical
examination, and standard laboratory tests; (3) alcohol consumption was less than 20 g/day
for women and 30 g/day for men. Exclusion criteria included viral- and drug-induced causes
of liver disease. All of the subjects were of Caucasian origin. The institutional review board
at each of the participating hospitals approved the study and written informed consent was
obtained from all patients. For all subjects diagnoses were established histologically in liver
biopsy specimens. The reason for liver biopsy was either incidental (during laparoscopic
cholecystectomy, n=69; or bariatric surgery, n=311) or suspected NAFLD, n=87. Currently
there are no established guidelines on when to perform a liver biopsy in either adult or
pediatric patients with suspected NAFLD. In the current population the decision was made
on an individual basis by the treating gastroenterologist, independent of the present study. In
most cases, the decision for biopsy indication was based on the presence of persistently
abnormal liver enzymes or radiological evidence of a fatty liver along with negative testing
for other common etiologies of liver disease. The histological diagnosis of NAFLD was
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established according to the criteria of a single liver pathologist in each participating
hospital, guided by the scoring system defined by Kleiner et al.16. Following assessment,
patients were classified by the pathologists into three histological groups: (1) Normal liver,
(2) Steatosis (hepatic steatosis alone), and (3) NASH (presence as determined by the
pathologist). For all subjects blood was drawn on the morning a liver biopsy was performed,
following a minimum 8 hour, overnight fast. Serum was separated and stored at −80 °C until
analysis. Clinical data (Table 1) were collected retrospectively using patient records and
laboratory values obtained at the time of surgery.

2.3. Sample preparation and UPLC-MS analysis
A UPLC-single quadrupole-MS amino acid analysis system was combined with two
separate UPLC-time-of-flight (TOF)-MS based platforms analyzing methanol and
chloroform/methanol serum extracts. Identified ion features in the methanol extract platform
included NEFA, acyl carnitines, bile acids, monoacylglycerophospholipids,
monoetherglycerophospholipids, free sphingoid bases, and oxidized fatty acids. The
chloroform/methanol extract platform provided coverage over glycerolipids, cholesterol
esters, sphingolipids, diacylglycerophospholipids, and acyl-ether-glycerophospholipids. The
metabolite extraction procedure was as follows for each platform (lipid nomenclature
follows the LIPID MAPS convention – www.lipidmaps.org):

Platform 1 – Methanol extract. Proteins were precipitated from the defrosted serum
samples (75 μL) by adding 4 volumes of methanol in 1.5 mL microtubes at room
temperature. The methanol used for extraction was spiked with the following
compounds, chosen to encompass most of the retention time-m/z space covered by the
method, while being undetected in nonspiked human serum extracts: tryptophan-
d5(indole-d5), PC(13:0/0:0), NEFA(19:0), and dehydrocholic acid. After brief vortex
mixing the samples were incubated overnight at −20 °C. Supernatants (300 μL) were
collected after centrifugation at 16,000 x g for 15 minutes, dried and reconstituted in 75
μL methanol, before being transferred to vials for UPLC-MS analysis on an Acquity-
LCTXE premier system (Waters Corp., Milford, MA).

Platform 2 – Amino acids. 10 μL aliquots of the extracts prepared for platform 1 were
derivatized for amino acid analysis17 on an Acquity-SQD system (Waters Corp.).

Platform 3 – Chloroform/Methanol extract: 10 μL serum extracts were mixed with 10
μL sodium chloride (50 mM) and 110 μL of chloroform/methanol (2:1) in 1.5 mL
microtubes at room temperature. The extraction solvent was spiked with the following
compounds not detected in nonspiked human serum extracts: SM(d18:1/6:0),
PE(17:0/17:0), PC(19:0/19:0), DAG(14:0/12:0), TAG(13:0/13:0/13:0),
TAG(17:0/17:0/17:0), Cer(d18:1/17:0), ChoE(12:0). After brief vortex mixing the
samples were incubated for 1 hour at −20 °C. After centrifugation at 16,000 x g for 15
minutes, 70 μL of the lower organic phase was collected and the solvent removed. The
dried extracts were then reconstituted in 100 μL acetronitrile/isopropanol (50:50),
centrifuged (16,000 x g for 5 minutes), and transferred to vials for UPLC-MS analysis
on an Acquity-SYNAPT G2 system (Waters Corp.).

