
Departamento de Matemática Aplicada I

MODELO DE COMPUTACIÓN EVOLUTIVO PARA

REDES SOSTENIBLES, EFICIENTES Y RESISTENTES

Pedro Miguel Mendes Guerreiro

Mayo 2017

UNIVERSITY OF SEVILLE

Department of Applied Mathematics I

EVOLUTIONARY COMPUTATIONAL MODEL FOR

SUSTAINABLE, EFFICIENT AND RESILIENT NETWORKS

A dissertation presented

by

Pedro Miguel Mendes Guerreiro

in partial fulfilment of the requirements for the degree of

Doctor by the University of Seville

Doctor Alberto Márquez Pérez Doctor Mário Carlos Machado Jesus
(Ph.D. in Mathematics, (Ph.D. in Computer Science,
Professor in the Department of Professor in the Department of
Applied Mathematics I from Civil Engineering from
University of Seville) University of Algarve)

Seville, May 2017

Abstract

We present a new approach to adapt the differential evolution (DE) algorithm so

that it can be applied in combinatorial optimization problems.

The differential evolution algorithm has been proposed as an optimization al-

gorithm for the continuous domain, using real numbers to encode the solutions,

and its main operator, the mutation, uses a arithmetic operations to create a mu-

tant using three different random solutions.

This mutation operator cannot be used in combinatorial optimization prob-

lems, which have a domain of a discrete and finite set of objects. Based on this

concept, we present an idea of representing each solution as a set, and replace

the arithmetic operators in the classic DE genetic operators by set operators. Us-

ing a well known NP-hard problem, the traveling salesman problem (TSP), as an

example of a combinatorial optimization problem, we study different possibilities

for the mutation operator, presenting the advantages and disadvantages of each,

before setting with the best one.

We also explain the modifications made to adapt the algorithm for a multi-

objective optimization algorithm. Some of these modifications are inherent to

the different type of problems, other modification are proposed to improve the

algorithm. Amongst the later modification are using more than one population in

the evolution process. We also present a new self-adaptive variation of the multi-

objective optimization algorithm, although this is not limited to the multi-objective

case, and can be used also in the single-objective.

v

Para a minha filha Inês.

Acknowledgements

Aos meus pais e à minha irmã, obrigado pelo amor, carinho e apoio que sempre me

deram. À minha filha, um pedido de desculpas pelas ausências.

To all my friends, thank you for understanding and respecting my “madness”.

To the Institute of Engineering, in particular to the Department of Civil Engi-

neering and to the Centro de Simulação e Cálculo a special thanks for the resources

made available.

A very special “Thank You” for my directors, Professor Mário Jesus and Pro-

fessor Alberto Márquez, for their invaluable support, incentive, assistance, con-

structive critics, and most of all, for their friendship. I would not be writing this

paragraph if it weren’t for you both. Thank you!

