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Abstract 

One of the main drawbacks that hinder the industrial competitiveness of the Calcium Looping 

(CaL) process for CO2 capture is the high temperatures (~930-950ºC) needed in practice to 

attain full calcination of limestone under a high CO2 partial pressure environment for short 

residence times as required in practice. In this work, the multicycle CO2 capture performance of 

dolomite and limestone is analysed under realistic CaL conditions and using a reduced 

calcination temperature of 900ºC, which would serve to mitigate the energy penalty caused by 

integrating the CaL process into fossil fuel fired power plants. The results show that the 

fundamental mechanism of dolomite decomposition under CO2 has a main influence on its 

superior performance compared to limestone. The inert MgO grains resulting from dolomite 

decomposition help preserving a nanocrystalline CaO structure wherein carbonation in the 

solid-state diffusion controlled phase is promoted. The major role played by dolomite 

decomposition mechanism under CO2 is clearly demonstrated by the multicycle CaO conversion 

behaviour observed for samples decomposed at different preheating rates. Limestone 

decomposition at slow heating rates yields a highly crystalline and poorly reactive CaCO3 

structure that requires long periods to fully decarbonate and shows a severely reduced capture 

capacity in subsequent cycles. On the other hand, the nascent CaCO3 produced after dolomite 

half-decomposition consists of nanosized crystals with a fast decarbonation kinetics regardless 

of the preheating rate, thus fully decomposing from the very first cycle at a reduced calcination 

temperature into a CaO skeleton with  enhanced reactivity as compared to limestone derived 

CaO. 
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1. Introduction 

 

The interest in the Calcium looping (CaL) process as a cost-effective technology to mitigate 

post-combustion CO2 emissions has generated a huge body of research oriented towards gaining 

a fundamental understanding on the calcination/carbonation reaction mechanism as well as to 

find the optimum operation conditions within the process constraints that serve to enhance CO2 

capture [1-6]. Despite the constant search for alternative Ca-based synthetic sorbents with 

enhanced thermal stability, natural limestone (CaCO3) and dolomite (CaMg(CO3)2) still stand as 

the only practical CaO precursor due to their low cost (~10$/ton) and geographically spread 

wide availability [7]. In the typical CaL process, limestone is precalcined to produce CaO 

particles that will be subsequently used to capture CO2 from the post-combustion gas stream by 

gas-solid reaction in a fluidised gas-solid reactor (carbonator) at temperatures of about 650 ºC. 

The partially carbonated particles are then transported into a second reactor (calciner) where 

CaO is regenerated by calcination at high temperatures (~930-950ºC) under high CO2 partial 

pressure. In this way, a high CO2 concentration stream can be retrieved from the calciner for 

compression and storage or other uses. Thus, the sorbent undergoes repeated 

carbonation/calcinations (carb/calc) cycles while it is circulated between the calciner and the 

carbonator [1, 7-10].  

The CaL process presents two important drawbacks that challenge its technological 

development.  Firstly, the high temperature required to achieve a complete regeneration of the 

sorbent in short residence times since calcination has to be carried out under the high CO2 

partial pressure calciner environment [11-14]. Such high temperatures would be attained by 

oxy-combustion in order to avoid CO2 dilution, which entails a marked energy penalty to the 

process due to fuel consumption and additional CO2 production [9, 10, 14-18]. The second 

inconvenient is the progressive deactivation of the sorbent along the successive carb/calc cycles 

that makes necessary to periodically introduce a fresh limestone makeup into the calciner. CaO 

deactivation may occur due to the screening effect of external agents such as ash or SO2 

produced during oxycombustion, which leads to the irreversible sulphation of the CaO particles 

[9, 13, 19, 20]. Yet, deactivation is mostly caused by the drastic loss of surface area of the CaO 

grains when calcination takes place under high CO2 partial pressure and high temperatures, 

which enhances aggregation and subsequent sintering of the nascent CaO nanocrystals during 

the CaCO3/CaO transformation [21].  