Chromatographic separation and mass spectrometric detection conditions employed for each
platform are summarized in Supplementary Table 1. Representative base peak ion
chromatograms corresponding to the UPLC-TOF platforms are shown in Figure 1. Online
tandem mass spectrometry (MS/MS) experiments for metabolite identification were
performed on a Waters QTOF Premier (Waters Corp.) and a Waters SYNAPT G2
instrument, operating in both the positive and negative ion electrospray modes, as described
in detail previously14.
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2.4. Metabolite identification
LCMS features (as defined by retention time, mass-to-charge ratio pairs, Rt-m/z), were
associated with NEFA, bile acids, oxidized fatty acids, free sphingoid bases, and amino
acids by comparison of their accurate mass spectra and chromatographic retention times in
commercial serum metabolite extracts (Promocell inc., Germany) with those obtained using
available reference standards. A metabolite with m/z value between 400 and 1000 Da was
considered unambiguously identified when Rt difference with respect to the standard was
smaller than 3 s and the deviation from its m/z value (δm/z) smaller than 3 ppm. For
metabolites with m/z values smaller than 400 Da, the criterion followed with respect to Rt
was the same, but δm/z limit was set to 1.2 mDa. For all other species [acyl carnitines (AC),
diacylglycerides (DAG), TAG, cholesterol esters (ChoE), glycerophosphocholine (PC),
glycerophosphoethanolamine (PE), glycerophosphoinositol (PI), sphingomyelin (SM),
ceramides (Cer), and monohexosylceramides (CMH)] a theoretical m/z database was first
generated for all possible combinations of fatty acid derived moieties. The association of
detected Rt-m/z pairs with lipid species contained in the theoretical database was
subsequently established either by comparison of their accurate mass spectra and
chromatographic retention times with those obtained using available reference standards or,
where these were not available, by accurate mass MS/MS fragment ion analysis, as
described in detail previously14,18 (mass fragment accuracy was < 3 ppm for m/z 400–1000,
and < 1.2 mDa for m/z 50–400). A complete spectral library, containing relevant MS/MS
data for all metabolites reported in this work is available on request from the authors.

The nontargeted LC/MS peak-detection software platform MarkerLynx (Waters Corp.) was
used to analyse Rt-m/z pairs from the UPLC-TOF platforms that could not be confidently
identified. Resulting peak lists were first deadducted and filtered according to peak area
coefficients of variation (%CV < 20) recorded over 10 repeat standard serum extracts
(Promocell inc.). For metabolic classes with members identified in more than one platform,
the appropriate platform was assigned based on their physicochemical properties. For
example, even when monoacyl- and monoether-glycerophospholipids were detected in both
Platforms 1 and 3, the methanol extraction used in Platform 1 provided a more extensive
coverage of the classes. Only the information provided by the selected platform was used for
the downstream analysis, avoiding duplicities in the downstream analysis. The final list of
unidentified variables was further reduced for each platform such that only variables with
intensities at least twice those of any other peak detected in the same extracted ion
chromatogram (m/z window ± 0.02 Da) were included for analysis. Where possible,
tentative metabolite identifications were assigned to unidentified variables using online
(www.hmdb.ca) accurate mass database searching against their spectrally derived neutral
molecular mass values.

A total of 540 variables were submitted for data processing (Identified/Unidentified:
Platform 1 = 157/68, Platform 2 = 20, Platform 3 = 256/39). Analytical and chemical
structural details are provided for each variable in Supplementary Table 2A.

2.5. Data processing and normalization
All data were processed using the TargetLynx application manager for MassLynx 4.1
(Waters Corp.). The complete set of predefined Rt-m/z pairs was fed into the software,
which generated associated extracted ion chromatograms (mass tolerance window = 0.05
Da), peak-detected and noise-reduced in both the LC and MS domains. A list of
chromatographic peak areas was then generated for each sample injection, using the Rt-m/z
pairs (retention time tolerance = 6 s) as identifiers.
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Intra- and inter-batch normalization followed the procedure first described by van der Kloet
et al.15. This process involved (i) multiple internal standard response correction (intra-batch
normalization) and (ii) variable specific inter-batch single point external calibration using
repeat extracts of a commercial serum sample (inter-batch normalization).

Each of the 6 analysis batches contained a maximum of 80 study samples that were
accompanied by 10 repeat extracts of a commercial serum sample (Promocell inc.) used for
single point inter-batch calibration (QC Calibration Sample15) and 5 repeat extracts of a
second commercially obtained serum sample (Sigma Aldrich, St. Louis, MO) used to
monitor the reproducibility of the overall analysis process (QC Validation Sample15). For
each of the three analytical platforms, randomized duplicate sample injections (maximum
number of study sample injections per batch = 160) were performed, with each of the QC
calibration and validation extracts uniformly interspersed throughout the entire batch run
(maximum total number of injections per batch = 176). Each batch run was preceded by a
series of repeat full-loop of injections of a QC calibration extract, used to equilibrate the
UPLC-MS systems (×10, or ×50 if the batch followed system maintenance).

Van der Kloet et al.15 defined the optimal internal standard (IS) for each variable, p, as that
which resulted in a minimum relative standard deviation (RSD) of the corrected response, X
′, calculated using all QC calibration samples over multiple batches (1).

(1)

However, for most single point, chemically similar internal standard correction MS-based

methods, the average corrected response, , would be expected to differ from batch to
batch, even if identical concentrations of internal standards were to be used in each batch. A
number of experimental factors could cause these, generally small, differences - such as for
example changes in source pressure that may alter the m/z transmission profile, or
differences in relative adduct formation propensities as a consequence of source
maintenance, mobile phase composition, or glassware alkali metal content. Here we have
taken into account this variability by defining a scaled average internal standard corrected
response (2), calculated for each batch, b;

(2)

, in equation (1) is then given by the vector (3).