ix

Contents

1 Introduction 1

2 Preliminaries 9

2.1 Differential evolution . 9

2.1.1 Initialization . 12

2.1.2 Mutation . 12

2.1.3 Crossover . 15

2.1.4 Replacement . 16

2.2 Multi-objective optimization . 17

2.2.1 Problem definition . 18

2.2.2 Pareto dominance . 20

2.2.3 Evolutionary multi-objective optimization 25

2.2.4 Performance measures . 30

2.3 Combinatorial optimization . 38

2.3.1 Travelling salesman problem 40

3 Differential evolution for combinatorial optimization 47

3.1 Introduction . 47

3.2 Previous approaches . 49

3.2.1 Permutation matrix approach 49

3.2.2 Adjacency matrix approach 52

3.2.3 Relative position indexing 55

xi

xii CONTENTS

3.2.4 Forward/backward transformation 57

3.2.5 Sub-range encoding . 58

3.2.6 Discrete set handling . 60

3.2.7 Differential list of movements 62

3.2.8 Set-based approaches . 65

3.3 Set-based operators . 70

3.3.1 Representation . 71

3.3.2 Mutation . 72

3.3.3 Crossover . 86

3.3.4 Parameter analysis . 87

3.3.5 Results . 95

4 Multi-objective differential evolution for combinatorial optimization 99

4.1 Introduction . 99

4.2 Saving the non-dominated solutions 103

4.3 Adapting the repair mechanism . 104

4.4 Replacing the population . 108

4.5 Using multiple populations . 126

4.6 Self-adaptive parameters . 142

4.7 The MODECO algorithm . 150

4.8 Results . 160

5 Conclusions and future work 177

Bibliography 181

xii

Chapter 1

Introduction

Although computer science is an area of knowledge with a history that can be

traced to the usage of the abacus, circa 2700-2300 BC, modern day computer

science, using what we now consider “computers”, emerged in the 20th century,

after the second World War, with what is considered to be the first electronic

general purpose computer, the ENIAC.

Since the ENIAC, we have come a long way, from using valves to build the

computer, we now use integrated circuits. This led to what is commonly known as

Moore’s Law [61], that said that the number of transistors in an integrated circuit

would double every two years. Although not being really a “law”, but a mere

observation, this proved true for more that forty years, leading to an exponential

growth of the processing power of modern day computers, allowing a modern day

cell phone to have more processing power than a twenty years old computer.

This evolution in the processing power of modern day computers allowed sci-

entists from many different areas to get better and faster results, particularly those

that need real computing power to get results, such as simulation, visualization or

optimization, just to name a few.

In this thesis we will focus on optimization, which the Oxford dictionary defines

as

“The action of making the best or most effective use of a situation or

1

2 CHAPTER 1. INTRODUCTION

resource.”

This definition characterizes optimization as the procedures needed to use in a

situation or resource to improve it, and this can be used in most, if not all, areas of

knowledge, such as logistics, engineering, economics or medicine. However, we

can only improved something if we start from an initial state, unfortunately, the

inherent complexity of each area, in addition to the different problem parameters

and/or restrictions, can make very difficult to reach a simple solution, let alone a

good one.

Suppose you decide to grab a backpack, and travel through Europe without

any type of plan. You just know all the cities you want to visit before returning

home, and you don’t want to pass through each city more than one. This is an

example of a problem known as the traveling salesman problem (TSP). One way

to go about it, is to write all cities you want to visit in a notebook, and then just

visit the cities in the order you wrote them. Of course you would accomplish your

goals, but very doubly, the solution found would be the best one, assuming the

only global criteria to consider is to do this travel as fast as possible (allowing

some time to visit the each city, of course).

Select the city you visit next using other than just “gut feeling”, for instance

always going to the closest city to the one you are in, would, most probably, result

in a better solution, but some time and calculations would need to be made to de-

cide which is the city closest to the current one. If you add some more restrictions,

for instance, you must use only the train as the means of transport, maybe the

initial solution is not even a valid solution, as it could happen that there isn’t any

direct train between two cities you have decided to visit in that order. Other than

just a handful of cities to visit, finding a good solution to this type of problems by

hand calculation is very difficult, if not impossibly, as this problem is known to not

having any algorithm that allow for a solution to be found in feasible time [28, 6].

However, if the solution is the best or the most effective, is depended on the

interpretation given to certain parameters, such as the cost needed to improve it,

2

3

and even if time or eventual computational restrictions could restrict from reach-

ing the optimal, or even local, solution.

If, besides to the initial criteria, in this case to do the travel as fast as possible,

you add some other criteria, such as to spend as little as possible and/or the total

distance travelled to be the lowest as possible, you just “upgraded” from a single-

objective optimization problem, to a multi-objective one, where each objective

must be considered to evaluate the solution. The problem with this type of prob-

lems is that the objectives are, usually, contrary to one another, i.e., for the travel

to be as fast as possible, probably more money is needed, this way contradicting

the objective to spend as little as possible.

This contradictory objectives makes the solution of the optimization algorithm

for this type of problems to not be unique, but rather be a set of trade-off solu-

tions, meaning that to improve one objective, at least one of the others need to

be worsened. From this set of solutions, the decision maker (the traveler, or you

in this case) would then choose the one that looked the best, according to some

personal preference, but knowing that from all solutions to choose from, none are

globally worse than any other. These solution are called Pareto solutions and the

set of Pareto solutions is called the Pareto set.

