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Abstract—The cost of Analogue and Mixed-Signal circuit
testing is an important bottleneck in the industry, due to time-
consuming verification of specifications that require state-of-
the-art Automatic Test Equipment. In this paper, we apply
the concept of Alternate Test to achieve digital testing of YA
converters. By training an ensemble of regression models that
maps simple digital defect-oriented signatures onto Signal to
Noise and Distortion Ratio (SNDR), an average error of 1.7%
is achieved. Beyond the inference of functional metrics, we show
that the approach can provide interesting diagnosis information.

I. INTRODUCTION

Model-based testing is an old research path that has pri-
marily been developed to reduce the number of tests in the
test plan. The principal idea was that many specifications
were likely to be highly correlated. A trivial example of
this would be the Integral Non-Linearity (INL) and Total
Harmonic Distortion (THD) in a data converter, which are both
measurements of linearity. A more subtle thinking in terms of
degradation mechanisms may lead to the same conclusion:
conceptually different specifications may be affected by the
same defects or parametric variations and are thus likely to be
correlated.

An early approach has consisted in building a linear model
to either infer the complete set of specifications from a reduced
set of measurements [1]-[3] or relax the precision require-
ments on individual measurements [4], using correlations as
a sort of averaging to reduce total noise. Such linear models
work reasonably well in a wide variety of situations because
the circuits are usually designed with some guardbands and
the parametric variations are expected to induce only small
deviations around the “operating point”. The linear model can
thus be understood as a first order Taylor development. While a
sensitivity analysis would retrieve the influence of degradation
mechanisms on each specification, blind modeling approaches
only extract the consequences of these common causes in
the form of correlations. Instead of performing expansive
specification measurements, it has also been proposed to
use simple, cost-effective measurements to infer the circuit
performance [5]. In an attempt to refine model-based approach
and to extend the validity range beyond the linear limits,
other statistical models have been proposed. Neural Networks
have been extensively used not only for regression [6] but
also for classification [7], [8]. Nearest-neighbors approaches

have also been reported. In [9], for instance, the technique
is used to estimate the joint probability of the parameters
and measurement. Finally, many papers rely on multivariate
adaptive splines (MARS) [10], which are particularly well
suited for building models in high dimensional spaces but
with local correlations between few variables. Combining non-
linear advanced statistical models and simple measurements
forms the basement of the Alternate Test concept that has
gained much attention in the past few years [11]-[13].

In this paper, we will apply this concept to the test of XA
converters. This is a challenging task since the behavior of XA
modulator is in essence highly non-linear. For this purpose,
we use a set of digital signatures that have been proposed in
[14]-[17], as detailed in Section 2. These digital tests have
been designed to capture the non-idealities of the modulator
building blocks and thus lend themselves well to Alternate
Test. In order to build the regression model, we will make
use of a statistical tool called mixed ensemble learning [18].
This in an advanced tool in the sense that it trains several
models over the available data and combines the outcome
to give composite model whose generalization error can be
demonstrated to be lower than the individual models. This tool
will be introduced in Section 3. Finally Section 4 discusses the
results obtained for a 2-1 cascaded modulator.

II. DIGITAL TESTS OF XA MODULATORS
A. Test generation

The generation and validation of simple digital test for the
detection of important parametric variations in A modulators
have been described in detail in previous articles [14]-[16].
Here, we will only briefly review the main concepts and
describe the high-level simulations that we have carried out
for model-based testing purpose.

Figure 1 shows a possible implementation of a 2-1 cascaded
modulator. The first stage is a simple structure, with two
delaying integrators of gain 0.5 and unit feedback coefficient.
The second stage makes use of the same integrator and is
fed directly with the second integrator output. Hence, the
reconstruction filter R (z) must be,

R(z) =2V + (7Y —4¥a) x (1—2"H% (1)

where Y7 and Y5 are the first and second stage output bit-
streams, respectively.
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Fig. 1. Schematic of the 2-1 A modulator used for digital tests. The input
switches and feedback DAC of each integrator admit a modified control in
test mode.

In order to generate the different digital signatures, the
modulator must implement some Design-for-Test (DfT) mod-
ifications. Namely, the control of the input switches and the
feedback DAC for each integrator are modified during test
modes. These modifications only require additional digital
gates and do not alter the design of the analog signal path.
The main idea is that the nominal input of the integrators
can be disconnected while the feedback DAC can be re-used
during the sampling phase to input a digital test sequence of
our choice. Using test sequences of different mean values, we
can generate signatures that are sensitive to the pole error and
output range of the different integrators.