(3)

Equation 1 does then not depend on the magnitude of batch to batch differences in average
corrected response, and is equivalent to the RSD calculation defined by van der Kloet et
al.15 for a single batch study, or for a multi-batch study showing identical batch averaged
corrected responses, as may be expected for example when using spectroscopic techniques.
Optimal internal standards found for each variable using Equation 1 are listed in
Supplementary Table 2A.
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Linear regression (internal standard corrected response as a function of sample injection
order) was used to estimate for each variable in the QC calibration samples any intra-batch
drift not corrected for by internal standard correction, as described by van der Kloet et al.15.
For all variables, internal standard corrected response in each batch was divided by its
corresponding intra-batch drift function, such that normalized variable abundance values in
the study samples were expressed with respect to the batch averaged QC calibration serum
samples (arbitrarily set to 1).

Following normalization, the concordance between duplicate sample injection response
values was assessed. It was found that less than 0.1% of the repeat injections values where
disparate (%CV > 30). In these cases, the corresponding sample injection data were returned
for manual inspection of the automated integration performed by the TargetLynx software,
and modifications performed where appropriate.

For identified metabolites, representative detector response curves were generated using a
standard compound for each chemical class included in the analysis. By assuming similar
detector response functions for all metabolites belonging to a given chemical class, a linear
detection range could be defined for each variable. Minimum values were taken as those for
which a signal-to-blank noise ratio of at least 5:1 was obtained, while maximum values were
defined as those at which the detector response became nonlinear with respect to the
concentration of the standard compound. Variable study data points lying outside their
corresponding linear detection range were replaced with missing values and did not figure in
subsequent statistical analyses. Supplementary Figure 1 displays response curves for the 18
representative standard compounds, showing on separate axes for each chemical class, the
response distribution of all included study data points. Variables were not considered for
further analysis where more than 5% of data points were found outside their corresponding
linear detection range (these data are not shown in Supplementary Figure 1). Supplementary
Table 2A lists for each variable the percentage number of study data points that were
replaced with missing values. As expected, variables that were excluded from further
analysis at this stage (29/540) were the most abundant species detected by their respective
platforms, e.g. ChoE(18:2) [blood concentration ~ 2mM (www.hmdb.ca)].

The reproducibility of the analysis process was assessed using the 5 QC validation serum
extracts included in each batch. These gave a measure of the combined analytical variation
over all process components including metabolite extraction, recovery, derivatization, LC/
MS injection, and data processing. Corresponding intra- and inter-batch (calculated over
batch averaged QC validation serum extracts) %CVs are listed for all variables included in
the analysis in Supplementary Table 2A. Additionally, the cumulative distribution of %CV
is provided in Supplementary Table 3, being the median inter-batch %CV values 5.0, 6.1,
11.9 for platforms 1, 2, and 3 respectively.

2.6. Statistical analysis
A number of recent studies have shown evidence for a strong correlation between BMI and
the serum levels of several groups of metabolites included in the current analysis, including
amino acids, ether phospholipids, NEFA, and glycerolipids19–21. In order to control the
confounding BMI variable all patients were classified into three cohorts for subsequent
analyses, as defined by the world health organization (WHO)22: lean/pre-obese, <30 kg/m2;
obese class I–II, 30–40 kg/m2; obese class III, >40 kg/m2; hereafter referred to as lean,
obese and morbidly obese patient cohorts respectively. Following this stratification,
patients’ BMI (global mean 43.6±11.5 kg/m2) did not differ significantly between the
histological groups in any of the three cohorts (lean, Kruskal-Wallis statistic (K-W)=3.02, p-
value=0.22; obese, K-W=3.36, p-value=0.19; morbidly obese, K-W=4.37, p-value=0.11).
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All subjects were randomly divided into estimation (80% of all subjects, n=374) and
validation (20% of all subjects, n=93) groups such that in each group there was an equal
proportional representation of individuals belonging to each BMI/histology cohort. To
assess the relationship between metabolites (or other clinical variables) and NAFLD patient
histological groups, two-tailed Wilcoxon rank sum tests were used for two-sample tests:
steatosis/normal liver, NASH/normal liver, and NASH/steatosis. Kruskal-Wallis rank sum
tests were used for three-way comparisons: normal liver/steatosis/NASH. The threshold for
significance was p<0.05 for all tests. Patient NASH/steatosis histology group pertinence
probabilities were calculated by performing random forest23 analyses on all significant
metabolite variables for each BMI patient cohort in the estimation group. Relative
importance scores for all variables included in the random forest models are listed in
Supplementary Table 2A. Receiver operating characteristic (ROC) curve analysis was used
to assess the predictive potential of the random forest models. Overall diagnostic accuracy
for a given two-class comparison was given by the area under the ROC curve (AUC) with
its associated standard error. Sensitivity, specificity, positive predictive value, and negative
predictive value were calculated for several different cutoff points: (1) at maximum average
diagnostic accuracy (number of patients correctly classified/total number of patients), (2)
that at which sensitivity of 0.95 (probability that NASH patients were correctly classified)
was achieved, and (3) that at which specificity of 0.95 (probability that subjects that do not
have NASH were correctly classified) was achieved. Model validation was performed (1) in
the validation group, and (2) in the entire dataset (estimation + validation group). In the
latter case cross-validation using the jackknife method was performed with 10 subgroups
such that the possibility of an unusually positive or negative validation subset could be
assessed. Both separate BMI group (only for patients classified within a given BMI group:
lean/pre-obese, obese class I–II, or obese class III) and BMI-stratified (all patients –
obtained by feeding patients’ serum metabolic profile dataset into its corresponding BMI
group random forest model) ROC analyses were performed.