We can thus say that an optimization problem, needs an evaluation function

that will determine the “value” of each solution. This evaluation function can be

defined as

f : S → Z

where S is the feasible domain, and Z is the objective space. Usually, Z ⊂ Rm,

where m are the number of objectives to be considered in the problem. When

m = 1 we said to have a single-objective optimization problem, otherwise is a

multi-objective optimization problem.

We can classify an optimization problem in two mains classes: continuous or

4 CHAPTER 1. INTRODUCTION

discrete. In the first case, S is continuous, in the second, S can only assume

discrete values. In the latter case are the combinatorial optimization problems,

which are the focus of this thesis.

A combinatorial problems is one where the domain of the problem is both a

discrete and finite set of some kind of objects, that can be combined in different

forms. In combinatorial optimization problems, the objective is to find the optimal

combination to answer a certain problem. Basically, combinatorial optimization

consist in finding the optimal solution, from a finite set of possible solutions. When

explained like that, it looks simple, just find all of possible combinations and select

the best. But as seen in our travel example, as the size of the set grows larger, the

size of the number of possible combinations “explodes”, and there is no efficient

algorithm capable of determining the optimal solution from this enormous set of

solutions. This type of problems belong to a class called NP-hard problems [28, 6],

and many combinatorial optimization problems belongs to this class.

To circumvent the problem of finding the best possible solution, is common

practice to use an approximation algorithm to determine a sufficient enough ap-

proximation to the best solution. Most of these approximation algorithms based on

stochastic processes to find this approximate solution, and this non-deterministic

processes are the reason for which no guarantee can be made there accurateness

of the solution found.

A very known type of approximation algorithms are evolutionary algorithms

(EA) which are search algorithms that use techniques that emulate the natural

evolutionary processes, as proposed in the XIX century by Charles Darwin’s “sur-

vival of the fittest” theory. Darwin said that, in nature, individuals compete with

one another over scarce resources, and the better fitted individuals dominate the

less fitted, and have an higher probability of passing their genes to their descen-

dants, while the weaker individuals will, most likely, wither and fail. The basic

idea in evolutionary algorithm is the same, i.e., the fittest individuals, according

to some predefined measure, dominate the ones with a lower fitness, and while

4

5

the first survive to have offspring, the latter “die” without descendents to carry

their genes to the next generation, accomplishing through this, the “survival of

the fittest” theory.

John Holland is one of the pioneers of the evolutionary algorithms concept,

and his genetic algorithms (GA) [38] are probably the most used evolutionary

algorithm, with many variants proposed.

Genetic algorithms are population-based evolutionary algorithm, that, in a nut-

shell, are a global search technique that successively improves a solution (also

know as an individual), using three main (genetic) operators: crossover, mutation

and selection (or replacement). Every individual in the population “mate” with

another one through the crossover operator, creating an offspring in the process,

that inherits the genes from both parents. This offspring is afterwards subject to

an eventual mutation, to introduce some random gene, that could result either in

an improvement or in a complete failure. The final replacement operator allows

for the best to survive to the next generation, this way propagating the best genes

(characteristics), and discarding the less promising ones.

One variant of the initial genetic algorithm is know as differential evolution

(DE), proposed by Storn and Price [82, 83]. Although sometimes said to be an

genetic algorithm, because its genetic operators having the same name, its inner

working makes it a different type of evolutionary algorithm. Differential evolution,

although also being a population-based evolutionary algorithm that has as its ge-

netic operators the mutation, the crossover and the selection (or replacement),

has quite a different approach to these operators. While in genetic algorithms,

the first, and main, operator is the crossover, in DE is task is up to the mutation

operator, that basically, creates a mutant by adding the scaled difference between

two individuals (or vectors, in DE world) to a third. Then this mutant, through the

crossover operators, mates with a individual in the population, creating what in

DE concept is called a trial individual. Basically, in differential evolution, this two

operators create an offspring using a strange “four” fathers type of mating. Finally,

6 CHAPTER 1. INTRODUCTION

this trial individual (or offspring) is compared with is “father”, and if proves to be

better, replaces it for the next generation.