Another important modification is that the master clock that
drives the non-overlapping phase generator can be controlled
and correlated to the test sequence. The clock period for a
digital one input (alternatively a digital zero) can be made
last twice as long as a clock period for a digital zero input
(alternatively a digital one). In this way, the integrator has
twice as much time to properly settle for a one input as for a
zero. This simple correlation makes the settling error appear
as a DC component in the modulator output.

The feedback DAC is also modified to include the possibil-
ity to input the common-mode voltage instead of the voltage
references. The differential DAC in test mode is thus three-
valued (—1, 1 and 0, referred to Full-Scale). This modification
brings the opportunity to generate a signature that is mainly
sensitive to the non-linear part of the settling error [19].

All these modifications are discussed in detail in [16]. For
all the proposed tests, the effects of non-idealities appear in the
DC component of the signatures. The initial proposals focused
on BIST implementations and proposed to use simple counters
to extract this DC component. However, it has been shown in
[17] that using higher order filtering is a better approach to

reduce signature uncertainty.
For our regression purpose, we perform a total of 27 tests,
some of which in parallel:

o Two leakage tests with a digital sequence of mean value
2/3 (referred to full-scale) and its opposite, for each
integrator.

o Two leakage tests with a sequence of mean value 1/3
and its opposite, only for the first integrator.

o Two settling tests using a pseudorandom sequence and
doubling the clock period for the 1 and then for the
—1 input samples. These tests are performed at nominal
frequency, for each integrator, and repeated at 120% of
the nominal frequency.

o Two settling tests using a random sequence of 1 and
0 (using the DAC modification that allows to send the
common-mode voltage), for each integrator. These tests
do not require clock modification.

« A noise test for the overall modulator, with a sequence
of zero mean value. Here we measure the mean value
and standard deviation of the converter output, after the
decimation filter (a 4*" order Comb filter).

For each acquisition, the DC component at the stage outputs
(either Y7 of Y5) are retrieved by a 3¢ order Comb filter
with an OSR of 6000. We thus have to simulate at least
18001 points for each acquisition to account for filter settling
time. The last test of the list uses the decimation filter of the
converter, with an OSR of 64. Simulating 18000 samples thus
provides 276 samples to calculate the standard deviation and
the mean value. From all these acquisitions, we generate a
total of 18 different signatures that are, in principle, sensitive
to the offset, leakage and settling of the three integrators, to
the output range of the first integrator and to the excess noise
of the overall converter.

In previous works, we have derived analytical closed-form
expressions that relate these signatures to some important
behavioral parameters of YA modulators. This is important
because we know that there is a relation between signatures
and performance degradation mechanisms. However, in this
paper we want to build a blind regression model without
assuming any analytical first-order relationship.

B. High-level simulation

Machine-learning approaches require a training set of de-
vices that exercise the parameter space in a wide range. The
model generalization error grows significantly if only few
samples are available. This is a general rule that find its roots
in the well-known ”Curse of Dimensionality”, though it affects
different models in greater or lesser extent.

In order to verify that the digital tests have the potential
to correctly predict performance, we must try to avoid model
learning limitations and thus use a large training set. Ideally,
we could perform Monte-Carlo simulations on the electrical
schematic or even the extracted layout of the circuit. However,
this would be extremely time-consuming. In order to get
more flexibility, high-level simulations using Matlab have been
preferred.



It has been demonstrated in various papers that most rel-
evant effects can be modeled in event-driven simulators and
give accurate results, in accordance to electrical simulations
[20]. All our digital tests rely on the processing of a digital
sequence — sent by the re-used feedback DAC — by a YA
modulator. The behavioral model is thus adequate for both
the nominal operating mode and the digital tests.

We thus built a high-level model of our 2-1 modulator
considering the following effects:

« Amplifier offset, finite DC gain, static non-linearity, Slew-

Rate and Gain-Bandwidth product

o Integrator coefficient error and noise (both k7'/C and

amplifier noise)

o Comparator offset and hysteresis

For three integrators and two comparators, this leads to a
total of 28 parameters. We thus performed a Monte-Carlo sim-
ulation of 1200 runs, sampling the 28-dimensions parameter
space using Latin Hyper-Square method. For each run we
perform the set of tests proposed in previous subsection. In
addition, we also perform a classical functional test. The input
signal is a half-scale sine-wave. The output of the decimation
filter (with OSR = 64) is processed to compute the SNDR
from the FFT over 512 samples. The objective is thus to map
the 18-dimension signature space to the SNDR.

