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This paper presents a very simple analytical model for the analysis of the resonant transmission of

microwaves or millimeter waves through periodically distributed slits in a thick metal screen. The

model is based on equivalent circuits consisting of transmission line elements of known

characteristic admittances and propagation constants loaded by capacitors. Closed-form analytical

expressions are provided for all the circuit parameters. Alternatively, the circuit parameters can be

quickly computed from numerical simulations carried out at a few frequency points. The proposed

analytical model accounts for all the details of the observed transmission spectrum, including

conventional Fabry-Pérot (FP) resonances, which are controlled by the thickness of the screen, as

well as extraordinary transmission peaks, which are related to the periodicity. The range of validity

of the model as a function of dimensional parameters is discussed. The experimentally observed

and numerically predicted redshift of the Fabry-Pérot transmission peaks with respect to the ideal

Fabry-Pérot resonance condition is accurately accounted for by the capacitors of the model. For

narrow slits, the extraordinary transmission peak is linked to the singular behavior of the

capacitances at the Rayleigh-Wood anomaly frequency point. Finally, the effect of the lossy nature

of the metal screens is included in the model, providing accurate predictions of the transmission

losses. Additionally, for lossy screens the model adequately predicts the anomalous behavior of the

above mentioned redshift when the slit width becomes comparable to the skin depth in the metal,

which is in good agreement with experimental and theoretical data previously reported for a single

slit. VC 2011 American Institute of Physics. [doi:10.1063/1.3583561]

I. INTRODUCTION

The study of the extraordinary transmission (ET) of

electromagnetic waves through electrically small apertures

in conducting screens has been a hot topic since the publica-

tion of the seminal work by Ebbesen and co-workers.1 Scien-

tific challenges and promising applications have justified

such interest. Presently, it can be accepted that this is a

mature area of research for which authoritative reviews are

available to the interested reader.2–5 Most of this research

has been focused on the study of 2-D periodic arrays of finite

size holes made in metal screens. However, the case of 1-D

periodic distributions of infinitely long slits (diffraction gra-

ting) deserves specific attention. This was the first system

considered with the purpose of providing sound theoretical

explanations for ET.6 Actually, the behavior of metal strip

gratings has been a topic of interest for decades, and ET

through arrays of electrically narrow slits made in a thick

perfect conductor was reported as early as 1967.7 More

recently, much attention has been paid to the behavior of the

transmission spectrum of slit gratings under various condi-

tions. For instance, multiple Fabry-Pérot internal resonances

are obtained for thick screens.8,9 Also, unexpectedly high

transmission (extraordinary transmission) has been observed

for operation close to the Rayleigh-Wood (RW) anomaly fre-

quency in the case of thin screens.6 Moreover, complex spec-

tra with deep and narrowband notches (phase resonances) in

the middle of the transmission bands have been reported for

compound transmission gratings.10,11 In addition to periodic

arrays of slits, the study of the transmission through a single

slit aperture made in a flat metal screen has also been a sub-

ject of interest.12–14 From the analysis of this simple struc-

ture it is possible to qualitatively understand some important

details of the behavior of more complex periodic geometries.

Single slits in metal screens with periodic corrugations

around them15 or electrically small dielectric scatterers in

their proximity16,17 have also recently been studied.

This paper focuses on the behavior of periodic distribu-

tions of simple slits with the purpose of developing analytical

solutions or fast methods to obtain the transmission/reflection

spectra. Some phenomena initially reported for a single slit

will also be studied in the context of the infinite periodic

slit grating system, where similar qualitative behavior is

expected but quantitative results are considerably different.

The peaks and dips appearing in the transmission spectra

through periodic structures have been related to the existence
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of surface plasmon polaritons (SPPs) supported by the peri-

odically shaped conducting surface. Some authors have also

reported on ET in the absence of this kind of surface wave,18

although a different type of surface wave is still involved in

the case studied. However, different studies reported on ET

through small diaphragms located inside closed metallic

waveguides,19–22 which showed that ET is not always linked

to the presence of surface waves. This fact motivated some

of the authors of this paper to carry out efforts to develop a

unified theoretical framework for a variety of situations

found in practice. The model is based on a methodology

commonly used in microwave engineering. It must be

emphasized that, for periodic structures, the interpretation of

the transmission peaks in terms of the interaction of the im-

pinging wave with SPPs gives an accurate picture of the phe-

nomenon, but even in those cases it fails to provide us with

detailed qualitative and quantitative information a priori,
besides the fact that it is usually not the most straightforward

approach to the problem. Thus, for instance, the exhaustive

knowledge of the dispersion curves for the involved SPP

waves is not required if one is solely interested, as usual, in

the transmission and reflection coefficients for the impinging

plane wave. These coefficients can be directly obtained with-

out intermediary surface wave excitation and transmission

peaks, and they can be qualitatively anticipated using the im-

pedance matching concept. This point of view, implicit to

some extent in the waveguide model described in Ref. 23,

was first developed in detail in Ref. 24. The explanation of

ET in Ref. 24 is consistent with the theoretical results

reported in Refs. 19 and 20 for small diaphragms inside

hollow pipe waveguides. In addition, it also explains conven-

tional (large holes) and extraordinary (small holes) transmis-

sion peaks through periodic structures. Thus, the theory in

Ref. 24 automatically accounts for both SPP-mediated proc-

esses and for cases where SPPs do not play any role.21,22 The

impedance matching approach lends itself to simple equiva-

lent circuits having a small number of parameters to be

determined. Once these parameters are known, the transmis-

sion and reflection spectra in the frequency band of interest

can be analytically obtained. This fact constitutes a remark-

able advantage over fully numerical approaches.