Although the crossover and the replacement operator are similar to the ge-

netic algorithm counterpart, the mutation operator is a strange operator, as is it

quite different from any other mutation in the evolutionary algorithm realm, but

is also the main strength in the differential algorithm, and also the reason for the

“differential” in the algorithm name.

But another conceptual difference between genetic algorithms and differen-

tial evolution is the fact that when the genetic algorithms were introduced, they

worked with bits representing each gene in the individuals, while the differential

evolution were developed to use real numbers. What this means is that differ-

ential evolution were developer to be used in continuous optimization problems,

not discrete ones, in fact, DE cannot be used in discrete optimization problems

without some adjustments.

If the differential evolution algorithm would not have proved itself to be a very

simple, efficient and robust algorithm, it would not been subject to the trouble of

using it in combinatorial optimization problems. As this was not the case, since

very earlier in DE life, some approaches have been introduced to allow its the

usage in this type of problems. However, most approaches have tried to cram

the problem in the differential evolution domain, instead of “bringing” DE to the

combinatorial optimization realm. The different between this is that if the problem

is somehow crammed into DE, some (or all) of the problem characteristics are lost,

and the algorithm probably will not take any advantage of them. If is done the

other way around, this characteristic would not be lost, and the algorithm could

use them to allow a better search of the solutions. The problem with this latter

approach is that the differential evolution operators, particularly the mutation

operator, uses arithmetic operators that cannot be easily translated to the discrete

domain.

The focus of this thesis is precisely introducing a new technique to use in the

6

7

differential evolution operators, to allow its usage in combinatorial optimization

problems, both for single-optimization problems and for multi-optimization ones.

This thesis is organized as follows: after an introduction to optimization prob-

lems and to the differential evolution algorithm made in this chapter, the next

chapter will expand this introduction with basic knowledge to understand the

next chapters. In chapter three we present our suggestions to allow the usage

of differential evolution in single-objective combinatorial optimization problems,

presenting and comparing them to other approaches. We also made a study of

DE’s parameters for this type of problems, before concluding with our final al-

gorithm, and suggested parameters. Chapter four will further enhance our idea

for the multi-objective case, explaining the needed adaptations, for this type of

problems. We also introduce the idea of using more than one population for the

evolutionary process, exploring different variations of this, with the pros and cons.

A self-adaptive version of the algorithm is also introduced here, and the results

are compared with and without this self-adaptive algorithm to see if it is worth it.

Chapter five will finish this thesis with then conclusions about the work developed,

and possible aspects for future research.

8 CHAPTER 1. INTRODUCTION

8

Chapter 2

Preliminaries

This chapter will contain some fundamental concepts used throughout the rest of

this thesis. It will start by explaining the Differential Evolution algorithm, with its

variations and operators, followed by the definition of what is a multi-objective op-

timization problems and how can they be solved using evolutionary algorithms. In

the end, a presentation of combinatorial optimization problems, and the example

of the traveling salesman problem.

2.1 Differential evolution

Evolutionary Algorithms (EA) are search algorithms, based on ideas from nature

and genetics, using techniques designed to simulate the natural evolutionary pro-

cesses, as proposed in the “survival of the fittest” theory, by Charles Darwin in

the XIX century. In it Darwin say that in nature, individuals compete with one

another over scarce resources, and the best individuals, according to some core

characteristic, dominate the weaker ones, and as such have an higher probabil-

ity of passing their genes to their descendants, while the weaker individuals will,

most likely, wither and fail. The basic idea in EA is the same, i.e., the fittest indi-

viduals, according to some predefined measure, dominate the ones with a lower

fitness, and while the first thrive and prevail through their descendants, the latter

9

10 CHAPTER 2. PRELIMINARIES

are discarded, and through this, the “survival of the fittest” is accomplished.

Although there are evolutionary algorithms are that are not population-based,

we will one consider the population-based evolutionary algorithms, i.e., the ones

that work with multiple individuals (called a population), and evolve this pop-

ulation using biological inspired mechanisms, such as reproduction, mutation,

selection, etc. Although the term individual is used frequently in EA, it’s inter-

changeably with candidate solution, solution or even phenotype, this latter from

the genetic domain. As in nature the individuals are composed of genes, this term

is also used in EA, but so are chromosomes, elements or genotype. Throughout

this thesis, this term will be used interchangeably.