III. ENSEMBLE LEARNING

Machine-learning, regression modeling, function approx-
imation, data mining, all this terminology belongs to the
vast mathematical field of statistics. Researchers have been
struggling to develop the best modeling approach from more
than a hundred years. Unfortunately, the idea of best model
is always relative to the application and nobody has come
out with the definitive approach. Some models perform better
on low-dimension spaces, other require few training samples,
etc. Actually, the task of model selection has already been
investigated (see Chapter 7 in [21]), and a number of criteria
have been developed to assess model quality, usually in
terms of expected prediction error. Anyhow, managing these
concepts is not an easy task to the profane. As a matter of fact
most papers that apply machine-learning algorithms to circuit
testing usually do not justify the choice of their statistical tool.

In this context, the concept of ensemble learning is very
appealing because it builds a mosaic model from a collec-
tion of statistical tools. It implements a routine that trains
different models using cross-validation principles to deduce
the expected prediction error. The final model is a weighted
average of a subset of all the trained models, being the weights
a function of the calculated prediction error.

We use a Matlab toolbox developed by Wichard and Merk-
wirth [18], which itself uses elements of [22]. Let us briefly
present the different models that can be trained by the toolbox.

A. Linear and Polynomial models

The most straightforward model is the linear one. As
explained in the introduction, the linear model expresses the
measurement vector — in our case the SNDR of the XA

converter — as a linear combination of the input vectors —
in our case the digital signatures. The regression is performed
in the least-square sense. The validity range of linear models
is usually limited as they are not able to capture non-linear
interactions. The results are usually highly biased but present
rather low variability, and the generalization error is usually
quite close to the training error. Conceptually, the bias is
potentially high because the model imposes a strong constraint
on the relationship between the measurement vector and the
input vectors (i.e. linearity). On the other hand, this strong
constraint also ensures that no unreasonable outlier will be
produced by the model. In particular, if the model is exercised
out of the training range, it may still lead to reasonable
asymptotical results, which is not the case for more flexible
models.

A simple modification of linear model is the polynomial
model. Here the number of input vectors is extended by
adding the product of two or more input vectors. Taking
into account these new vectors, a linear regression is then
performed. Obviously, this approach is better suited for input
spaces of low dimensions. Otherwise, even considering low
order polynomials terms would lead to a large number of
input vectors. The toolbox limits the polynomial degree to
the lowest order that generates a number of variables higher
than a given threshold. In our case, we have 18 variables
and the polynomial is limited to the 3"¢ degree. A forward
stepwise algorithm then searches all the variables among the
available ones that improve fitting and add them to the pool
of useful variables on a step by step basis. Then, a backward
stepwise algorithm tries to remove one variable at a time to
avoid redundancy and overfitting.

B. Nearest-neighbors

In a sense, Nearest-Neighbors approaches are the complete
opposite to linear modeling. In this approach, no implicit
structure is supposed in the data and the model prediction
is more an interpolation of the training data than the result of
a given function. The prediction for a given input is simply
equal to the value of the nearest neighbor in the training
set. As a result, Nearest neighbors approaches must store the
complete training set in order to make further predictions.
The result is a model with low bias but high variability. This
means that it adapts very well to local fluctuations but on
the other hand is very sensitive to the non-ideality of the
available data like noise, outliers or simply density. Indeed,
it appears obvious that the larger the training set — which
supposedly samples the input space adequately — the better the
results. This is particularly troublesome in high-dimensional
spaces. Refinements of the method usually rely on defining a
larger neighborhood and considering some kind of weighted
average (accordingly to a given kernel, for instance Gaussian
or Epanechnikovs kernel). It is also possible to adapt the size
of the neighborhood to the local sampling density to mitigate
the effects of noise and outliers in regions with sparse data.
The toolbox uses a genetic algorithm to select the optimal
methodology, varying the number of nearest neighbors and



also the metric used for distance calculation and for local
weighting.