The study in Ref. 24 was restricted to 2-D arrays of

holes made in perfect conductors. However, as discussed

previously, 1-D diffraction gratings are also interesting and

still attract the attention of researchers.25–27 These gratings

do not behave exactly as 2-D arrays of holes since the slits

support propagating modes which are absent inside small

holes.6 The extension of the theory in Ref. 24 to simple and

compound 1-D slit gratings has recently been published by

some of the authors.28 However, the model for the simple

strip grating was introduced in Ref. 28 in a rather heuristic

manner. Moreover, no analytical formulas were reported for

some of the relevant parameters and the strengths and weak-

nesses of the model were not appropriately discussed. In con-

trast, the present paper provides an in-depth analysis of the

features of the circuit model, including rigorous analytical

(instead of heuristic) support. Moreover, closed-form expres-

sions are now provided for all the parameters of the circuit

model, thus yielding a fully analytical, very simple, and

accurate description of the behavior of slit gratings. We will

also show how the range of validity of the model can be

extended by using an alternative scheme in which the circuit

parameters are numerically obtained from the scattering pa-

rameters (computed using a full-wave numerical approach)

at a few frequency points.

From the numerical and analytical results, it is remark-

able that some of the features of the transmission spectrum

of a single slit also appear in diffraction gratings, although

the quantitative results are very different. For instance, the

redshift of the Fabry-Pérot resonances with respect to the

theoretical value obtained from the thickness of the metal

screen is a phenomenon occurring in both periodic8,9 and

isolated single slit12–14 systems. However the quantitative

value of the redshift is quite different in both situations. We

will show how our analytical model accurately accounts for

this fact in a very simple manner.

A final and significant improvement with respect to the

previous model28 consists of the extension of the equivalent

circuit to account for ohmic losses in the screen. This is

achieved by introducing a very simple modification in the

model developed for the lossless case. With this extended

model, the power absorption and the slight modification of

the maximum transmission frequency associated with losses

can be analytically anticipated. An interesting effect of

losses is that the redshift mentioned in the previous para-

graph is shown to exhibit an anomalous behavior when the

slit width is extremely small and becomes comparable to the

skin depth in the conducting material. This qualitative

behavior was reported some years ago for a single slit struc-

ture.29 This anomaly consists of the decrease of the reso-

nance frequency when decreasing the slit width, in contrast

with the monotonous increase observed for perfect conduc-

tors. Once again, our model accurately reproduces this subtle

phenomenon. Finally, it is worth mentioning that similar an-

alytical models can be used to deal with other wave phenom-

ena, such as extraordinary transmission of acoustic waves.30

II. EQUIVALENT CIRCUIT FOR A PERIODIC ARRAY
OF SLITS IN A THICK METAL SCREEN

Let us consider a periodic array of identical slits made

in a thick conducting plate. Figure 1(a) represents a lateral

view of the system under study, with d being the period of

the structure, h the thickness of the metal plate, and a the slit

width. A linearly polarized transverse electromagnetic

(TEM) wave impinges normally on the structure with its

magnetic field oriented parallel to the slits (p-polarization).

The scattering parameters for the periodic infinite structure

are identical to those of the waveguide discontinuity problem

shown in Figs. 1(b)–1(c) (Ref. 28) (a similar waveguide dis-

continuity approach has been previously applied to 2-D

arrays of circular or rectangular holes23,24). Note that W can

be arbitrarily chosen since the fields do not depend on the x
variable. In this way, the problem has been reduced to the

computation of the scattering parameters of a height-step dis-

continuity in a parallel plate waveguide. This problem is eas-

ily amenable to the mode matching solution31 (a modal

approach applied to slit systems can also be found, for
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instance, in Ref. 10). In most of the cases treated in the liter-

ature, the wavelength of the impinging field is taken to be

longer than d in order to enforce a single transmitted and

reflected spot (nondiffracting operation regime). In other

words, only the TEM mode propagates along the two differ-

ent waveguide sections in Fig. 1(b). All of the higher order

waveguide modes required to match the boundary conditions

at the discontinuity planes [all of them transverse magnetic

(TM) modes28] operate below cut-off. Since we are inter-

ested in the scattering coefficients for the fundamental TEM

mode, an equivalent transmission line circuit32 such as the

one shown in Fig. 1(d) is proposed to account for the physi-

cal situation. Next, we will demonstrate that this equivalent

circuit is rigorous in the narrow slit limit (a� d), and we

will show how the different high-order waveguide modes

contribute to the shunt capacitors.

Let us first consider the perfect conductor case

(r!1). The structure in Fig. 1(b) corresponds to two cas-

caded height-step discontinuities such as that shown in Fig.

2(a). The electromagnetic field at both sides of the disconti-

nuity can be written as a superposition of waveguide modes.

The transverse (to z) components of the fields at the disconti-

nuity plane (z¼ 0) can be expressed as a combination of

propagating and evanescent modes of the waveguide with

height d, namely

E1ðyÞ ¼ Eþ1; 0 þ E�1; 0 þ
X1
n¼1

E�1; n cosðk1; nyÞ; (1a)

H1ðyÞ ¼ n1; 0ðEþ1; 0 � E�1; 0Þ �
X1
n¼1

n1; nE�1; n cosðk1; nyÞ ; (1b)

where the superscript þ (�) corresponds to waves propagat-

ing toward increasing (decreasing) values of z. The first sub-

script (1) represents the region where the fields are expanded

(region 1 for z < 0). The second subscript represents the

order of the mode (n¼ 0 for the propagating TEM mode and

n > 1 for the remaining below-cutoff TM modes). The trans-

verse wavenumber in region 1 is k1; n ¼ ð2npÞ=d (note that a

virtual electric wall exists at y¼ 0). Finally, n1; n are the

wave admittances of the different modes at the left-hand side

of the height step discontinuity. Of course, a similar expan-

sion can be done using the modes at the right-hand side par-

allel plate waveguide

E2ðyÞ ¼ Eþ2; 0 þ
X1
n¼1

Eþ2; n cosðk2; nyÞ; (2a)