Differential Evolution (DE) [82, 81, 83, 72] is an evolutionary algorithm intro-

duced in 1995 by Storn and Price, as a global optimization algorithm for contin-

uous spaces. It first appeared in a technical report, and it quickly proved itself as

one of the most competitive evolutionary algorithms, not only due to its robustness

and efficiency, but also because of its simplicity and easy to implement.

As most evolutionary algorithms, DE is a population based optimization algo-

rithm, that starts with a population of candidate solutions created randomly in

the domain of the problem, and evolve them until a stopping criteria is reached.

Each candidate solution is a point in a domain defined by some preset bounded

values, and to each is given a index from 0 to Np − 1, where Np is the number

of individuals in the population. Np is one of the three control parameters of this

algorithm, being the others the crossover rate (or probability) CR, and the scale

factor F .

DE, like Genetic Algorithms (GA), evolve the initial population using a muta-

tion and a crossover operators, before selecting which individuals will survive to

the next generation, replacing the current generation population. Then this next

generation population will undergo the same mutation and crossover, and so on

and so forth, until the stopping criteria is reached. The basic algorithm for DE can

be seen on algorithm 2.1.

10

2.1. DIFFERENTIAL EVOLUTION 11

Algorithm 2.1 Algorithm of Differential Evolution.
1: population← initialization()
2: while not end criteria do
3: mutant← mutate(population)
4: trial← crossover(mutant)
5: population← replace(population, trial)
6: end while

Although the EA terminology can be used to refer to individuals, genes, etc, in

DE, as it was conceived to be used in a real, continuous space, is common to refer

to an individual as a vector, or refer to a chromosome as a parameter, or element.

The Differential Evolution algorithm, although similar to Genetic Algorithms,

have some differences, as it doesn’t use a binary representation for the chromo-

somes, as some simple GA do, and, more important, the core difference is in DE’s

operators, particularly the mutation operator, being this also the reason for its

name. In GA, the mutation can be a simple “flip” operator, where a single gene

can be flipped from one value to another, according to some mutation probabil-

ity, and the “main” part of the evolution is done by the crossover, but in DE, the

mutation has a crucial part in the evolution, so much that DE’s authors used its

main principle to name the algorithm: DE’s mutation calculates the difference be-

tween two candidate solutions, and then adds this weighted difference to another

candidate solution, this way exploring the search space of the problem. The “Dif-

ferential” in the name of the algorithm comes from the “difference” calculated in

the mutation operator. This mutated solution is then mixed with another candi-

date solution, creating this way a trial solution. If this trial vector, when compared

with the corresponding target vector in the population, yields a better fitness, then

it replaces the target vector for the next generation. Each DE process will be now

explained in more detail:

12 CHAPTER 2. PRELIMINARIES

2.1.1 Initialization

In DE, the initial population of d-dimensional vectors are chosen using an uniform

random generator for each parameter of the vector. Each vector in the population

is defined by

xi,g , i = {1, ..., Np} (2.1.1)

where Np is the number of vectors in the population, and g is the current genera-

tion, and xi,g = {x1,i,g, x2,i,g, ..., xd,i,g}. Each element of the vector can be bounded

by a lower and upper values, according to

xlowerj < xj,i,g < xupperj , j ∈ 1, ..., d (2.1.2)

defining this way the domain of the problem. The random uniform generator is

used to cover as much as possible the search space of the problem, as the more

the initial population is spread in the search domain, the easiest for the operators

to cover it, and reach the desired optimum value.