Several methods have been proposed to mitigate deactivation of limestone derived CaO such as 

thermal pretreatment for prolonged periods [22-27]. However, thermal pretreatment does not 

yield CaO reactivation when the CaL cycles are carried out at realistic conditions for CO2 

capture, which necessarily involve calcination under high CO2 partial pressure at high 



temperatures and quick transitions between the carbonation and calcination stages. Only if a 

short recarbonation stage is introduced between carbonation and calcination, prolonged thermal 

pretreatment would lead to a substantial reactivation of the sorbent although it would require the 

use of an additional reactor [26]. On the other hand, it has been observed that the type of 

atmosphere under which limestone is first calcined plays a relevant role on the subsequent 

multicycle CaO behaviour. Thus, a quick precalcination in air produces a very porous CaO 

skeleton with high initial carbonation activity but also very prone to intense sintering when 

regenerated under a CO2 rich atmosphere, thus exhibiting a severe drop of the CO2 capture 

capacity after the very first cycles. Alternatively, a short precalcination of limestone under high 

CO2 partial pressure, as would be the case if the solids makeup are directly fed into the calciner, 

yields a sorbent with a lower initial reactivity but also with a lower deactivation rate [28].  

In recent publications, it has been shown that dolomite, (CaMg(CO3)2), also a widely available 

and cheap CaO precursor, exhibits higher CO2 capture capacity and reduced deactivation as 

compared to limestone at realistic CaL conditions. This enhanced performance has been 

attributed to the superior resistance of CaO to sinter due to the inert skeleton of MgO grains that 

forms during first calcination of dolomite and over which the CaO/CaCO3 layer builds up and 

decomposes during the subsequent carb/calc cycles [29-31]. Moreover, dolomite displays faster 

decarbonation kinetics thus allowing for a reduction of the temperature required for a complete 

CaO regeneration in the calciner in short residence times. This outstanding behaviour would 

serve to mitigate the energy penalty of the CaL process thus helping its industrial 

competitiveness. On the other hand, dolomite shows less resistance to attrition as compared to 

limestone although most of the attrition takes place during the first calcination [29].  

In situ X-ray diffraction (XRD) coupled to thermogravimetric (TG) analysis has revealed that 

the mechanism of dolomite decomposition under CO2 is responsible for enhancing the kinetics 

of calcination and reactivity of dolomitic CaO [21, 32]. Thus, dolomite decomposes directly 

into MgO and CaO at a temperature about 700ºC regardless of the CO2 partial pressure in the 

calcination environment. If calcination is carried out under high CO2 partial pressure (as is the 

case of the CaL process), the nascent CaO nanocrystals become immediately recarbonated, 

which leads to the formation of nanocrystalline calcite (CaCO3) as intermediate product of 

decomposition. Because it consists of nanometer sized crystals, this nascent calcite rapidly 

decomposes when the reaction is thermodynamically favourable near 900ºC under high CO2 

partial pressure, yielding a nanocrystalline and therefore highly reactive CaO [21]. 

In this work, we explore the effect of different thermal pretreatments on the multicycle CO2 

capture performance of both limestone and dolomite at CaL conditions for CO2 capture and 

using a calcination temperature of just 900ºC, which is about 30-50ºC below the typical calciner 

temperature employed for limestone in pilot-scale plants [33]. The results of our study will 



serve to highlight the main role played by the fundamental mechanism of dolomite 

decomposition on its superior multicycle capture performance as compared to limestone. 

2. Experimental 

The experiments in this work have been carried out using a high purity natural limestone 

(99.6% CaCO3) from Matagallar quarry (Pedrera, Spain) with an average particle size of 9.5 m 

(volume-weighted mean particle size) and natural dolomite from Bueres (Spain). Raw dolomite 

was sieved to remove particles over 45 μm in order to avoid decrepitation phenomena during 

thermal decomposition, which may be significant for larger particles [34]. Phase quantification 

by Rietveld analysis showed the dolomite to have a purity of 94.4%, the rest being mostly 

calcite. 

The multicycle CO2 capture behaviour of the different sorbents was studied using a Q5000IR 

TG analyser (TA instruments) with high sensitivity (൏  This instrument is equipped with .(݃ߤ0.1

a furnace heated by halogen lamps that allows for high heating/cooling rates up to 300ºC/min 

without significant fluctuations. This way, several consecutive carbonation/calcinations 

(carb/calc) cycles at different temperatures can be programmed with very quick transitions 

between stages thereby minimizing non-realistic reactions during the ramps as would happen in 

conventional furnaces, which are typically limited to heating rates below 25ºC/min. Achieving 

fast transitions between the carbonation and calcination stages is especially important when the 

sorbent is regenerated under high CO2 partial pressure, as is the case of the CaL process for CO2 

capture. Otherwise, appreciable recarbonation occurs if the partially carbonated sorbent is 

slowly heated up to the high T isothermal plateau, which has a relevant influence on the sorbent 

behaviour in subsequent cycles.  In order to avoid undesired effects due to CO2 diffusion 

resistance through the bulk of the powder, samples of small mass (10 mg) were used. In this 

way, a high gas-solid contacting efficiency is achieved for an optimum transfer of mass and heat 

as would occur in practice by the use of circulating fluidized bed (CFB) reactors [33].  The 

small particle size allows us also to dismiss the possible effects on the CaO conversion rate 

caused by intra-particle diffusion resistance that would be important only for particles of size 

larger than about 300 m [35]. 