H2ðyÞ ¼ n2; 0Eþ2; 0 þ
X1
n¼1

n2; nEþ2; n cosðk2; nyÞ; (2b)

with k2; n ¼ ð2npÞ=a. The wave admittances are given by

ni; n ¼ j
ni; 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f c
i; n=f

� �2

�1

r ; (3)

where f c
i; n is the cutoff frequency of mode n in region i. Note

that, for the TEM mode,

n1; 0 ¼ n2; 0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
e0=l0

p
; (4)

since we are assuming that the slit is filled with air. Never-

theless, the corresponding value of n2; 0 could be used if a

different dielectric material is filling the slit region. The gen-

eralized scattering matrices of the height-step discontinuity

can be obtained by enforcing the continuity of the fields at

the z¼ 0 plane and projecting over the modal transverse field

profiles [i.e., the cosines in Eqs. (1) and (2)]. This approach

is usually referred to as mode matching, and it will be used

later on as an alternative numerical strategy to compute the

circuit parameters.

From the analytical point of view, we are interested in

the study of mode matching equations under the narrow slit

approximation, since this analysis will lead us to our circuit

model. From Eq. (1a) we have

FIG. 1. (a) Cross section of the slit grating considered in this paper (the

structure is uniform along the x direction). (b) and (c) show the lateral and

frontal views of the unit cell valid for normal incidence. (d) Equivalent cir-

cuit for the unit cell problem. The conductivity can be infinite to deal with

the perfect conductor case. (Note: e.w. represents electric wall, and m.w.

represents magnetic wall).

FIG. 2. (a) Longitudinal section of the height step discontinuity under study.

(b) Equivalent circuit model for the structure depicted in (a).
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ðd=2

d=2

E1ðyÞ cosðk1; nyÞdy ¼
dðEþ1; 0 þ E�1; 0Þ n ¼ 0
d
2
E�1; n n � 1

�
: (5)

For a� d the higher order modes inside the narrow wave-

guide can be neglected, in such a way that only the TEM

fields in Eq. (2) are retained. Thus, applying the continuity

of the fields for jyj � a=2 and taking into account that the

tangential electric field vanishes on the perfect conducting

screen we obtain

dðEþ1; 0 þ E�1; 0Þ ¼ aEþ2; 0 : (6)

The perfect conductor (zero tangential electric field) condi-

tion at the screen also implies that

ðd=2

d=2

E1ðyÞ cosðk1; nyÞdy ¼
ða=2

a=2

E1ðyÞ cosðk1; nyÞdy ; (7)

and taking into account that cosðk1; nyÞ � 1 over the interval

�a=2 � y � þa=2, provided that n is significantly smaller

than d/a, we can write

E�1; n � 2ðEþ1; 0 þ E�1; 0Þ ; (8)

i.e., the amplitudes of the higher order modes are independ-

ent of their order. This is what one would expect from the

Fourier series expansion of a Dirac delta function, which is a

good approximation for the electric field distribution along y
(at the z¼ 0 plane) when the slit is extremely narrow. This

fact allows us to introduce drastic simplifications in the equa-

tions, leading to our transmission line circuit model. Indeed,

from Eq. (1b) and the simplified version of Eq. (2b) (i.e., the

version that ignores higher order modes) and enforcing the

continuity of the magnetic field we obtain

n1; 0 Eþ1; 0 � E�1; 0

� �
�
X1
n¼1

n1; nE�1; n cosðk1; nyÞ ¼ n2; 0Eþ2; 0: (9)

Now combining Eqs. (6), (8), and (9)

n1; 0 �
d

a
n2; 0 �

X1
n¼1

ð2n1; nÞ
" #

Eþ1; 0

¼ n1; 0 þ
d

a
n2; 0 þ

X1
n¼1

ð2n1; nÞ
" #

E�1; 0 :

(10)

If the concept of characteristic admittance of the parallel

plates waveguides involved in our problem is introduced,

Eq. (10) can be rewritten in a fashion that clearly resembles

the reflection coefficient (C) of the voltage waves in the

transmission line circuit depicted in Fig. 2(b), which is given

by

C ¼
E�1; 0
Eþ1; 0
¼ V�1

Vþ1
¼ Y1 � ½Y2 þ YC�

Y1 þ ½Y2 þ YC�
: (11)

By comparison of Eqs. (10) and (11), Y1 ¼ ðW=dÞn1; 0 and

Y2 ¼ ðW=aÞn2; 0 are the characteristic admittances (as

defined in conventional transmission line theory32) of the

parallel plate transmission lines of width, W (arbitrary), and

heights, d and a, respectively. The shunt admittance in Eq.

