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Abstract 

A dielectric fluid can be set into motion with the help of electric forces, mainly Coulomb force. 

This phenomenon, called electroconvection, can be induced by electrohydrodynamic conduction, 

injection, and induction. Conduction is based on the dissociation/recombination phenomenon, 

generates heterocharge layers, and occurs for low electric field values. Injection produces 

homocharge layers in the electrode vicinity and requires stronger electric fields to be initiated. 

This study is an experimental observation of the transition from conduction to injection of a 

dielectric liquid in blade-plane geometry using Particle Image Velocimetry. In addition, the 

electric current is measured to completely understand the flow behavior. 
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1. Introduction

Electroconvection is the phenomenon of setting a dielectric fluid into motion with the help of 

electric forces. It is used to produce electrohydrodynamic (EHD) pumps and electroconvective 

flows as jets, wall jets and impinging jets, etc. Several electric forces can act on a fluid to induce 

its motion, but Coulomb force is the most important [1]. In order to generate a Coulomb force 

within a liquid, a volumetric charge density or a space charge must be created. This can be 

achieved by three main methods: conduction, injection, and induction. 

First, in conduction, the electric current is produced by positive and negative ions generated by 

the dissociation of molecules that come to neutralize the electrodes. Since there is no charge 

injection at the electrodes, electric charges produced by dissociation are attracted towards the 

electrode of opposite polarity. They accumulate in the vicinity of that electrode and form what is 

known as a heterocharge layer [2], since the polarity of this layer is different from that of its 

adjacent electrode. A force is produced on an electrode and is often countered by a symmetrical 



force of opposite sign on the second electrode. In order to obtain a fluid motion, it is necessary 

that the produced Coulomb force be asymmetrical on the electrode pair. This is achieved using 

specific electrode geometries. Conduction, generally, occurs at low values of applied electric 

field. Many previous studies [2-4] have theoretically, numerically, and experimentally 

investigated the phenomenon of conduction and its application on EHD pumps. Velocities of the 

order of 10 cm/s were obtained. They also obtained encouraging results for heat transfer and 

fluid transport applications [6] particularly in insulated applications where other EHD methods 

are unachievable or undesirable. 

The second method is direct injection, which takes place when the electric field reaches a 

threshold value. It is the process of creating a space charge in the vicinity of the electrodes: 

electrons are injected into the liquid and bind to neutral molecules to form ions. The 

accumulation of electric charges results in the appearance of a non-neutral layer composed of 

ions having the same polarity of the electrode. This is referred to as homocharge layer. Electric 

charges are then repelled by the electrode. They are set into motion and, due to the fluid 

viscosity, drive the surrounding liquid. The fact that a dielectric liquid can be moved by ion 

injection has been known for over a century [7]. Several prototypes of pumps using the injection 

method (also called ion-drag pumps) were specially designed for cooling applications. The 

charge injection pressure generation was studied theoretically and experimentally in gases and 

insulating liquids [8-10]. The injection phenomenon was also studied in EHD pumps and heat 

transfer enhancement devices [11-12]. Velocities of the order of 1 m/s were obtained. The 

method has also been successfully tested on various dielectric liquids (mainly hydrocarbons). 

The results obtained depend on the liquid properties including viscosity and electric conductivity 

[13]. The injection phenomenon has been studied more than the other two methods. 

In the induction phenomenon, the space charge is created by a gradient or discontinuity of the 

electric conductivity. In the presence of an electric field, a volumetric charge density appears in 

the conductivity gradient zone. This density induced charge is attracted or repelled, thus causing 

a motion of the liquid. Theoretical and experimental studies were carried out on EHD induction 

[14-15]. Experimental works have confirmed that induction can also be obtained within a liquid 

by using a temperature gradient to produce a conductivity gradient [16-17]. The induction 

process for pumping, flow control applications, and heat transfer enhancement was studied [18-

21]. The behavior of induction in a condensing liquid was also studied by varying the difference 

of potential and the frequency of the applied electric signal [22]. The use of EHD induction 

appears particularly promising for heat transfer applications. 

Injection is the technique that has been mostly studied. It is also the most effective. Conduction 

and induction, although less effective, are also promising for various industrial applications. In 

practice, in isothermal fluids, conduction and injection can coexist when an electric field is 

applied, but it is generally assumed that one phenomenon dominates the other one. All these 

phenomena depend on several parameters such as electrodes geometry, working fluid, operating 

conditions, etc. 



In this paper, the transition from conduction to injection is presented. Particle Image Velocimetry 

(PIV) measurements are carried out on a dielectric liquid flow in blade-plane geometry. The 

applied voltage is increased gradually while current measurements and PIV acquisitions take 

place simultaneously. This geometry is used because it allows obtaining a classical flow which 

was commonly studied in EHD [23]. 