C. Neural Networks

The field of function approximation through Neural Net-
works is very extended and many different networks topologies
have been investigated. The toolbox implements two families
of Neural Networks. The first family is that of the well-known
Perceptron Networks, which involve only feedforward layers
of neurons. The multilayer perceptrons can be trained with
either 1% order of 2"¢ order gradient decent. The second
family is that of Radial Basis Function Networks. While
Perceptron networks use linear or sigmoid activation functions
for regression, RBF networks use radial activation functions
that are parameterized at least by their centers and radii.
Several training algorithm exist that give different results. The
best known training method is the Expectation Maximization
(EM) algorithm which optimizes an initial guess. A simplified
version of it is the David MacKay (DM) algorithm, which is
faster but has no formal proof of convergence. And finally the
combination of Regression Trees with RBF network [23] has
given good results. A regression tree is grown to split the input
space in smaller hyperrectangles which will then determine the
center and size of the RBFs. The size of the tree is limited
by a parameter that defines the minimum number of samples
in a split. Furthermore, the complexity of the model is then
reduced by pruning which is done by forward selection and can
be combined with backward elimination. Finally, Perceptron
Radial Basis Function Nets (PRBFN) [24] are, as its name
indicates, a neural network with hidden layers composed of
a mixture of perceptron and RBF units. The motivation of
this approach is that it has been shown that a function can
be decomposed into exclusive radial and projection parts. The
RBF units thus tend to capture the radial components while the
ridge (perceptron) units try to reproduce the projection part.

D. Multivariate Adaptive Regression Splines

The MARS approach proposed by Friedman [10] has been
used successfully in a large number of papers in the past few
years [11]-[13]. As its name indicates, it is based on common
regression splines. For high-dimensional data, only low-order
splines are considered (typically lower than three)in order to
limit the complexity of the model. The Adaptive Multivariate
part of the name comes from the recursive partitioning of
the input space, in a way very similar to the regression
tree used for RBF networks previous subsection. This kind
of model presents the advantage of being continuous with
continuous derivatives, a constraint which may be a desirable
feature and which contributes to reduce the variability of the
model prediction. Moreover, MARS models consider additive
contributions of either local or global interactions but always
between few variables at a time. This structure makes easier
to extract diagnosis information from the model.
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Fig. 2. Scatter plot of the SNDR estimated by the ensemble model on the
base of the digital signatures, versus the measured SNDR.
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Fig. 3.  Relative prediction error for the individual models that from the
ensemble. The horizontal line corresponds to the ensemble prediction error.

IV. RESULT EXPLORATION AND DISCUSSION
A. Fitting the SNDR

In order to guarantee that the generalization error for models
obtained through the described method is fully reliable, we
preferred to discard the estimate provided by the crossvali-
dation training routine of the ensemble. Instead, we set apart
200 modulators, randomly chosen from the 1200 simulated
and defined then as the test set. Such test set is never used
for training purpose in any of the models that compose the
ensemble. Then we trained an ensemble model containing all
the class of models described in Section 3, considering 10-fold
crossvalidation.

Once the model has been trained, the SNDR is estimated
for the test set. Figure 2 shows a scatter plot of the obtained
results. It can clearly be seen that the model has actually
managed to extract the relationship between the different
signatures and the SNDR. As a matter of fact, the standard
deviation of the prediction error is as low as 1.7%, that is
1.27dB.

Taking a look at the model construction, we can see that it
is composed of:

e« 6 PBRFN models



o 4 perceptrons trained with 15! order gradient decent

o 4 perceptrons trained with 2" order gradient decent

o 4 nearest-neighbors models, two obtained with Euclidean
distance, and the other two with Manhattan distance.

e 2 RBF networks using Cauchy distribution, trained by
regression trees with forward selection

¢ 1 polynomial model

Figure 3 shows a stem plot of the individual errors of
the constituting models. The horizontal line represents the
ensemble prediction error and it can be verified that it is
slightly better than the best of the individual models. It is
interesting to notice that none of the MARS models have
been retained by the optimization algorithm of the ensemble
selection. On the other hand, one polynomial model has been
retained. This is unexpected since it means that the data
present a quite strong global structure. One of the benefits of
MARS models is that they are able to capture both local and
global interactions. It seems reasonable to think that hybrid
ensemble models may reach the same benefit by combining
inherently local models (like nearest-neighbors) and global
models (like polynomial). Considering individual models, the
MARS approach may be a good performer but in the ensemble
it does not bring anything new.