(11) accounts for the effect of the evanescent modes and is

given by

YC ¼
W

d

X1
n¼1

2n1; n: (12)

The complex reflection coefficient, C, is valid for the electric

fields of the original electromagnetic problem and for the

voltage waves of the transmission line model (note that

V6
1 ¼ dE6

1; 0). The current waves along the transmission line

model are related with the magnetic fields of the TEM mode

through the simple relation, I6
1 ¼ WH6

1 . Equation (12)

shows that, for a=d � 1, YC is a sum of purely reactive

admittances with a positive imaginary part (capacitive admit-

tances). Therefore, the reactive load associated with higher

order TM modes can be represented by the shunt connection

of the elementary capacitors, each of them accounting for a

high-order TM mode. Of course, this is rigorously correct in

the limit of zero width slits (a=d ! 0). In general, the

capacitances of these elementary capacitors are frequency

dependent, as is clearly indicated by Eq. (3). Nevertheless,

for frequencies well below the cutoff of any of the higher

order modes it is straightforward to show that the wave

admittances in Eq. (3) are proportional to the angular fre-

quency, x. Thus, the shunt admittance can be reduced to a

single capacitor with a frequency-independent capacitance,

Ced, namely

YC ¼ jxCed; (13)

(for harmonic fields having a time domain dependence of the

form expðjxtÞ. Obviously, the global capacitance, Ced repre-

sents the electrostatic edge capacitance of the 90� corners in

Fig. 2(a). This is expected to be a good approximation for nar-

row slits and frequencies well below the cutoff of the high

order modes. But this very simple model naturally fails when

the operation frequency is comparable to the cutoff frequency

of the first high order mode (the TM2 mode), i.e., to the onset

frequency of the first grating lobe f TM2
c ¼ c=d, where c is the

speed of light in vacuum. In such a case, the frequency de-

pendence of the capacitance associated to the TM2 mode

cannot be neglected (indeed, it diverges for f ! f TM2
c ).

Nevertheless, the frequency dependence of this capacitance is

known from Eq. (3) and therefore its contribution to the

global edge capacitance can be explicitly taken into account

by splitting the edge capacitance into two terms as

Cedðf Þ ¼ C0 þ
CTM2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� f=f TM2
c

� �2
q ; (14)

where C0 represents the contribution of the remaining high

order modes and where both C0 and CTM2
are independent of

frequency.

Finally, the scattering parameters of the structure can be

easily obtained from a conventional transmission line analy-

sis32 of the complete model in Fig. 1(d). The symmetry of the

structure with respect to the middle plane of the transmission

line length representing the slit (the one with characteristic
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admittance, Y2, see Fig. 1) allows us to define the reflection

coefficients for even excitation, Se
11, and for odd excitation,

So
11 (see Ref. 28):

Se
11 ¼

Y1 � j½xCed þ Y2 tanðh=2Þ�
Y1 þ j½xCed þ Y2 tanðh=2Þ� (15a)

So
11 ¼

Y1 � j½xCed � Y2 cotðh=2Þ�
Y1 þ j½xCed � Y2 cotðh=2Þ� ; (15b)

where x is the angular frequency of operation and h ¼ k0h is

the electrical thickness of the screen (i.e., the electrical

length of the transmission line with characteristic admit-

tance, Y2), k0 being the wavenumber in vacuum (k0 ¼ x=c).

The reflection (S11) and transmission (S12) coefficients of the

original structure can be computed from Se
11 and So

11 applying

the superposition

S11 ¼
1

2
ðSe

11 þ So
11Þ ; S12 ¼

1

2
ðSe

11 � So
11Þ : (16)

In the expressions above, the electrical length, h, is real val-

ued provided losses are neglected. This restriction will be

relaxed later to explain the behavior of slits in lossy conduc-

tors. In particular, the case of very narrow slits in lossy con-

ductors will be considered in order to provide an explanation

of the interesting anomalous behavior of resonance frequen-

cies reported by Suckling et al.29 within the frame of our an-

alytical model.

III. COMPUTATION OF THE MODEL PARAMETERS

Since the geometry of the transmission lines representing

free space regions and slits is particularly simple (parallel plate

waveguides), the characteristic admittances and propagation

constants are known in closed form. These parameters can be

obtained from the per unit length capacitances of the parallel

plate lines. These capacitances are C1 ¼ e0W=d for the virtual

transmission line representing free space and C2 ¼ e0W=a for

the slit region. For perfect conductors, no more information is

required and the characteristic admittances of the transmission

lines in Fig. 1(d) would be Y1 ¼ 1=ðcC1Þ and Y2 ¼ 1=ðcC2Þ.
Of course, these values of the characteristic admittances are

identical to those obtained from the expressions in terms of the

wave admittances of the TEM modes given in the previous

section. Therefore, the problem to be solved is to determine a

suitable value of Ced and its two contributions C0 and CTM2
.

As already mentioned in the previous section, for frequencies

well below the onset of the first higher order mode of the

waveguide with height, d (i.e., for frequencies well below

f TM2
c ¼ c=d), the value of the global capacitance Ced can be

obtained from electrostatic considerations.28 Fortunately, it is

possible to obtain a closed form expression for the electrostatic

edge capacitance of the step discontinuity by applying confor-

mal mapping techniques.32 Thus, in the quasistatic limit we

have the following expression for Ced

Cedð0Þ ¼ C0 þ CTM2

¼ e0W

p
2 ln

1� x2

4x

� 	
þ 1

x
þ x

� 	
ln

1þ x

1� x

� 	
 �
;

(17)

where x ¼ a=d.

In order to account for the behavior of the structure at

frequencies close to f TM2
c , an estimation of CTM2

is required.

For narrow slits, we can easily obtain an expression for this

parameter from the theory presented in the previous section.

Thus, from Eqs. (3), (12), and (14) we have

YTM2
¼ jx

CTM2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f=f TM2

c

� �2
q

� 2j
W

d

n1;0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f TM2
c =f
� �2�1

q
;

(18)

and therefore,

CTM2
� e0W=p : (19)

Note that for narrow slits, this contribution is independent of

the width a. Since the overall value of Ced increases when a
decreases, it is obvious that the relative weight of the contri-

bution of the first TM mode is larger for relatively wide slits.

It will be shown later that Eq. (19) is not accurate enough for

wide slits and an alternative empirical correction will be pro-

vided. The combination of the circuit model with the closed-

form expressions given in Eqs. (17) and (19) describes a

fully analytical model for the system under study.

An alternative method to obtain C0 and CTM2
in Eqs.