2.1.2 Mutation

As referenced earlier, the main difference between DE and other GA is the muta-

tion operator, as in DE it is based on a difference of vectors, rather than a random-

based mutation as in other GA. Equation (2.1.3) shown the formula used to create

a mutation vector vi,g for generation g:

vi,g = xr1,g + F · (xr2,g − xr3,g) . (2.1.3)

For each vector i, we start by selecting three random vectors r1, r2, r3 ∈

{1, 2, ..., Np}, all different from each other and different from current vector

(r1 6= r2 6= r3 6= i). The scale factor F ∈ [0, 2] is a constant parameter that

controls the amplification of the difference that will be added to the base vec-

12

2.1. DIFFERENTIAL EVOLUTION 13

Figure 2.1: Mutation operator in Differential Evolution: three different vectors
were selected randomly (x6, x5 and x3), and by applying equation (2.1.3), the
mutant vector vi,g is calculated.

tor xr1,g, controlling this way the influence of the difference in the new found

mutant. In figure 2.1 we can see a representation of the process, for a two dimen-

sional problem. Three different vectors were randomly selected in the population

x6 = [−1.2, 0.0]T , x5 = [1.5, 0.5]T and x3 = [1.0, 1.5]T , respectively for xr1, xr2 and

xr2 in equation (2.1.3), and assuming F = 0.5, the weighed difference between x5

and x3 would be

F · (xr2 − xr3) = 0.5 ·
([

1.5
0.5

]
−
[

1.0
1.5

])
=

[
0.25
−0.50

]
,

and adding this to the base vector x6, would result in the mutant vector

vi =

[
−1.2

0.0

]
+

[
0.25
−0.50

]
=

[
−0.95
−0.50

]
.

Several variations were formulated for DE, especially changing the mutant op-

erator. These are normally identified as DE/x/y/z, where:

x defines the base vector to be mutated, usually rand for a random se-

lected vector, or best to use the best vector in the current population;

y is the number of differences between vectors to be calculated;

14 CHAPTER 2. PRELIMINARIES

z defines the crossover scheme, usually bin for a binary crossover, or

exp to use an exponential crossover.

Using this nomenclature, equation (2.1.3) is commonly refereed as

DE/rand/1/bin, or DE/rand/1/exp, depending on the crossover operator

used. To avoid this “repetition” reference, is frequent in literature to found

references to DE variations without an explicit crossover, for instance, use using

only DE/rand/1 to refer to the variation defined in equation (2.1.3). This is

because DE variations have a close connection to the mutation operator, and not

so much to the crossover. Also the different crossovers could be applied regardless

of the mutation variation, so to avoid the “repetition” mentioned earlier, it is

easier to refer to the variation without mentioning the crossover variation.

DE/rand/1 define the most common DE variant, as was first introduced by

Storn and Price in 1995 [82], and, although over the years more variations where

proposed, the most common ones, according to Das et al. [17], are still those

proposed by the authors, in [81, 83, 41, 72]:

DE/rand/1

vi,g = xr1,g + F · (xr2,g − xr3,g) (2.1.4)

DE/best/1

vi,g = xbest,g + F · (xr1,g − xr2,g) (2.1.5)

DE/rand/2

vi,g = xr1,g + F · (xr2,g − xr3,g) + F · (xr4,g − xr5,g) (2.1.6)

DE/best/2

vi,g = xbest,g + F · (xr1,g − xr2,g) + F · (xr3,g − xr4,g) (2.1.7)

14

2.1. DIFFERENTIAL EVOLUTION 15

DE/current-to-best/1

vi,g = xi,g + F · (xbest,g − xi,g) + F · (xr1,g − xr2,g) (2.1.8)

In all of the above, xbest,g represent the best vector in the current generation,

and xr4,g and xr5,g refer to two more random selected vectors, needed when using

two differences between vectors, as in DE/rand/2, and DE/best/2.

2.1.3 Crossover

In GA, the crossover is where some genes of each parent are combined to form

a new child. This child is exclusively composed by elements from either of the

parents. In DE, the crossover can be either a binary crossover or a exponential

crossover and each vector is crossed with the correspondent mutant vector, calcu-

lated previously. Although when Storn and Price introduced DE in 1995 [82] they

used the exponential crossover, in an article from 1997 [83] they presented the

binary crossover, and the latter is more commonly used in the literature.