Particle size distributions (PSD) of the samples before and after being subjected to the carb/calc 

cycles were obtained using a Mastersizer 2000 (Malvern Instruments Ltd.) instrument, Prior to 

measuring the PSD, powder samples were dispersed in 2-propanol (as recommended for Ca-

based materials according to ISO 14887) and sonicated for 5 seconds just to loosen the particle 

aggregates formed by van der Waals forces [1].   



X-Ray diffractograms of thermally pretreated samples were registered in the 2θ range from 5º to 

90º using a Panalytical X’Pert Pro diffractometer working at 45 kV and 40 mA, using CuKα 

radiation and equipped with an X’Celerator detector and a graphite diffracted beam 

monochromator. 

.  

3. Results and discussion 

 

3.1 Effect of thermal pre‐treatment on multicycle CO2 capture of limestone and dolomite 

Carbonation/calcination cycles were carried out using the following experimental conditions; (i) 

an initial thermal pretreatment during which the temperature was linearly increased up to 900 ºC 

at different rates, (ii) carbonation stages carried out at 650 ºC under a 15% CO2 / 85% air 

(vol/vol) atmosphere for 5 minutes and (iii) calcination stages for sorbent regeneration carried 

out at 900 ºC under a 70% CO2 / 30% air (vol/vol) atmosphere for 5 minutes (a typical CO2 

concentration in the calciner reactor will be between 70% and 75%) [36]. Transition between 

carb/calc stages were performed by heating/cooling at 300 ºC/min in order to mimic as closely 

as possible the rapid transitions that would occur in the practical application when the materials 

are rapidly circulated between the calciner and carbonator reactors.   

The initial thermal treatment was carried out at three different heating rates (1, 10 and 300 

ºC/min) under high CO2 concentration (70% CO2/30% air vol/vol). In practice, the initial batch 

of solids to be used in the CaL process would be first calcined for a long period as the 

temperature is slowly increased. On the other hand, the make-up flow of fresh CaO precursor 

(either limestone or dolomite) that is directly fed into the calciner during continuous operation 

would experience first calcination by a quick increase of temperature from ambient to the 

calciner temperature albeit this sudden rise of temperature could be modulated by using residual 

heat for preheating the makeup flow in order to mitigate the energy penalty [2]. The practical 

question to be addressed in this paper is whether a change of the precursor preheating rate 

would have any effect on its multicycle CO2 capture behaviour. As will be seen, the behaviour 

of limestone derived CaO in subsequent carb/calc cycles depends critically on this pre-heating 

rate if a reduced calcination temperature (T=900ºC, which is 30-50ºC below those typically 

employed in pilot-scale plants) is used for regeneration. In contrast, the fundamental mechanism 

of dolomite decomposition under CO2 allows for its multicycle CO2 capture behaviour to be 

pretty insensitive to the precalcination heating rate. 

Figures 1 and 2 show the time evolution of temperature and sample weight % during 

precalcination and the subsequent carb/calc cycles for natural limestone and dolomite, 



respectively.  The thermograms shown in Figure 1 demonstrate that full decarbonation of fresh 

limestone cannot be attained by precalcination up to just 900 ºC. Only after a number of 

carb/calc cycles depending on the first calcination preheating rate, CaO becomes completely 

available for carbonation. As well known, decarbonation of limestone is heavily hindered by the 

presence of CO2 at high concentration in the calcination environment [11, 35, 37-39]. Thus, 

temperatures well above the equilibrium temperature are required to attain full decarbonation in 

short residence times (Teq=871ºC in the calcination atmosphere of our experiments). As seen in 

Fig. 1, complete decarbonation is achieved in our tests only after five, nine and fifteen carb/calc 

cycles for the samples precalcined at 300, 10 and 1 ºC/min, respectively. The behaviour of 

limestone along the carb/calc cycles is therefore clearly correlated to the heating rate during first 

calcination. As the preheating rate is decreased limestone decarbonation is further hindered, 

which severely hampers the sorbent capture capacity in the first cycles.  