(17) and (19) is based on the use of numerically computed

full-wave scattering parameters. A numerical code based on

the mode matching scheme mentioned in the previous sec-

tion has been written for this purpose. The code has been

exhaustively verified by comparing with the results from the

application of the commercial finite element software HFSS.

In order to compute the parameters of the circuit, the global

capacitance can be related to, for instance, the reflection

coefficient for the even excitation case as

Cedðf Þ ¼
j

x
jY2 tanðh=2Þ � Y1

1� Se
11

1þ Se
11


 �
: (20)

Taking into account this relation and the fact that Ced

depends linearly on C0 and CTM2
, it is possible to use a linear

least squares algorithm to extract very stable and accurate

values of C0 and CTM2
from a few numerically generated val-

ues of Se
11. This approach has the advantage of extending, to

some extent, the range of validity of the circuit model to

wider slits. This is because when the slit width is relatively

large, the circuit model is still able to provide accurate

results if the values of C0 and CTM2
are freely adjusted from

full-wave data instead of using the analytical values reported

in Eqs. (17) and (19). This strategy is also interesting from a

validation point of view, since it provides a method for

checking the accuracy of the above analytical expressions

for C0 and CTM2
. Of course, we cannot expect the model to

work for very large slit widths if the frequency is close to the

onset of the first grating lobe. For such cases the model itself

does not give an appropriate account of the physical situa-

tion, even from the qualitative point of view. Nevertheless,

mode matching results would still be valid, of course.
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IV. RESULTS AND DISCUSSION

This section includes various results for the circuit pa-

rameters of the model and for the transmission spectrum

obtained from them, using both the fully analytic model and

the alternative numerical approach. A comparison between

the results obtained using these two approaches and the full-

wave mode matching results are discussed and interpreted in

connection with the material presented in the previous

sections.

First, Fig. 3 shows the low-frequency total capacitance

(C0 þ CTM2
) and each of the two contributions separately as

functions of the width of the slit (normalized to the period).

Solid lines correspond to numerically generated data

(extracted from the full-wave scattering parameters obtained

from mode matching) whereas dashed lines represent the

values predicted by the closed-form expressions (17) and

(19). The first interesting observation is that the closed-form

expression given in (17) perfectly agrees with the numeri-

cally generated results for the whole range of values of the

slit width shown in the figure. However, as was expected, the

value of CTM2
in expression (19) provides accurate results

only in the narrow slit limit (say, for a=d < 0:1). From the

numerically extracted values, it is observed that CTM2
is a

decreasing function of a/d, since it can be qualitatively

expected from the simplified mode matching procedure

reported above. In order to account for the effect of the slit

width on CTM2
, it is found that the following empirical for-

mula (represented by the circles in Fig. 3)

CTM2
� e0W

p
cos

pa

d

� �
; (21)

yields a good matching to numerically generated data. This

is a reasonably good estimation of the contribution of the

first higher order mode to the total capacitance. The accuracy

of this parameter is not important for frequencies well below

the onset of the first TM mode (the total quasistatic capaci-

tance is quite accurate, and this is all we need), but it

becomes critical at frequencies close to that one. Thus, we

can use Eqs. (17) and (21) together with Eq. (14) as an

‘‘improved’’ analytical model. It will be shown in brief that

these analytical parameters provide very good results of the

transmission spectrum for the range of values of a/d for

which the circuit model is expected to be applicable. It can

be seen in the figure that Eq. (21) loses accuracy for wide

slits (a=d > 0:4), but this is not relevant since for such wide

slits the circuit model itself is not valid.

Next, Fig. 4 shows the transmission coefficient curves

versus frequency for frequencies below the onset of the first

higher order mode. The solid lines correspond to full-wave

data generated directly with a mode matching numerical

code, which are considered to be exact. Dashed lines are

obtained using the circuit model with the analytical parame-

ters in Eqs. (17) and (21). The results are given for three dif-

ferent slit widths: a=d ¼ 0:1 (narrow slit), a=d ¼ 0:2
(medium-size slit), and a=d ¼ 0:4 (wide slit). The analytical

model yields very good results for frequencies well below

f TM1
c in all three cases, as expected. Discrepancies can be

observed in the frequency range close to f TM2
c , but only for

the wide slit case. For the two narrowest slits the model cap-

tures both the FP regime (resonant frequencies far below

f TM2
c ) and the so-called extraordinary transmission regime (a

transmission peak close to f TM2
c which is not related with FP

resonances but controlled by the period, d, of the structure).

A close inspection of Fig. 4 reveals that the frequency of

the FP resonances (i.e., the frequency of the two first total

transmission peaks) decreases as a/d increases. This redshift

is very similar to the one reported in Ref. 12 for the single

slit case, although of different magnitude. In the context of

our model, a useful interpretation of the redshift has been

given28 in terms of an equivalent thickness of the conducting

screen as follows. For a� d, it is clear that Y2 	 Y1. Conse-

quently, the original problem (1-D array of slits) can be

viewed as the study of the scattering parameters of a high

characteristic admittance transmission line section of length,

h, inserted into a transmission line environment with a sig-

nificantly smaller characteristic admittance. If the effect of

the higher order modes diffracted at the discontinuities is

neglected (i.e., if Ced is considered to be vanishingly small),

we would have an elementary transmission line Fabry-Pérot

resonator having transmission resonances for those frequen-

cies making the thickness, h, an integer number of free-space

wavelengths, i.e., at h ¼ nk0=2. Typically, Ced can be

neglected if a� h, since in this case the electromagnetic

energy associated with evanescent fields is very small in

comparison with the energy associated with traveling waves.

However, if h is only a few times that of a or even smaller

than a, the effect of Ced cannot be neglected at all. When the

nonvanishing value of Ced is taken into account, the reso-

nance frequencies (transmission peaks) predicted by Eqs.