2. Experimental Setup 

2.1. Apparatus 

A schematic diagram of the experimental apparatus is shown in Figure 1. It consists of two 

copper plane electrodes (1) and (2). The dimensions of each electrode are 

60 mm × 45 mm × 1 mm and their ends are rounded with a radius of curvature of 0.5 mm. The 

first electrode (1) is connected to a Spellman SL100 positive DC power supply providing a 

voltage going from 0 V up to +5 kV. It is referred to as the blade and is in a horizontal position. 

The second electrode (2) is grounded and is referred to as the counter-electrode in the following 

sections of this paper. It is placed vertically in front of the blade with an inter-electrode distance 

of 1 cm. These two electrodes are placed in an 80 mm × 65 mm × 40 mm cavity cell (3) made of 

PMMA. In order to avoid edge effects, the electrode edges are installed in two sidewalls (4) and 

(5) also made of PMMA. The cell is filled with the dielectric liquid through two holes (6) located 

on the upper surface of the cell so that air bubbles are evacuated. Two sealing strips (7) are 

placed in the two sidewalls to avoid leakage. 

 

Figure 1. Experimental apparatus. 

 

 



2.2. Dielectric Liquid 

The dielectric liquid used to conduct the experiments of this work is 3M™ Novec™ Engineered 

Fluid HFE-7100 whose properties at ambient temperature are presented in Table 1. 

Table 1. Properties of HFE-7100 at a temperature of 25 °C [24]. 

Mass density ρ 1520 kg/m3 

Kinematic viscosity ν 3.9×10–7 m2/s 

Dynamic viscosity μ 5.9×10–4 Pa.s 

Electric conductivity σ 10–6 S/m 

Dielectric strength Es 16 kV/mm 

Relative permittivity  7.4 

2.3. Particle Image Velocimetry System 

The PIV technique is a measurement method that records complete velocity fields of a desired 

flow configuration. A schematic is shown in Figure 2. In this work, a LaVision PIV system 

(LaVision GmbH, Göttingen, Germany) was used. A Laser sheet illuminated the scene, which is 

seeded by very small tracer particles, and a CCD camera recorded successive images of the flow 

at a spatial resolution of 1376×1040 pixels. The software used to analyze PIV images is Davis 

8.0. The velocity fields were then calculated by cross-correlation or time series with windows of 

32×32 pixels. 

 

Figure 2. Particle Image Velocimetry system (© LaVision GmbH, Germany, www.lavision.de) 

2.4. Seeding Particles 

In order to obtain relevant PIV images, the fluid must be seeded with very small particles. 

Nevertheless, their concentration must not exceed a certain limit [25]. The properties of these 

particles must be compatible with the properties of the dielectric fluid. It must have a close mass 

density to avoid floatation and sedimentation along with close dielectric properties to limit 

particle charging. The particles used in this work are made of PTFE and have a diameter of less 

than 1 μm. Their properties are shown in Table 2. 



Table 2. Properties of PTFE at a temperature of 25 °C [24]. 

Mass density ρ 2200 kg/m3 

Electric conductivity σ <10–16 S/m 

Relative permittivity  2.1 

 

3. Results 

Before presenting the experimental results, a quick simulation of the applied electric field in the 

chamber was carried out on Ansoft Maxwell software. In Figure 3, the electric field for a unit 

difference of potential between the electrodes is shown. It is evident that the highest electric field 

is obtained on the blade tip. That means the flow will be directed towards the tip in the case of 

conduction pumping and from the tip towards the counter-electrode in the case of injection 

pumping. 

 

Figure 3. Electric field distribution in the chamber. 

The experiments were carried out on several days at a local temperature of around 30 °C. The 

current/voltage characteristics were measured while the PIV images were taken. A set of 1000 

images was recorded for each different value of the applied voltage between the electrodes. 

Because the flow is mostly unsteady, the average velocity field was then calculated for the 1000 

images and the results presented here are based on average values. 



3.1. Current/Voltage Characteristics 

In order to measure the current/voltage characteristics, the voltage was varied from 0 V up to 

+5 kV on the horizontal electrode while the vertical counter-electrode was always grounded. A 

shunt resistance was connected in series with the counter-electrode and a LECROY WS424 

oscilloscope recorded the corresponding voltage. The current was then calculated and the results 

are presented in Figure 4. 

 

Figure 4. Current/voltage curve. 

It can be observed that the current curve starts increasing almost linearly with the applied 

voltage, for voltages below 1000 V. It is the ohmic region depending on the conductivity of the 

fluid. This behavior is a characteristic of EHD conduction in such configurations. Between 

1000 V and 2000 V, a transition behavior is seen, remaining linear but with a lower slope. This is 

the quasi-ohmic region, also known as the saturation region, governed by conduction but 

affected by the change of the dissociation rate. Beyond 2000 V, an exponential behavior is 

observed and is characterized by ions injection in the chamber. Note that the electric current was 

not always steady during measurements, average values were also considered. A PIV study is 

now required to validate the conclusions made on the electrical behavior. 