Binary crossover

For each index vector i, the binary crossover is defined by

uj,i,g =


vj,i,g if randj(0, 1) ≤ CR or j = jrand

xj,i,g otherwise

, j = 1, ..., d (2.1.9)

where randj(0, 1) is a uniform random function, resulting in a number between 0

and 1, CR ∈ [0, 1] is a constant parameter that defines the crossover rate. If the

random generated value is lower than the crossover rate, the corresponding trial

parameter comes from the mutant vector, otherwise is inherited from the current

vector. jrand is a random index, different for each vector, and ensures that the

16 CHAPTER 2. PRELIMINARIES

resulting trial vector has, at least, one parameter from the mutant vector and, as

such, is always different from the current vector.

Exponential crossover

The main difference between the binary crossover and the exponential one is that

while in the binary crossover, the vectors are examined each parameter at a time,

the exponential crossover work with blocks of parameters. For each vector index

i, the trial vector ui,g is defined by

uj,i,g =


vj,i,g j = 〈n〉d, 〈n+ 1〉d, ..., 〈n+ L− 1〉d

xj,i,g for all other j

, j = 1, ..., d (2.1.10)

where 〈·〉d define the modulo function with modulus d and n is the initial index,

chosen randomly. The number of parameters to be exchanged is given in L, and

is selected from the interval [1, d], according to algorithm 2.2. As can be seen, the

value of L will be incremented until either there are no more parameters (L ≥ d)

or the random value calculated is greater than the crossover rate (CR). Both n

and L are randomly calculated for each vector ui,g.

Algorithm 2.2 Algorithm to determine the length L of the block for the exponen-
tial crossover.

1: L← 0
2: repeat
3: L← L + 1
4: until rand() < CR and L < d

2.1.4 Replacement

The replacement operator in DE is a simple greedy one, where each trial vector

is compared with the corresponding target vector in the population, and the best

one replaces the current generation vector, to the next generation, and is given by

16

2.2. MULTI-OBJECTIVE OPTIMIZATION 17

xi,g+1 =


ui,g if f(ui,g) ≤ f(xi,g)

xi,g otherwise

(2.1.11)

where f(·) is the objective function to optimize. If the values are equal, the trial

vector replaces the target one, and by doing this, some variation could be intro-

duced in the population, although not changing the overall fitness value, because

depending on the function to optimize, different vectors could return equal fitness

values.

2.2 Multi-objective optimization

Multi-objective optimization (MO) problems, as the name suggests, are problems

where more than one objective must be taken into account in the optimization

process, and each objective can be either maximized or minimized, subject to a

number of restrictions.

Suppose buying a new TV. TVs came in different sizes, with different prices

and a miscellaneous of features, some more important than others, at least for

most of us. For instance, nowadays, one might only consider a new TV set if it

has the latest and greatest resolution, but to others, this might not be that much

importance, and instead consider if the TV set can be connected to the Internet,

or has wireless connection. With a plethora of features to consider, there are even

those who consider the price when buying a TV set, go figure. This is clearly a

multi-objective problem, where each characteristic of the TV is an objective in our

problem, and the main goal is to decide which TV has the best set of character-

istics, i.e., to optimize our problem. Of course there is no “one-size-fits-all” thing

here, otherwise this would not be a problem, much less a multi-objective one, has

everybody would buy that best “all-around” TV set. Instead, that plethora of char-

acteristics must be taken into account, and each person must decide to which of

them give more importance and which of them (if any) have no importance at all.

18 CHAPTER 2. PRELIMINARIES

Figure 2.2: An hypothetical representation of the best values for price and size of
TV sets.

What this means is that a multi-objective optimization problem, instead of a single

objective one, does not give the best answer, but instead give the a set of solutions,

each of them better than the others at one objective, but worse at others. It’s up

to the decision maker to look at those solutions and decide in the final (optimal)

solution.

For simplicity, lets considering only the size and the price of the TVs, and imag-

ine one wanting to buy the biggest TV possible, spending the least amount of

money. Suppose that after some market analysis, a resume is made, shown in fig-

ure 2.2, with the best values for different sizes and prices. From those values can

be seen that if considering only the price, one will end up with a smaller TV set,

but on the other hand, if one goes for the largest TV, the price to pay would also

be quite “large”. For each person, the answer to the question “Which TV should

I buy?” can be a different one, based on their experience, personal restrictions,

and/or outside factors, and more often than not, is necessary to make some trade-

offs in the decision process. In this example, as in most real life examples, there is

no clear best answer, and some compromise is necessary to reach the decision.