All calculations were performed using R v.2.12.1 (R Development Core Team, 2010) with
random forest and receiver operating characteristic R (randomForest, ROCR) packages.

3. Results
Clinical, biochemical, and liver histology data obtained from the study participants are
summarized in Table 1. Patients included in the study were within a similar age group
(43.8±11.8 years), with a predominance of female subjects (76%). Comparing within each
BMI cohort, there were no significant differences between the histology groups in fasting
serum total cholesterol (lean, K-W=1.38, p-value=0.50; obese, K-W=4.14, p-value=0.13;
morbidly obese, K-W=3.84, p-value=0.15). Fasting glucose concentrations were higher in
obese NAFLD patients as compared to normal liver subjects, reaching statistical
significance in the obese class I–II cohort (lean, K-W=0.89, p-value=0.64; obese, K-
W=9.75, p-value=0.01; morbidly obese, K-W=5.79, p-value=0.06). Patients with NAFLD
had increased TAG levels as compared to normal liver subjects, though these did not reach
statistical significance in any of the three BMI cohorts (lean, K-W=4.58, p-value=0.10;
obese, K-W=0.55, p-value=0.76; morbidly obese, K-W=0.02, p-value=0.99). Transaminase
levels were elevated in NAFLD patients as compared to normal liver subjects in all three
BMI cohorts (aspartate aminotransferase: lean, K-W=22.66, p-value<0.001; obese, K-
W=5.44, p-value=0.07; morbidly obese, K-W=35.0, p-value<0.001; alanine
aminotransferase: lean, K-W=28.65, p-value<0.001; obese, K-W=9.68, p-value=0.01;
morbidly obese, K-W=9.74, p-value=0.01).

The relative ion abundance levels of 415 lipids (81 glycerolipids, 9 cholesterol esters, 42
sphingolipids, 231 glycerophospholipids, 27 NEFA, 13 bile acids, 8 oxidized fatty acids, 4
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acyl carnitines – see Supplementary Table 2A for individual metabolite identification
details), 18 amino acids, and 78 unidentified species were included for statistical analysis in
the estimation group (80% of all subjects). The entire profile, containing data points from
each individual subject, is shown as a heat map in Supplementary Figure 2.

Figures 2a, b, and c depict average ion abundance ratios for the three different BMI patient
cohorts, comparing steatosis/normal liver, NASH/normal liver, and NASH/steatosis groups
respectively (metabolite class specific magnified representations of Figure 2 are provided in
Supplementary Figure 3A–K, ion abundance ratios and statistical significance listed in
Supplementary Table 2A). This figure indicates that serum metabolic changes reflecting
NAFLD progression have a strong dependence on BMI. For instance, among morbidly
obese patients most oxidized fatty acids are reduced in steatosis patients as compared to
normal liver subjects, but are elevated in NASH relative to steatosis. The same species
remain essentially unchanged when performing identical comparisons within the other BMI
cohorts. NEFA show the reverse trend, again mostly restricted to the morbidly obese cohort,
where levels of most species (including saturated, monounsaturated and polyunsaturated
moieties – see Supplementary Figure 3I) are markedly increased in steatosis as compared to
normal liver subjects, though significantly reduced in morbidly obese NASH with respect to
steatosis patients. Several amino acids also show very similar reverted trends in the
morbidly obese cohort: methionine is significantly increased, while serine, taurine, glutamic
acid and aspartic acid are decreased in steatosis as compared to normal liver subjects; all
five compounds show the opposite trend when comparing NASH to steatosis patients
(Supplementary Figure 3J).

In addition to the above serum metabolite alterations found mainly in the morbidly obese
group of NAFLD patients, we also observed considerable changes among some groups of
metabolites that were exclusive to the lean patient cohort. Most sphingolipids were
decreased in lean NASH patients as compared to individuals diagnosed with steatosis, with
the most significant changes being observed amongst sphingomyelin species. No similar
trend was found among the obese patient groups; indeed, several sphingolipids were
significantly increased in morbidly obese NASH as compared to steatosis patients. Figure 3
details the groups of biomarkers which showed the most contrasting trends when comparing
NASH to steatosis patients among the three BMI cohorts.