(15a), (15b), and (16) are given by the following rigorous

equation,28

tanðhÞ ¼ � 2xY2Ced

Y2
2 � Y2

1 � ðxCedÞ2
: (22)

For very narrow slits the right-hand side of Eq. (22) vanishes

and therefore hres ¼ np=2. Otherwise, Eq. (22) predicts a

FIG. 3. Total electrostatic capacitance (C0 þ CTM2
) and partial contributions

(CTM2
and C0) from analytical formulas (17) and (19) (dashed lines) and

from numerical data (solid lines). The circles correspond to the empirical

formula for CTM2
given in Eq. (21).
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redshift similar to the one reported in Ref. 12 for the single

slit case, although of different magnitude. Thus, the actual

FP resonance frequencies (transmission peaks) would corre-

spond to an enlarged ideal FP transmission line resonator

having a length, hþ Dh, where the excess length, Dh, can be

seen as the extension of the slit region required to incorpo-

rate the influence of Ced into the transmission line itself. This

extra thickness would then be Dh ¼ 2Ced=C2. A transmission

line section of length, hþ Dh, terminated by perfect mag-

netic walls would resonate at the same frequencies as the

original transmission line section loaded with the capacitors.

It should be mentioned that this interpretation requires that

Y2 is significantly larger than Y1 and h is not too small in

comparison with a. But even for those cases the circuit

model predictions of Eq. (22) are valid.

As shown by Fig. 4, the fully analytical circuit model

cannot accurately account for the region of extraordinary

transmission in the case of wide slits. However, if the param-

eters C0 and CTM2
are extracted from a few frequency points

using the least squares method, it is possible to account even

for that extreme case. Since the differences between analyti-

cal formulas and numerically derived parameters can only be

appreciated in the region around the extraordinary transmis-

sion peak, let us focus our attention on that frequency range.

In Fig. 5(a) we plot the mode matching (exact) results to-

gether with the analytical values obtained with the formulas

in (17) and (21). Similar data are shown in Fig. 5(b), but now

the capacitances are extracted from the numerical scattering

parameters computed at a few frequency samples using a

least squares algorithm. It is clear that the numerically

extracted values of C0 abd CTM2
yield a better agreement

with the mode matching results, thus extending the applic-

ability of the model. From these results one might think that

this strategy provides good results for any value of a/d,

which we must emphasize is not correct. The circuit model

is qualitatively wrong in the region of frequencies close to

f TM2
c for wide enough slits. For instance, we can see that, due

to the divergence of the CTM2
capacitance, the proposed cir-

cuit model predicts a transmission zero at f ¼ f TM2
c (the so-

called Rayleigh-Wood anomaly frequency). However, close

inspection of the curve for a=d ¼ 0:4 in Fig. 5(b) shows that

some transmission occurs at that frequency point (the

numerically computed value for jS21j at f ¼ f TM2
c is approxi-

mately, 0.1). The transmissivity at f ¼ f TM2
c increases when

a/d increases, and this fact is not taken into account by our

model. Perhaps a different circuit model should be used for

slit widths larger than about 50% of the period. However, for

narrower slits our model yields surprisingly accurate results.

A final point deserves some attention. In our model we

have neglected the interaction between the two height step

discontinuities through higher order modes. Roughly speak-

ing, this is reasonable for screen thicknesses larger than a.

We have studied the case of very thin conducting screens

using the numerical approach to obtain the circuit parameters

(note that in the case of very thin conducting screens only

the extraordinary transmission peaks occur). In order to

account for the interaction through higher order modes we

have developed two circuit models, one for even excitation

and the other for odd excitation, having different edge

capacitances. The edge capacitances obtained from the mode

matching results are actually different for even and odd exci-

tation. However, it has been found that this is only noticeable

for relatively wide slits, where, in any case, the circuit model

is not expected to be accurate. Thus, our conclusion is that

developing a very fine model for thin screens is not practical.

The model for the thick screens presented here can be used

without significant errors if the slit width is not too large to

preclude its applicability.

FIG. 4. Comparison between mode matching and analytical data for three

different slit widths: (a) narrow slit, a=d ¼ 0:1; (b) medium width slit,

a=d ¼ 0:2, and (c) wide slit, a=d ¼ 0:4. The screen thickness is h=d ¼ 1:2
for all three cases.
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V. THE LOSSY CONDUCTOR CASE

Let us now examine the modifications required to intro-

duce the material losses (i.e., the finite value of the conduc-

tivity) in our model. Most of the discussions reported in the

previous section which are valid for perfect conductors, are

also valid for lossy conductors. However, some important

details must be revised. The main effect of having a real con-

ductor (up to mid- infrared frequencies in the case of metals)

is that magnetic fields and currents inside the conductor

might not be negligible at all. For good conductors, such as

metals at frequencies well below the optical regime, the elec-

tric field inside the conducting region is negligible (its

energy is negligible, to be more precise), while the magnetic

field is important and exponentially penetrates within the

metal region along distances on the order of the skin penetra-

tion depth, ds ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðxl0rÞ

p
(r is the real conductivity of

the good conductor and l0 is the permeability of vacuum).

The magnetic field inside the conductor region was not pres-

ent in the perfect conductor case. This means that the induct-

ance per unit length of the parallel plate transmission line

corresponding to the slit region is larger when real (not

perfect) conductors are considered. The inductance

associated with the magnetic field in the air region,

L2 ¼ ðl0e0Þ=C2 ¼ l0a=W, must be augmented by the so-

called internal or incremental inductance, DL. This incre-

mental value is related to the skin effect resistance, Rs. For

our simple parallel plate transmission lines, analytical formu-

las are available for those parameters: the skin effect resist-

ance per unit length is Rs ¼ 2=ðdsWÞ, and the incremental

inductance is DL ¼ Rs=x.