In contrast with the strong dependence of limestone CO2 capture multicycle behaviour on the 

preheating rate, dolomite exhibits a quite different performance. As illustrated in Figure 2, 

almost full regeneration of CaO is achieved from the 1st cycle regardless of the preheating rate. 

Figure 2 shows also a characteristic feature of dolomite decomposition, which takes place 

during the precalcination stage.  While limestone (CaCO3) decomposition occurs by a single 

step process, with CaCO3 decomposing into CaO and CO2, dolomite undergoes a two-step 

process under the presence of CO2 in the calcination environment [32, 40, 41]. According to a 

recent in-situ XRD study [21], dolomite decomposition is initiated by a direct conversion into 

MgO and CaO at temperatures around 700ºC independently of the CO2 concentration in the 

calcination environment. The nascent CaO nanocrystals become at this temperature immediately 

recarbonated, which gives rise to a nanocrystalline CaCO3 that subsequently decarbonates at a 

higher temperature depending on the CO2 partial pressure.  Thermal decomposition of this fresh 

CaCO3 under CO2 obeys to thermodynamic equilibrium as limestone but is characterized by a 

much faster kinetics [21]. Therefore, as seen in Figure 2, two mass loss events are observed in 

the precalcination stage of dolomite that correspond to the following reactions [21, 32]: 

ଷሻଶܱܥሺ݃ܯܽܥ → ܱܽܥ ൅ܱ݃ܯ ൅ ଶܱܥ2 	→ ଷܱܥܽܥ ൅ܱ݃ܯ ൅  ሺ1ሻ					ଶܱܥ

ଷܱܥܽܥ ൅ ܱ݃ܯ → ܱܽܥ ൅ ଶܱܥ ൅ܱ݃ܯ				ሺ2ሻ 

 

As will be discussed ahead in more detail, the mechanism of dolomite decomposition under CO2 

is responsible for the negligible effect of the precalcination heating rate on its multicycle CO2 

capture behaviour. 

 



 

Figure 1. Time evolution of weight % and temperature during multicycle 
carbonation/calcination of  limestone after precalcination at different heating rates: (a) 1ºC/min; 
(b) 10ºC/min; (c)  300ºC/min. Carbonations at  650 ºC in 15% CO2 / 85% air (vol/vol) for 5 min 
and calcinations at 900 ºC in 70% CO2 / 30% air (vol/vol) for 5 min. 



 

Figure 2. Time evolution of weight % and temperature during multicycle 
carbonation/calcination of  dolomite after precalcination at different heating rates: (a) 1ºC/min; 
(b) 10ºC/min; (c)  300ºC/min. Carbonations at  650 ºC in 15% CO2 / 85% air (vol/vol) for 5 min 
and calcinations at 900 ºC in 70% CO2 / 30% air (vol/vol) for 5 min. 

 



3.2 Multicycle CO2 Capture Capacity and CaO Conversion 

For practical purposes, the multicycle performance of both sorbents should be compared in 

terms of their CO2 capture capacity CCN, defined as the ratio of CO2 captured mass to initial 

sorbent mass in each cycle. Figure 3 shows the capture capacity obtained for both limestone and 

dolomite as a function of cycle number and for the different heating rates used during 

precalcination. 

 

 

Figure 3. Capture capacity versus cycle number obtained for limestone and dolomite 
precalcined at different heating rates as indicated; 1ºC/min (PRE-1), 10ºC/min (PRE-10) and 
300ºC/min (PRE-300)  

 

As was inferred from Figs 1 and 2, the heating rate during precalcination of limestone has a 

strong influence on its multicycle capture capacity behaviour, especially during the first 

carb/calc cycles. Due to incomplete decarbonation in the first cycles, only a small fraction of 

CaO becomes available for CO2 capture, hence the capture capability is severely hampered in 

the first loops. Curtailment of the capture capacity becomes particularly relevant if the sample is 

very slowly preheated. As the number of cycles is increased, limestone is progressively 

decarbonated in each calcination stage, which gives rise to an increasing fraction of CaO 

available and therefore an increase of the capture capacity. Once limestone is fully 

decarbonated, a maximum of the capture capacity is reached after which it decreases with the 

number of cycles due to the progressive CaO deactivation caused by sintering. After about 10 

cycles, the memory on the incomplete precalcination stage is lost and the capture capacities of 

the three limestone samples converge to similar values as seen in Fig 3.  