Besides the strongly obesity dependent changes already mentioned, a number of relative
differences were found to be similar across all of the patients included in the study. As
expected, all glycerolipid (including di- and triacylglyceride moieties) species were elevated
in steatosis patients, as compared to normal liver subjects. We also observed that most of
these species have reduced abundance levels in NASH as compared to steatosis patients,
with the most significant changes being found among polyunsaturated fatty acyl (PUFA)
containing species (Supplementary Figure 3A). Further groups of compounds that were
found similarly altered in all three BMI patient cohorts include
monoetherglycerophosphoethanolamine and monoetherglycerophosphocholine (including
plasmalogen species – see Supplementary Figures 3E and 3G). These species were found
decreased in steatosis patients as compared to normal liver subjects, with elevated levels in
NASH. Finally, we also found that most bile acids included in the analysis were increased in
NASH as compared to steatosis patients, with all species reaching statistical significance in
the case of the morbidly obese individuals. In order to ascertain the predictive value of the
serum metabolic profile for distinguishing between steatosis and NASH patients a random
forest model was developed for each BMI cohort, using all Rt-m/z pairs significantly
differentiating between the two groups. In total, 292 confirmed metabolites and 51
unidentified variables were significant, being 15, 9, and 237 of them specific to the lean,
obese, and morbidly obese patient cohorts respectively. Significant variables are
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summarized in Supplementary Table 2B. ROC curves calculated for each model are shown
in Figure 4(a), (b) and (c) for the lean, obese, and morbidly obese patient groups
respectively. In the estimation group of patients the AUC was 0.82±0.04, 0.83±0.03, and
0.87±0.02 for the lean, obese and morbidly obese groups of patients respectively. Defining
the optimum cutoff point as that at which maximum average diagnostic accuracy (number of
patients correctly classified/total number of patients) was obtained, estimation group
sensitivity/specificity values were 0.67/0.89, 0.66/0.95 and 0.69/0.96 for the lean
(cutoff=0.53, accuracy=0.82), obese (cutoff=0.51, accuracy=0.83) and morbidly obese
(cutoff=0.57, accuracy=0.87) cohorts respectively. Very similar AUC and sensitivity/
specificity values were obtained for the validation group and the full cross-validated dataset,
as is also shown in Figure 4.

Next, the overall diagnostic accuracy of the BMI-dependent metabolic profile was assessed
for all patients included in the study. This was achieved by feeding each test sample
metabolic profile dataset into its corresponding BMI model and assessing the output with a
global, BMI-stratified ROC analysis. Average model accuracy for classifying NAFLD
patients (NASH/steatosis) is plotted as a function of cutoff value in Figure 5a; at maximum
average accuracy the model predicted NASH with sensitivity/specificity 0.71/0.92 in the
estimation cohort (cutoff=0.54, accuracy=0.82), 0.56/0.89 in the validation cohort
(cutoff=0.43, accuracy=0.77), and 0.62/0.97 in the full cross-validated dataset (cutoff=0.57,
accuracy=0.85). Corresponding BMI-stratified AUCs were 0.87±0.02 in the estimation
group, 0.85±0.04 in the validation group, and 0.84±0.01 in the full cross-validated dataset.
(Figure 5b). At maximum average accuracy the model was therefore able to correctly predict
in the estimation group the absence of NASH in 186/198 patients, while of the 228 patients
classified as steatosis 42 patients were incorrectly assigned. Hence the absence of NASH as
predicted by the model was correct in 186/228 cases (negative predictive value=0.82). The
same cutoff criterion correctly predicted NASH in 62/104 patients, while of the 74 patients
classified as NASH 12 were incorrectly assigned. The presence of NASH as predicted by the
model was therefore correct on 62/74 occasions (positive predictive value=0.84). Two
additional cut-off points were selected to achieve sensitivity of 0.95 (probability that NASH
patients are correctly classified) or specificity of 0.95 (probability that subjects that do not
have NASH are correctly classified) in the estimation group. Applying the low cutoff point
(<0.09), 71/198 individuals without NASH were correctly identified, whereas 5/71 subjects
were incorrectly classified as NASH patients. Thus, using this cutoff point, the absence of
NASH could be established in 71/76 of patients (negative predictive value=0.93). By
applying the high cutoff point (>0.73), 67/104 of NASH patients were correctly identified,
whereas 4/71 were incorrectly classified. Using this cutoff point therefore, NASH could be
established in 67/71 of patients (positive predictive value=0.94).

4. Discussion
According to the WHO, in 2008 more than 500 million adults were obese (BMI > 30 kg/
m2)22. WHO further projects that by 2015 this number will have increased to approximately
700 million22. Obesity is a major risk factor for chronic conditions such as cardiovascular
disease, diabetes and NAFLD22. The prevalence of NAFLD is currently estimated to be
between 20% and 30% in Western adults, rising to 90% in the morbidly obese2,24.
Fortunately, only a small fraction of NAFLD patients develop cirrhosis and hepatocellular
carcinoma2,6,7, although rising obesity prevalence may result in a corresponding increase in
these more severe conditions, representing a major health risk7.