The resistance, Rs, is responsible for the power loss that

was not considered in the perfect conductor model. Power

dissipation is the main effect for typical dimensions encoun-

tered in microwave practice, when the skin depth is much

smaller than any other linear dimension of the structure. In

such a case, the resistance, Rs, is retained in the transmission

line model to account for attenuation, but the incremental in-

ductance is neglected (in our case this is equivalent to con-

sider, DL� L2). Under these assumptions, the wavenumber

in the transmission line that models the slit region, k,

becomes complex, but its real part is not very different from

the propagation constant in the absence of losses, k0 ¼ x=c.

The imaginary part, i.e., the exponential attenuation factor, is

small but significant. This approach is usually referred to as

small losses approximation32 in transmission line theory.

Our hypothesis is that the introduction of the per unit length

resistance in the transmission line model accounting for the

slit region is enough to accurately predict dissipation and

reflection losses in a grating made with a nonperfect conduc-

tor. However, some authors have reported experimental

results for slit systems where the skin depth is not negligible

in comparison with the slit width, specifically for the case of

a single slit.29 For a given screen thickness, h, the resonance

frequencies monotonically increase when the slit width, a, is

decreased, provided that perfect conductors are considered.

The reason is that Dh tends to vanish in the extremely narrow

slit limit. Actually, this behavior is also observed in the case

of lossy metallic conductors for relatively wide slits (more

precisely, for slits having a	 ds). However, for a single slit

it has been shown29 that this trend of the resonance frequen-

cies drastically changes when a is very small and the skin

depth is not negligible. It will be shown here that this anoma-

lous behavior also appears in periodic slit systems and can

easily be accommodated in our model just by taking into

account the effect of the internal inductance (in addition to

the per unit length resistance).

Let us compute the complex propagation constant of the

quasi-TEM mode supported by the slit region (note that

strictly speaking, no TEM waves are allowed within the slit

region if the conductor is lossy) using the general expression

k2 ¼ ½xðL2 þ DLÞ � jRs�xC2 ; (23)

which is rigorous, and does not make any approximations. If

DL is not negligible when compared to L2, the phase constant

of the quasi-TEM wave could be appreciably larger than the

phase constant for lossless structures. Thus, the wavelength

would be smaller than the free space wavelength. This effect

is essential in order to account for the anomalous behavior of

the FP resonances29 for very narrow slits. It is worth

FIG. 5. (Color online) A closer look at the transmission spectra in Fig. 4 for

frequencies close to the onset of the first grating lobe (extraordinary trans-

mission region). The top figure uses analytical formulas for edge capacitan-

ces, while the bottom figure extracts these capacitances from a few

full-wave data. The data corresponding to a=d ¼ 0:5, which were not pres-

ent in Fig. 4, are also shown.
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mentioning that the characteristic admittance also becomes

complex and is given by

Y2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xC2

xðL2 þ DLÞ � jRs

s
: (24)

Nevertheless, the formulas (15a), (15b), and (16) are still

valid if complex arguments are used in the tangent and

cotangent functions. It is obvious that the relevance of retain-

ing the actual value of the internal inductance in the determi-

nation of the propagation constant and characteristic

admittance of the slit region is more important when the slit

width, a, is very small. The internal inductance might even

be dominant if the slit width were smaller than skin depth,

thus making the wavelength of the quasi-TEM wave propa-

gating along the slit quite different from the free space wave-

length at the operation frequency.

The losses over the metal walls outside the slits should

also be accounted for in order to be completely rigorous.

This could be done by adding a series resistance at the point

of confluence of the high characteristic impedance transmis-

sion line section with the edge capacitance. However, the

correction is very small because the dominant losses occur

inside the slits. This resistance may have some importance

when operating near the onset of the first grating lobe

because, in such a case, a strong field enhancement occurs

over that surface. However, it must be said that the skin

effect resistance obtained by assuming a uniform current dis-

tribution along the y direction would not be completely cor-

rect. In such a situation the electromagnetic field is

dominated by the first higher order TM mode, whose field

distribution along the y direction is not uniform. Neverthe-

less, the order of magnitude of the resistance would be cor-

rect and a reasonable estimation of losses is expected.

VI. RESULTS FOR LOSSY GRATINGS

Let us start this section checking the accuracy of our

simple model for lossy screens with a few examples. In Fig.

6 the first order FP resonance through a periodic array of slits

having four different widths is presented. The conductivity

has been chosen small in comparison with metal conductiv-

ities (r ¼ 105S/m) in order to enhance the effect of losses.

Circles are full-wave data generated using the HFSS finite ele-

ments code, and solid lines correspond to the analytical

model proposed in this paper. The agreement between ana-

lytical and numerical results is remarkable. It indicates that

although losses outside the slit region have been neglected,

the model gives a very good description of the transmissiv-

ity. It can be observed that the transmission level at reso-

nance decreases when the slit with is reduced, as we

expected. This reduction of transmission level is partially

due to ohmic losses (absorption) but mismatching (reflected

power) is also important. This can be clearly seen in Fig. 7,

where transmission, reflection, and absorption are depicted

for one of the cases in Fig. 6. Note that 70% of the incident

power is not transmitted because about 50% is absorbed in

the screen and 20% is reflected due to mismatching induced

by losses (perfect matching would be expected for infinite

conductivity). The proposed model works pretty well for ar-

bitrary values of a provided they are not too large. Thus, in

Fig. 8 we can see the amplitude of the transmission coeffi-

cient at the first FP resonance frequency as a function of a.