In contrast with the behaviour observed for limestone, the much faster decarbonation kinetics of 

dolomite in the precalcination stage yields a high capture capacity from the first cycle, which is 

followed by a steady decrease as caused by sorbent deactivation. Interestingly, unlike for 

limestone, the multicycle capture capacity of the dolomite derived sorbent is almost insensitive 



to the precalcination heating rate. Moreover, as can be seen in Figure 3, dolomite shows a 

superior capture performance as compared to limestone despite the presence of MgO grains that 

remain inert to carbonation under the CaL process conditions. 

A further useful parameter to analyse the multicycle capture behaviour of the sorbents is CaO 

conversion (Fig. 4), defined as the ratio of CaO mass converted to CaCO3 to the CaO mass 

before carbonation. CaO conversion is thus a measure of the reactivity of CaO grains towards 

carbonation. As seen in Fig. 4, the conversion of dolomitic CaO after 20 cycles is more than 

twice that of limestone derived CaO. The decay of CaO conversion with the number of cycles 

can be generally well fitted by the following semi-empirical equation [42]: 

ܺே ൌ ܺ௥ ൅
ଵܺ

݇ሺܰ െ 1ሻ ൅ ሺ1 െ ܺ௥ ଵܺ⁄ ሻିଵ
;								ሺܰ ൌ 1,2, … ሻ																					ሺ3ሻ 

where N is the cycle number,  X1 is CaO conversion in the first cycle, k is the deactivation 

constant and  Xr  is the residual conversion, which is asymptomatically approached after a very 

large number of cycles. Most of TGA data obtained for natural limestones can be reasonably 

well fitted using Eq. (3), yielding a residual conversion of about 0.07-0.08 and a deactivation 

constant k close to 0.5 [42, 43]. These values are key to process simulations and economic 

analyses dealing with the integration of the CaL process into fossil fuel thermal plants [8, 44]. 

The results obtained from the fit of this equation to experimental data obtained in our work are 

summarized in Table 1 (best fit curves are shown in Figure 4). Due to the anomalies in 

limestone curves produced by incomplete decarbonation during the first cycles, Eq (3) can only 

properly fit to CaO conversion data from the cycle at which full CaO regeneration is achieved. 

It must be noted that the poor conversion in these first cycles is a serious drawback for the 

process since it would imply that the capture efficiency of the makeup limestone flow fed into 

the calciner is severely compromised. Moreover, the residual conversion is decreased as 

precalcination is further slowed down. On the other hand, dolomite experimental data are all 

well fitted by Eq. (3) with remarkably good correlation coefficients from the first cycle. 

Moreover, as seen in table 1, the residual conversion of dolomitic CaO is more or less 

independent of the precalcination rate and much higher than that of lime for the same 

conditions, which indicates a superior reactivity of dolomitic CaO as compared to CaO derived 

from limestone.  

 

 

 

 



 

TABLE 1. Deactivation constant k, residual conversion Xr and correlation coefficient r2 
resulting for the fitting of experimental data shown in Figure 3 to Eq (3) for limestone and 
dolomite precalcined at different heating rates; 1ºC/min (PRE-1), 10 ºC/min (PRE-10) and 300 
ºC/min (PRE-300): 

 Xr k r2

Limestone PRE-1 0.003 ± 0.010 0.055 ± 0.007 0.999 

Limestone PRE-10 0.032 ± 0.005 0.124 ± 0.009 0.998 

Limestone PRE-300 0.049 ± 0.002 0.245 ± 0.005 0.999 

   

Dolomite PRE-1 0.232 ± 0.002 0.355 ± 0.010 0.999 

Dolomite PRE-10 0.264 ± 0.007 0.420 ± 0.030 0.994 

Dolomite PRE-300 0.247 ± 0.004 0.581 ± 0.021 0.998 

    
 

 

Figure 4. CaO conversion XN versus cycle number obtained for limestone and dolomite 
precalcined at different heating rates; 1ºC/min (PRE-1), 10 ºC/min (PRE-10) and 300 ºC/min 
(PRE-300). The solid lines are best fit curves of Eq. (3) to the data. 

 

3.3 Influence of crystal growth and sintering on CaO conversion 

The contrasting multicycle capture behaviour of limestone and dolomite can be rationalized in 

terms of the crystallinity of the CaO structure that stems from decomposition. As previously 

reported, decarbonation kinetics of highly crystalline CaCO3 is much slower than that of 

nanocrystalline CaCO3 [45, 46]. Precalcination at a slow heating rate in a high CO2 

concentration environment (annealing) would expectedly promote the growth of large, defect-

free CaCO3 crystals [21, 45-47]. Accordingly, the experimental results shown in Figure 1 



demonstrate that there is a clear correlation between limestone decarbonation kinetics and the 

heating rates used in the precalcination. Thus, the lower the heating rates, the slower 

decarbonation kinetics.  