The histological manifestation of early stage NAFLD is the accumulation of readily visible
droplets of TAG fat in hepatocytes, produced as a consequence of increased hepatic NEFA
influx that cannot be matched by β-oxidation or very low density lipoprotein (VLDL)
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secretion removal pathways2,3. An accumulating body of evidence suggests that TAG stored
in this way is biologically inert and as such harmless. Indeed, hepatic TAG in NAFLD may
have an adaptive, protective role in buffering toxic fatty acids that would otherwise be
substrates for lipid peroxidation and oxidative stress, leading to hepatocyte damage,
inflammation, cell death, and fibrogenesis4,5,25. This premise would seem to be supported
by the fact that histological TAG may fade during NAFLD progression through NASH to
cirrhosis26. The current data show further evidence for this effect, indicating that circulating
TAG levels are decreased in NASH as compared to steatosis patients. In all three BMI
cohorts, the most significant of these changes were found among polyunsaturated fatty acid
(PUFA) containing TAG.

Moreover, no significant differences were registered among any of the 12 TAG species
containing exclusively saturated acyl chains. The contribution of TAGs derived from de
novo lipogenesis is significantly increased in fatty liver individuals27,28. Decreased amounts
of serum PUFA containing TAG observed in NASH in the current work may reflect
accelerated hepatic de novo lipogenesis in these patients, leading to increased incorporation
of saturated and monounsaturated fatty acids into VLDL particles, in turn producing
decreased relative quantities of PUFA species in VLDL TAG29.

While triacylglyceride accumulation is now understood as a beneficial, adaptive response to
the increased exposure of the liver to fatty acids, emerging evidence points to other fatty
acid metabolites as being directly injurious to hepatocytes2,4,5. Oxidation represents a key
mechanism for the removal of fatty acids through three different pathways: mitochondrial β-
oxidation, peroxisomal β-oxidation, and endoplasmic reticulum (microsomal) cytochrome
P450 enzymatic routes. Under normal circumstances most NEFA are metabolized through
mitochondrial β-oxidation, though the extramitochondrial pathways become more important
in conditions of NEFA overload or mitochondrial dysfunction, as is often associated with
NASH30,31. Elevated serum levels of acyl carnitines are indicative of mitochondrial β-
oxidation disorders32. Although the analytical platforms applied in the current work were
not optimal for the coverage of the entire acyl carnitine profile, 3 out of 4 species observed
as formate adducts in the methanol serum extract (platform 1) were significantly increased
in morbidly obese NASH as compared to steatosis patients (Figure 3c). Peroxisomal β-
oxidation may be adaptive when mitochondria are dysfunctional33; loss of the peroxisomal
pathway in rodents causes NASH, while its stimulation has been found to be protective34–36.
The current data show further evidence for altered peroxisomal activity in NASH patients,
indicated by their significantly increased serum levels of monoetherphospholipids (including
plasmalogens, synthesized in peroxisomes), as compared to individuals with steatosis. The
clearest increases in these groups of compounds were also observed in the morbidly obese
subject cohort where all but 2 of the 28 monoetherglycerophosphocholine and
monoetherglycerophosphoethanolamine species profiled were significantly increased in
NASH as compared to steatosis patients. Since plasmalogens can serve as antioxidants
against reactive oxygen species37, elevated serum levels in NASH may also reflect increased
activity of protective mechanisms against oxidative stress.

Further evidence for altered extramitochondrial oxidative activity, almost exclusively among
morbidly obese patients, was found in the levels of oxidized fatty acids that were
significantly higher in NASH as compared to steatosis patients for all 7 species identified
using commercial standards. These included both enzymatic (15- and 12-
hydroxyeicosatetraenoic acid, pro-inflammatory lipoxygenase products) and nonenzymatic
(5-, 9-, and 11-hydroxyeicosatetraenoic acid) oxidation products of arachidonic acid (Figure
3c). Perhaps partly as a consequence of the aforementioned elevated NEFA oxidative
activity, most NEFA species were found significantly deregulated in morbidly obese NASH
as compared to steatosis patients, except in the cases of arachidonic and eicosapentaenoic
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acid, where the reverse trends were found. A recent lipidomics study of human acquired
obesity found increased adipose tissue levels of eicosapentaenoic acid, a precursor of anti-
inflammatory related docosahexaenoic acid (DHA)19. Elevated serum levels of
eicosapentaenoic acid observed in the current work may similarly reflect its restricted
conversion to anti-inflammatory DHA-derived lipid mediators in obese NASH.