B. The relation between test and diagnosis

In the field of test, everybody is familiar with the functional
and defect-oriented philosophies. One of the advantages of
functional test is that it directly measures the specifications of
the circuit and thus provides a great confidence in the quality
of the circuit. However, this confidence is reasonable at the
instant of test. Indeed, a circuit with an important defect may
fulfill all the specifications. For instance, an unexpected strong
deviation can occur in a block that was designed with a very
large guard-band. The circuit performance is not affected and
the functional test is thus unable to detect the defect. It could
be argued that such a defect is irrelevant, but who can ensure
that it would not represent a reliability issue? What is the
evolution of this defect with external conditions? Alternate-
test approaches that rely on several dedicated tests to capture
degradation mechanisms should detect more reliability defects.
However, they are partially submitted to the same issue as
functional test. Indeed, in order to limit overfitting — a common
issue that increases the variability of the model and the overall
generalization error — many statistical tools involve some form
of complexity penalty which tend to set to zero the contributors
with little influence. This happens with tree pruning in RBF
networks and MARS approach, with the ridge regression in
polynomial fitting, etc. This last case is interesting because
it is quite easy to analyze. By looking at the details of the
polynomial model fitted to our data, we can see that it makes
use of only 13 of the 18 signatures. Actually, the discarded
signatures are those which are, in first order, sensitive to the
offset in the three integrators, to the leakage of the third
integrator and one of the settling signatures of the third
integrator. This is not at all surprising, since integrator offset
have little impact, if any, on the performance of the modulator.
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Fig. 5. Scatter plot of the SNDR estimated by the ensemble model with
only the four most relevant signatures, versus the measured SNDR.

Similarly, the nonidealities of the third integrator are much less
relevant than that of the first two integrators. Being located
further in the XA loop, the errors are partially shaped to
the high-frequencies and subsequently filtered out. Though
the performance of the modulator can still be accurately
predicted, the polynomial model have completely removed
some signatures related to the behavior of the third integrator
and may thus not be able to capture some defects occurring
in it. To further illustrate this effect, we have ordered the 18
signatures from the less to the most relevant using a quite
naive criterion relying on Singular Value Decomposition that
still gives interesting results. Using the ordered list, we train
the ensemble model iteratively removing one variable from the
training set, from the supposedly less relevant to the most.

Figure 4 shows the prediction error of the model (calculated
on the independent test set), versus the number of removed
variables. It appears clearly that as many as 14 variables can
be removed from the set with a small impact on the prediction
error, which slowly grows from 1.7% to 3.1%. If one more
variable is removed, the prediction error jumps to 12%. The
remaining question is: With only four signatures, how many
possible reliability defects may pass through the test?

Figure 5 shows a scatter plot of the fitted data for the model
that contains only the four most relevant signatures. This plot
can be compared directly with Fig. 2, and apart from a slightly
larger dispersion, we can notice two more relevant outliers.
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Going to the source of the MonteCarlo data, we can verify
that these outliers correspond to defects in the 3" integrator.
They do not affect the performance in a large extent but this
small, statistically irrelevant deviation was captured by the full
model and not by the reduced model.

Up to this point, following the Alternate test concept we
have built a model regression mapping the digital signatures
to the SNDR of the converter. However, in order to show
the diagnosis potential of our defect-oriented signatures, we
have also performed regression from the training data to the
behavioral parameters of the MonteCarlo data. Notice that
this is possible here because we are performing a highlevel
MonteCarlo simulation and we thus have access to the true
underlying parameters. This may also be done through elec-
trical simulation but not on a set of real devices because
we do not have a way to independently measure behavioural
parameters like amplifier DC gain, etc. As can be seen in the
example of Fig. 6, our digital signatures do sense parametric
variations in the 3¢ amplifier that a functional test hardly
notice. Obviously, the precision of the measurement is not
very high but the diagnosis information is still very valuable,
as even simple fault location is an interesting feature.

V. CONCLUSIONS

In this paper, the Alternate Test approach has been applied
to YA moddulators. It has been shown that simple digital
tests that had been primarily developed for Go/No-Go BIST
solutions can provide sufficient information to predict the
SNDR with good accuracy. It has been shown that the high
performance statistical tool called ensemble learning performs
better than the most used MARS tool, at least for this
application. Furthermore, the analysis of the data points out
a relevant aspect of the Alternate Test approach: its relation
with defectoriented approaches and diagnosis. If some care is
taken in the model construction, considering defect—oriented
signatures and training the model over a wide variation range,
Alternate Test approach may add significant diagnosis capa-
bilities to accurate performance prediction.
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