3.2. PIV Velocity Fields 

For a better understanding of the behavior of the dielectric liquid when exposed to a high voltage 

in blade-plane geometry, PIV measurements are necessary. They provide global velocity fields 

of the study zone and allow investigating the behavior in detail. They also offer the possibility of 

confirming the deductions made on the electrical behavior. PIV measurements were carried out 

for voltages going from 0 V to 5000 V with an increment of only 100 V in some ranges. In 

Figure 5, the velocity vectors of the flow are shown for just four values of the applied voltage. In 

the background, the velocity contour is seen. These results are the averages of 1000 

instantaneous images taken for each case. 



  
a) 500 V b) 1000 V 

  
c) 1300 V d) 3000 V 

Figure 5. Velocity vectors and contours by PIV. 

It can be observed that, for low voltages (Figure 5a), a flow is generated and is directed towards 

the blade tip. This can be explained by the conduction phenomenon which creates an EHD force 

towards the electrode with the lowest radius of curvature, which is the blade here. The main flow 

creates vortices due to mass conservation. Velocities vary from around 1 mm/s at 500 V to 

4 mm/s at 1000 V. It is also believed that injection occurs simultaneously but is probably 

negligible compared to conduction. When the applied voltage exceeds 1300 V (Figure 5c), the 

direction of the flow is reversed. A jet is generated at the blade tip and flows towards the 

counter-electrode where it impacts to create two wall jets (up and down). Due to the viscosity of 

the fluid, two vortices are created. Their direction of rotation is opposite to the direction of 

previous vortices observed for conduction cases. Similarly, it is thought that conduction 

phenomenon still exists but is now negligible compared to injection. This can probably explain 

the three-dimensional behavior of the flow which was clearly seen on instantaneous PIV images. 



Velocities reached values from 4 mm/s up to 1 cm/s at 5000 V. An important behavior was also 

observed: 1000 images were not sufficient to obtain a symmetrical flow between the top and the 

bottom of the chamber. It is clear that a higher number of images is required to obtain smoother 

average velocity fields, mainly at high voltages where charge injection is more important. This 

was the case with other fluids previously studied [13],[26]. 

4. Discussion 

After carrying out PIV measurements on the EHD flow, both conduction and injection 

phenomena were seen in the chamber. In this section, a thorough analysis and comparison are 

presented in terms of the axial velocity. This term is used to define the horizontal velocity on the 

axis of the blade in the region between the middle point of the counter-electrode and the blade 

tip. In Figure 6, the behavior of the axial velocity at the symmetry axis of the flow is outlined for 

various values of the applied voltage. 

 

Figure 6. Axial velocity on the symmetry axis of the flow. 

One can clearly observe that the axial velocity takes positive and negative values. Positive values 

are recorded when the main flow is directed towards the blade tip, and therefore shows a 

dominance of EHD conduction. This is true for voltages below 1200 V. Negative axial velocities 

exist when the flow is generated at the blade tip and is directed towards the counter-electrode. In 

this case, injection is dominant and is seen for voltages exceeding 1400 V. The transition from 

conduction to injection is not quite clear and does not occur at a single threshold value of the 

applied voltage. On the contrary, there is a transition region where both phenomena exist 

altogether and no one is able to dominate over the other. This can be explained by velocities of 

the same order of magnitude for voltages between 1400 V and 2000 V. Beyond 2000 V, it is 

clear that EHD injection is the main source of the flow. 
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5. Conclusion 

In this paper, the behavior of a dielectric liquid exposed to an electric voltage in blade-plane 

geometry was presented. A positive DC voltage up to 5 kV was applied between two 

perpendicular electrodes. Two main electrohydrodynamic phenomena exist simultaneously: 

conduction and injection. A different flow was induced in the dielectric liquid for each case. 

At low voltages below 1200 V, the heterocharge layer on the electrodes is dominant. Conduction 

phenomenon occurs in the fluid and leads to the formation of heterocharge layers in the vicinity 

of the electrodes. A fluid flow is induced within the chamber and is directed towards the blade 

tip. Due to mass conservation, it creates two contra-rotating vortices which direction proved that 

injection is neglected. 

For voltages beyond 1.4 kV, injection is dominant. The homocharge layer becomes important at 

the blade tip and unipolar injection occurs to induce a flow towards the counter-electrode. 

Similarly, due to mass conservation, two contra-rotating vortices are created. However, their 

direction is inverted because of the opposite direction of the main flow which proves that it is the 

case of ion-drag pumping. 

The transition from EHD conduction to injection does not occur suddenly. A transition range is 

observed between 1200 V and 2000 V. In this range, both phenomena coexist and the flow is 

unsteady as clearly shown in the PIV images. 

Finally, it is very important to study the behavior of the fluid for negative voltages and carry out 

a comparison between both signal polarities. Preliminary tests were conducted and different 

results were observed. This will constitute the subject of a future work. 
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