Further changes mainly exclusive to the morbidly obese subject cohort were observed
among essential amino acids, which were all significantly elevated in NASH as compared to
steatosis patients except for tryptophan (not significant) and methionine that followed the
reverse trend. Similar increases in serum essential amino acids have previously been related
to a higher rate of whole-body protein turnover in NASH, modulated by co-factors such as
cytokines, inflammation and insulin resistance38. While in the morbidly obese cohort of
patients the clearest NASH metabolic abnormalities seem to be associated with the
overloading of oxidative free fatty acid disposal routes, NASH is reflected in the lean cohort
by significant alterations of a series of potentially lipotoxic intermediates that have been
previously associated with NAFLD progression. The clearest evidence for this was found
among the sphingolipid species where most ceramide and sphingomyelin species were found
decreased in lean NASH as compared to steatosis patients (Figure 3a). Ceramides are
thought to play a major role in lipotoxic cellular injury39, while sphingomyelin species have
been previously associated with stress- and ligand-induced hepatocellular death, which
contributes to the progression of several liver diseases including NASH40. Methionine is
also found increased in lean NASH as compared to steatosis patients, mirroring the trend
observed in lean rodent NAFLD models with disrupted one-carbon metabolism genes,
methionine adenosyltransferase 1A (MAT1A-KO) and glycine N-methyltransferase knock-
out (GNMT-KO)41.

Besides providing platforms for the better understanding of disease pathogenesis, groups of
serum metabolite biomarkers identified in the current study may be used to develop
noninvasive tools for clinical NAFLD assessment. Evaluating this possibility, we built
separate BMI-dependent multivariate models, showing that overall diagnostic accuracy
(AUC) was greater than 0.8 in all three BMI cohorts. Feeding these data into an overall
BMI-stratified model provided a maximum average diagnostic accuracy of 0.82, at which
point more than 90% of all NAFLD patients included in the study that did not have NASH
could be correctly identified. The high accuracy of the model in ruling out the presence of
NASH is particularly important, considering the fact that most NAFLD patients seen in
clinical practice do not have advanced forms of the disease.

In summary we have studied the detailed serum metabolic profile of 467 liver-biopsied
subjects, of which 377 were diagnosed with NAFLD. The measured NAFLD metabolic
profile was dependent on BMI, an observation which indicates that the mechanism of
NAFLD pathogenesis may be quite different depending on an individual’s level of obesity.
An imbalance between the supply to the liver of NEFA and their nontoxic disposal promotes
lipotoxic injury that has been closely related to the pathogenesis of NAFLD progression2–5.
This scenario may be reflected in the serum metabolome of obese NAFLD patients, where
high serum NEFA abundances in steatosis patients are reverted in NASH in conjunction
with elevated acyl carnitines indicating mitochondrial β-oxidation dysfunction, altered ether
phospholipids reflecting disturbed peroxisomal function, and increased levels of
proinflammatory eicosanoids providing further evidence of extramitochondrial oxidative
activity. The alteration of enzymatic pathways that generate lipotoxic intermediates from
NEFA or inhibition of pathways that dispose of them may also be speculated to promote
lipotoxicity2,4,5. The lean NAFLD serum metabolome as characterized in the current work
may carry the influence of this effect where species that have been previously linked to
lipotoxicity, such as ceramides or sphingomyelin are found altered in NASH as compared to
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steatosis patients. The detailed mechanistic implications of the current data are likely to be
complex and will require further study in future hypothesis-driven studies. In particular, it is
unclear as to what extent metabolic changes occurring during NAFLD evolution are
important in promoting progression of the disease or are manifestations of secondary
phenomena. The use in the current work of state-of-the-art technology able to profile
hundreds of individual metabolite species in parallel from large patient cohorts will help to
provide the impetus for such work.

A drawback of the current approach is that we have not been able to provide absolute
quantitation of the analytes, although we did monitor the reproducibility of our assays, while
taking steps to ensure that all data points included in the analysis were within the linear
detection range of the platforms. We would therefore expect the results to be qualitatively
reproducible if a similar protocol were to be followed by an external laboratory, using the
same sample set. The data show clear differential serum metabolic profiles associated with
the groups of samples included in the study, offering strong possibilities for quantitative
assay development needed for validation of the biomarkers. We also note the potential value
of unidentified metabolites included in the qualitative profiling approach for providing
valuable biomarkers that would otherwise remain unexplored.