In order to further explore the relationship between crystallinity and precalcination heating 

rates, a sample of limestone was heated up under a pure CO2 atmosphere to 890ºC, just below 

the equilibrium temperature (~895ºC) at a very slow heating rate of 1ºC/min. XRD diffraction 

patterns obtained for this slowly preheated limestone and fresh limestone are shown in Figure 

5a. As can be seen, the main diffraction peak of the calcite crystal structure, corresponding to 

the (211) Bragg reflection peak, appears noticeably sharper for the sample preheated at 1 ºC/min 

indicating a much larger coherent crystal length, which would hinder the decarbonation kinetics 

as shown in Figure 1. As seen above, the decarbonation kinetics of dolomite and subsequent 

multicycle capture behaviour appear to be quite insensitive to the different precalcination 

heating rates in clear contrast with the case of limestone. This could be attributed to the fact that 

CaCO3 in dolomite is formed just after the first stage decomposition of dolomite by immediate 

recarbonation of the nascent CaO nanocrystals, which gives rise to a nanocrystalline calcite 

structure consisting of small crystals of about 50 nm as measured in [21] by in situ XRD 

analysis. Figure 5b shows the XRD diffractograms obtained for the limestone and dolomite 

samples calcined at 1ºC/min up to 890 ºC under pure CO2. As would be expected, the fresh 

CaCO3 derived from dolomite half decomposition is noticeably less crystalline, which explains 

its enhanced decarbonation kinetics as compared to limestone. Consequently, the CaO derived 

from decomposition of this highly reactive CaCO3 derived from dolomite also displays a high 

reactivity towards carbonation from the very first cycle as illustrated in Figures 3 and 4. 

Nonetheless, the dolomite heated up to 890ºC at a slow heating rate of 1ºC/min still undergoes 

significant crystal growth since the coherent domain size is over 100 nm and cannot be 

accurately determined by Scherrer method. That crystal growth results in slower decarbonation 

kinetics as can be observed in Figure 2a and 3 where the decarbonation in the first cycle is not 

yet fully achieved unless the dolomite is heated up at 300ºC/min. In any case, dolomite 

decarbonation under identical thermal treatment remains always much faster than limestone. 

This enhanced decarbonation kinetics constitutes an important advantage since, given the 

limited lifetime of the makeup flow of fresh material fed into the calciner, it is of paramount 

importance to maximize the CaO carbonation reactivity from the first cycle at a reduced 

calcination temperature. As seen in our work this is possible for dolomite by operating the 

calciner at 900ºC whereas in the case of limestone the calciner temperature has to be increased 

up to 930-950ºC, which enhances further CaO deactivation [48].  

The improved performance of dolomite when the number of cycles is large can be attributed to 

the stabilizing effect of the inert MgO skeleton as previously reported [21] which hinders the 



aggregation and subsequent sintering of the nascent CaO crystals during the CaCO3/CaO 

transformation. The superior resistance of dolomite to sintering can be also rationalized from the 

particle size distributions (PSD), as measured by laser diffractometry, for untreated and cycled 

samples (Figure 6). Light scattering is used in this technique to measure the size distribution 

profile of powder particles pre-dispersed in a liquid by sonication. As can be seen, the PSD 

distribution shifts notably to larger particle sizes in the case of limestone, which indicates 

promoted sintering. On the other hand, the PSD measured for dolomite remains almost 

unchanged after repeated carb/calc cycles. Additionally, Figure 7 shows SEM micrographs for 

dolomite and limestone samples obtained after the 20 carb/calc cycles. It is clearly observed in 

the SEM micrograph that the CaO grains in limestone are markedly sintered as compared with 

those in dolomite, which still retains a relatively porous structure after the cycles. Figure 7d 

shows an area of the sorbent where EDX analysis was performed to identify MgO and CaO 

grains. As the EDX spectra in 7e and 7f shows, area 2, which is richer in small particles yields a 

Ca/Mg atomic ratio slightly smaller than one whereas area 1, corresponding to a sintered 

particle appears enriched in Ca atoms. This confirms that the larger, sintered particles 

correspond to CaO which are prone to sintering in the CO2 rich environment. This also helps 

explaining the much higher CaO conversion values exhibited by dolomite since the porous 

structure allows a higher CaO surface area to be readily available for reaction controlled 

carbonation in short residence times. On the other hand, the notable increase of CaO grain size 

due to enhanced sintering in the case of limestone limits drastically the CaO surface area 

available for fast reaction controlled carbonation. Nevertheless, MgO particles slowly segregate 

from the CaO grains by solid-state diffusion so that the stabilizing role of the MgO skeleton is 

eventually lost. This segregation is clearly observed in the SEM pictures and also revealed by 

EDX mappings as seen in Figure 8. 