More than 50% of the impinging power is transmitted for

slits wider than about a ¼ 350 lm. For narrower slits the

percentage of the incident power that is transmitted through

the screen very quickly decreases. The slope of the curve in

Fig. 8 becomes relatively large when the slit width is smaller

than, roughly speaking, 20 times the skin depth (around 15

microns in this example).

The close inspection of the transmission curves in Fig. 6

shows us that the maximum transmission frequency for a

given value of h slightly depends on the slit width, a. Start-

ing from the wider slit, a slight blueshift can be appreciated

when the slit width is decreased. The main reason that

explains this slight shift is that the excess length is smaller

for narrower slits. Actually, in the absence of losses

(r ¼ 1), the maximum transmission frequency should reach

FIG. 6. First order Fabry-Pérot resonance of the transmission spectrum of

an array of parallel slits in a lossy conducting medium (r ¼ 105 S/m). Four

different values of slit width (a ¼ 1:0; 0:5; 0:25; and 0:1 mm) are consid-

ered. Structure dimensions are d ¼ 5:0 mm, h ¼ 10 mm, and W ¼ 1 m.

FIG. 7. Transmitted, reflected, and absorbed power as a function of fre-

quency around the first order Fabry-Pérot resonance. Dimensions:

d ¼ 5:0 mm, h ¼ 10 mm, W ¼ 1 m, and a ¼ 0:25 mm. Conductivity:

r ¼ 105 S/m.
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the asymptotic value c=ð2hÞ (14.99 GHz for h ¼ 10 mm) in

the very narrow slit limit. However the last curve (the one

corresponding to the smallest slit width) does not follow this

tendency. This phenomenon resembles the anomalous red-

shift reported for a single slit problem some years ago.29 We

have used our analytical model and the finite elements com-

mercial simulator Ansoft HFSS to compute the frequencies of

maximum transmission (first FP resonance) as a function of

the slit width, for both perfect conducting and highly lossy

screens. The results are reported in Fig. 9. The first observa-

tion is that, once again, the simple analytical model in this

paper agrees remarkably well with the numerical data. For

the perfect conductor grating it is clear from both the numer-

ical and the analytical results that the FP resonance fre-

quency increases monotonically when the slit width

decreases. This is the expected behavior from the analysis of

the single slit problem carried out in Ref. 12, for instance.

Note that the FP resonance frequency tends to the theoretical

limit (14.99 GHz) when a/d approaches zero. However,

when a finite conductivity is used to model the conducting

screen, analytical and numerical results predict a different

behavior. For relatively wide slits the behavior is the same

observed for perfect conductors, with a slight additional red-

shift of the former that can be explained in terms of the influ-

ence of a small internal inductance in the conducting

material; as explained above, the real part of the complex

wavenumber is slightly larger for lossy parallel plate wave-

guides than for lossless structures. Nevertheless, the influ-

ence on the FP transmission frequency of the edge effect is

dominant (the edge effect is considered to be the same for

lossless and lossy materials since the electric field inside the

conductors is negligible). Thus, an increase of FP resonance

frequency is expected, even in the presence of losses, when

the slit width is reduced in size. However, it is observed in

Fig. 9 that this tendency is broken in the lossy case below

250 microns. This size is about 20 times the skin depth in the

conducting material considered here at the FP resonance fre-

quency. Below that threshold the effect of internal induct-

ance on the quasi-TEM mode propagation constant governs

the behavior of the evolution of the FP resonance frequency

with respect to the a parameter. Edge capacitance favors an

increase of the resonance frequency, but the dominant effect

of the internal inductance prevails and the final result is a

quick reduction of the resonance frequency. This effect is

accompanied by strong absorption and mismatching, of

course. This behavior is qualitatively identical to the behav-

ior of a single slit reported in Fig. 2 of Ref. 29, however,

quantitatively the shift is strongly affected by the period of

the structure (this parameter is obviously absent in the single

slit problem).

Finally, it is worth mentioning that the theory reported

up to this point remains valid for slits filled with dielectric

materials. The characteristic admittance of the slit region

should be changed accordingly by multiplying the free space

admittance by the square root of the relative permittivity.

However, no closed-form expression would be available for

the edge capacitance, although an approximate formula

could be derived using the same conformal mapping used for

the free space case. Dielectric losses could be trivially incor-

porated by using a shunt conductance in the transmission

line model.32

VII. CONCLUSION

Resonant transmission of microwaves or millimeter

waves through diffraction gratings made of periodically dis-

tributed and closely spaced lossy conducting bars has been

analyzed using a very simple and analytical model. Relying

on common microwave engineering methods, the model

leads to an equivalent circuit whose parameters are known in

closed form. Physical insight into the frequency shift of

Fabry-Pérot-like behavior has been gained using the concept

of edge capacitance and equivalent thickness. The anoma-

lous behavior of the resonance frequencies with respect to

the slit width in the very narrow slit limit has been explained

by including the effect of the internal inductance of the lossy

conductors in the model. In general, the model accounts very

accurately for the effect of losses even though some sources

FIG. 9. Dependence of the first Fabry-Pérot resonance frequency with the

slit width (a in Fig. 1) for a structure with period, d ¼ 5 mm, and screen

thickness, h ¼ 10:0 mm. The perfect electric conductor (PEC) and the lossy

conductor (r ¼ 105 S/m) cases are compared. Different behavior is

observed in the narrow slit limit.

FIG. 8. Magnitude of the transmission coefficient as a function of the slit

width. Structure dimensions are d ¼ 5:0 mm, h ¼ 10 mm, W ¼ 1 m, and

r ¼ 105 S/m.
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of losses are neglected. The model qualitatively explains the

shape and main features of the transmission spectrum and

provides a quantitative method to obtain the transmissivity at

any frequency below the onset of the first grating lobe.
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