Current means used for the diagnosis of NAFLD (i.e. liver biopsy or imaging techniques)
are subject to significant uncertainty and are poorly suited as tests for such a prevalent
condition, from both a clinical and financial point of view42,43. Imaging techniques are
expensive and nonspecific, since they are unable to distinguish NASH from isolated
steatosis, while liver biopsy is an invasive, subjective procedure, associated with potential
complications and prone to sampling error44,45. Although most steatosis patients tend to
have a benign, nonprogressive clinical course, a significant proportion of those with NASH
show progressive liver disease with a significant associated risk of developing cirrhosis and
its complications (portal hypertension, liver failure, and hepatocellular carcinoma)2,6,7,24.
Clearly then the distinction of NASH from steatosis is critical in order to identify high-risk
patients and adapt their corresponding clinical management profile accordingly.
Dyslipidemia, in particular hypertriglyceridemia has long been associated with the
development of metabolic diseases such as NAFLD - the prevailing view being that excess
bulk lipids are responsible for less favorable patient evolution. The present data, benefiting
from the ability of modern technology to profile hundreds of diverse, intact lipid molecular
species, indicate that a BMI-dependent serum metabolic profile distinguishes between
NASH and steatosis patients, and may have significant implications for the development of
biomarkers and potential novel targets for therapeutic intervention.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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List of abbreviations

TAG triacylglycerides

NEFA nonesterified fatty acids

NAFLD nonalcoholic fatty liver disease

NASH nonalcoholic steatohepatitis

UPLC-MS ultra-performance liquid chromatography coupled to mass spectrometry

BMI body-mass index

TOF time-of-flight

MS/MS tandem mass spectrometry

CV coefficient of variation

IS internal standard

RSD relative standard deviation

WHO world health organization

K-W Kruskal-Wallis statistic

ROC receiver operating characteristic

AUC area under the ROC curve

VLDL very low density lipoprotein

PUFA polyunsaturated fatty acid
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Synopsis

An obstacle to the development of metabolome-based NAFLD predictors has been the
lack of large cohort data from biopsy-proven patients matched for key metabolic features
such as obesity. We examined the serum metabolome of 467 biopsied individuals with
normal liver histology (n=90) or diagnosed with NAFLD (steatosis, n=246; NASH,
n=131), using ultra-performance liquid chromatography coupled to mass spectrometry
(UPLC-MS). The figure depicts obesity dependent biomarkers revealed by the study.
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Figure 1. UPLC-TOF base peak ion intensity chromatograms
Base peak ion intensity chromatograms for the methanol – platform 1 (a), and chloroform/
methanol – platform 3 (b) serum extracts. Approximate retention time regions
corresponding to identified metabolites are indicated on the plots (see text for
abbreviations).
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Figure 2. NAFLD serum metabolic profile
Heat map representation of the serum metabolic profile obtained from patients included in
the study estimation group. (a), (b), and (c) metabolite ion abundance ratios in BMI cohorts
lean/pre-obese (left), obese class I–II (middle), and obese class III (right), comparing
histology groups: steatosis/normal liver, NASH/normal liver, and NASH/steatosis
respectively. For each comparison, log transformed ion abundance ratios are depicted, as
represented by the scales (d), where pronounced colors correspond to significant (p<0.05 –
two-tailed Wilcoxon Rank Sum Test) changes, and (e) where light colors correspond to
nonsignificant (p>0.05 – two-tailed Wilcoxon Rank Sum Test) changes. Metabolite class
specific magnified representations of Figure 2, showing individual metabolite details are
provided in Supplementary Figures 3A–K.
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Figure 3. Obesity dependent NASH biomarkers
Mean percent ion abundance deviations of acyl carnitines, sphingolipids (upper plots), and
oxidized fatty acids (lower plots) found in the sera of patients diagnosed with NASH as
compared to isolated steatosis. Data are shown for the lean/pre-obese (a), obese class I–II
(b), and obese class III (c) patient cohorts. Positive and negative percentage values indicate
higher levels of metabolites in NASH and steatosis patients’ sera respectively. Dark bars
denote significant changes (p<0.05, two-tailed Wilcoxon Rank Sum Test).
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Figure 4. Obesity dependent metabolic discrimination between steatosis and NASH patients
ROC curves calculated for the estimation (solid line), validation (dotted line), and full cross-
validated datasets (dashed line), based for each BMI cohort on all metabolite biomarkers
found to be significant (p<0.05 – two-tailed Wilcoxon Rank Sum Test) in the estimation
group. Data are shown for the lean/pre-obese (a), obese class I–II (b), and obese class III (c)
patient cohorts. Optimum cutoff points (solid circles) are provided for each estimation group
ROC curve.
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Figure 5. BMI-stratified metabolic discrimination between steatosis and NASH patients
(a) Average BMI-stratified accuracy (number of patients correctly classified/total number of
patients) as a function of cutoff for the three random forest models combined in the
estimation (solid line), validation (dotted line), and full cross-validated datasets (dashed
line). Estimation group cutoff points at maximum average accuracy (0.54), 95% probability
NASH absence (0.09), and 95% probability NASH presence (0.73) are shown. (b)
Associated BMI-stratified ROC curves for the estimation (solid line), validation (dotted
line), and full cross-validated datasets (dashed line). The optimum cutoff point for the
estimation group (0.54), defined as that at which average diagnostic accuracy was a
maximum is indicated (sensitivity 0.71, specificity 0.92) by a solid circle. In addition, the
low cutoff point (0.09) to predict the absence of NASH with a probability of 95% and the
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high cutoff point (0.73) to predict the presence of NASH with a probability of 95% are
shown (solid diamonds).
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