 

 Figure 5a. XRD diffractograms of raw limestone and limestone heated at 1ºC/min up to 890ºC 

under pure CO2.  

 

Figure 5b. XRD diffractograms of dolomite and limestone samples heated at 1ºC/min up to 
890ºC under CO2.  



 

          

Figure 6. Particle size distributions (PSD) obtained for the raw sorbent precursors (limestone 
and dolomite) and after 20 carb/calc cycles. Curves in (a) correspond to limestone whereas (b) 
correspond to dolomite. 

 



 

Figure 7. SEM micrographs of (a) limestone and (b,c) dolomite after 20 carb/calc cycles. 
Precalcination was carried out at 300 ºC/min in 70% CO2/30% air atmosphere. (d) is a SEM 
micrograph showing the areas where the EDX analysis in (e) and (f) were performed. 

 

 

 

 

 

 



 

Figure 8. SEM micrographs of calcined dolomite (10ºC/min under CO2) and EDX mappings 
obtained from these pictures. 

 

3.4 Role of solid‐state diffusion controlled carbonation on overall capture 

It is generally accepted that carbonation of CaO grains occurs through two differentiated phases 

consisting of a fast reaction-controlled (FR) stage followed by a much slower solid state 

diffusion (SD) stage. The FR stage is due to the gas-solid reaction of CO2 with CaO on the 

surface of the grains [49, 50] that leads to the formation of a thin layer of CaCO3, which 

normally takes place in short periods of time at the carbonation temperature of the CaL process 

for CO2 capture. On the other hand, the following SD stage requires the counter-diffusion of 

CO3
2- and O2- ions through the previously formed carbonate layer, which leads to a notable 

reduction of the reaction rate [51-53].  Carbonation in the SD phase is usually considered as 

negligible in the typically short residence times of the solids in the carbonator (of a few 

minutes). Thus, carbonator models for the integration of the CaL process into fossil fuel power 

plants generally dismiss SD carbonation [8, 54]. It must be stressed however that this 

assumption is based upon TGA results in which calcination is carried out under low CO2 partial 

pressure. At realistic CaL conditions for CO2 capture involving calcination under high CO2 

partial pressure, the SD phase yields a relevant contribution to carbonation in short residence 

times (as will be seen also from our results below) [55]. Thus, the solids residence time in the 



carbonator has an important effect on the capture efficiency predicted by carbonator models if 

carbonation in the SD phase is taken into account [56]. 

Figure 9 shows in detail the temperature and weight % time evolution during the 8th, 12th and 

20th carb/calc cycle for both limestone and dolomite (precalcined at 10 ºC/min). As can be seen, 

the FR and SD carbonation phases can be clearly distinguishable. It may be also observed that 

carbonation in the SD phase significantly contributes to the overall carbonation in the 5min 

period of our experiments. Interestingly, carbonation during the FR stage is fairly similar for 

limestone and dolomite so at first glance it would appear that porosity and surface area alone 

does not explain by itself the enhanced CaO conversion of dolomite. Nevertheless, it should be 

stressed the difference between CO2 capture capacity and CaO conversion. Since dolomite is 

composed of reacting CaO and inert MgO particles, the amount of active material is actually 

much smaller in dolomite. Thus, a similar mass gain during the FR stage implies a much higher 

proportion of existing CaO converting into CaCO3, what could be explained in terms of the 

higher porosity of the calcined dolomite that allows for a higher proportion of CaO readily 

available for CO2 capture.  Moreover, during the SD stage dolomite derived CaO exhibits a 

remarkably faster kinetics, resulting in an overall higher capture capacity. This difference in the 

capture capacity in favour of dolomite is progressively enlarged with the number of cycles, 

which explains why deactivation of dolomitic CaO is significantly attenuated as compared to 

lime. Thus, the improved CO2 capture capacity of dolomite is due to the greatly promoted 

carbonation in the solid state diffusion phase. As would be expected, solid state diffusion is 

promoted by impurities and lattice defects [11, 47, 57-66], hence the nanocrystalline CaO grains 

and the presence of MgO inert grains in decomposed dolomite favour carbonation in the solid 

state diffusion controlled phase. Additionally, the decarbonation rate of dolomite is significantly 

faster during the first cycles since crystal defects also promote the diffusion of desorbed CO2 

and facilitates the structural transformation step at CO2 partial pressures close to equilibrium 

[11]. Nevertheless, the difference in decarbonation rates between the limestone and dolomite 

derived sorbents decreases as the sample undergoes repeated carb/calc arguably because of the 

progressive segregation of the MgO/CaO grains as inferred from the SEM-EDX analysis.  



 

Figure 9. Thermograms obtained for the 8th, 12th and 20th carb/calc cycle of dolomite and 
limestone samples (precalcined at 10ºC/min). The fast reaction controlled and the slow diffusion 
controlled stages are indicated, as well as the transitory recarbonation that occurs during the 
quick transition to the calcination step, carried out under 70% CO2/30% air vol/vol atmosphere. 

 

Figure 10 shows the evolution with the number of cycles of the ratio of CaO conversion in the 

SD phase to conversion in the FR phase (XSD / XFR). As can be observed, both limestone and 

dolomite present XSD / XFR ratios over 1. Thus, it may be concluded that solid state diffusion 



carbonation is more relevant to the overall conversion than the fast stage for residence times of 

the solids in the carbonator of just a few minutes. This effect becomes even more pronounced in 

the case of dolomite, for which the XSD / XFR ratio is even increased with the cycle number. 

 

 

 

 

 

Figure 10. Ratio between CaO conversion in the solid state diffusion stage to conversion in the 
fast reaction stage (XSD / XFR) versus the cycle number obtained for (a) dolomite and (b) 
limestone for samples precalcined at 1, 10 and 300ºC/min (PRE-1, PRE-10 and PRE-300 
respectively). 

 

4. Conclusions 

 

In this work, the effect of different first calcination heating rates on the multicycle CO2 capture 

behaviour of limestone and dolomite derived CaO is studied. The tests have been carried out 

under realistic Calcium-Looing (CaL) operation conditions as regards calcination under high 

CO2 concentration at high temperature and quick transitions between carbonation and 

calcination stages. The sorbents have been regenerated by calcination at 900 ºC, which is below 

the temperature typically used (~930-950ºC) for limestone calcination in CaL pilot-scale plants 

to attain full decarbonation in short residence times as required in practice. Under this reduced 

calcination temperature, which would bring about an important reduction in the energy penalty 

of the technology, it is shown that dolomite exhibits an enhanced multicycle capture capacity 

performance, which can be attributed to the stability provided by the inert MgO skeleton formed 

after dolomite decomposition in the precalcination stage. MgO grains hinder aggregation and 



sintering of CaO grains and help preserving a nanocrystalline CaO structure wherein 

carbonation during the solid state diffusion controlled carbonation phase is promoted. An 

interesting feature of dolomite is a remarkable lack of sensitivity to different precalcination 

treatments as compared to limestone, whose capture capacity along subsequent cycles strongly 

depends on the heating rate at which precalcination is carried out. Thus, slow calcination of 

limestone in a CO2 rich atmosphere promotes sintering and crystal growth thereby forming a 

less reactive CaCO3 structure that requires longer times to decarbonate into CaO and 

consequently exhibits a severely reduced capture capacity during the first carbonation cycles. 

This behaviour is not observed for dolomite, which can be explained from its fundamental 

mechanism of decomposition under CO2. Thus, aggregation and sintering of the nascent CaCO3 

nanocrystals produced after dolomite half-decomposition is mitigated by the inert MgO grains 

allowing for faster decarbonation kinetics, which leads to almost complete decarbonation from 

the very first cycle regardless of the heat pretreatment.  

Altogether, the advantage of using dolomite over limestone in the CaL process for CO2 capture 

is threefold from the perspective of its multicycle capture performance; a lower effective 

calcination temperature that serves to mitigate the energy penalty of the technology, an 

attenuated deactivation that would allow for longer lifetime of the sorbents in the cycle thus 

reducing the need of makeup flow, and enhanced carbonation and decarbonation kinetics that 

maximize the CO2 capture capacity from the very first cycle. Finally, the enhanced kinetics 

during the solid-state controlled carbonation phase, especially observed in the case of dolomite, 

emphasizes the need of further exploring the feasibility of increasing the residence time in the 

carbonator as a possible strategy to mitigate the penalty caused by the CaL integration into 

fossil fires power plants.  
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