2.2.1 Problem definition

Assuming, without loss of generalization, that all objectives are to be minimized

(otherwise we could always use the duality principle [22]), the general form for a

multi-objective optimization problem can be defined by

18

2.2. MULTI-OBJECTIVE OPTIMIZATION 19

minimize f(x) (2.2.1)

subject to

gi(x) ≤ 0 , i = 1, ..., n (2.2.2)

hj(x) = 0 , j = 1, ..., p (2.2.3)

xLk < xk < xUk , k = 1, ..., d (2.2.4)

where f : Rd → Rm is a multidimensional function, defined by f(x) =

[f1 (x) , f2 (x) , ..., fm (x)], x = [x1, x2, ..., xd]
T defines a vector of decision variables,

each bounded between a lower xLk and an upper xUk value, and gi, hj : Rd → R are

the constraint functions to be satisfied by the problem.

The solutions that satisfy the constraint function of the problem and the vari-

able bounds constitute a feasible decision variable space S ⊂ Rd. Contrary to single-

objective optimization problems, in multi-objective optimization problems there

are multiple functions to optimize, and each of then return a value. As a result,

each solution of a multi-objective problem is a point in a multi-dimensional ob-

jective space, Z ⊂ Rm. The decision space contains the solutions to the problem,

and each of these solutions are mapped, through the optimization function, in the

objective space, allowing some order of the solutions.

Suppose a two dimensional, two-objectives optimization problem, i.e., f : R2 →

R2. In figure 2.3 is an example of a possible set of solutions in the decision vari-

able space (left), and the corresponding points in the objective space (right) for

this type of problem. For instance, d defines a solution on the decision space, rep-

resented in the figure on the left. Evaluating this vector using the two objective

functions (f1 and f2), each of them would result in a value, and a possible final

20 CHAPTER 2. PRELIMINARIES

(a) (b)

Figure 2.3: The same problem in two domains: In (a) are solutions in the decision
variable space and in (b) are the respective points in the objective space.

point in the objective space would be f(d), represented on the right.

The objective space is where each solution will be compared to each other to

find which are worth considering and which can be discarded, but the domain of

the solution itself is the decision space. Unless stated otherwise, the term solution

will be used to refer to both the solutions in the decision space and their respective

points in the objective space, being obvious that, for instance, when referring to a

“solution in the objective space”, the referred solution is in the decision space, it is

its point that is in the objective space.

2.2.2 Pareto dominance

In figure 2.3(b) that there is no clear best solution, i.e., almost all of them are

better in one objective but worse at the other. Assuming that no objective has

a greater importance than the other, there is not a simple answer to find which

solution is optimal, as each solution has to make some compromise to the others.

But, for instance, solution b is clearly an uninteresting solution, as there is solu-

tion a better than b in both objectives. In multi-objective optimization problems,

20

2.2. MULTI-OBJECTIVE OPTIMIZATION 21

solutions like b are called dominated solutions, and those like a are dominating

solutions. This domination concept was first introduced by Vilfredo Pareto (see

Stadler [80]), and is commonly known as the Pareto dominance. Formally, it can

be defined by [80, 22, 99, 42]:

Definition 2.1. Given two solutions x, y ∈ S, x is said to weakly dominate y (de-

noted by x � y) if

∀i∈{1,...m} : fi (x) ≤ fi (y) (2.2.5)

Definition 2.2. Given two solutions x, y ∈ S, x is said to dominate y (denoted by

x ≺ y) if

 ∀i∈{1,...,m} : fi (x) ≤ fi (y)

∃i∈{1,...,m} : fi (x) < fi (y)
. (2.2.6)

Definition 2.3. Given two solutions x, y ∈ S, x is said to strongly dominates y

(denoted by x ≺≺ y) if

∀i∈{1,...m} : fi (x) < fi (y) . (2.2.7)

Definition 2.4. Given two solutions x, y ∈ S, x is said to be incomparable to y

(denoted by x ∼ y) if

x � y and y � x. (2.2.8)

These relations state that if solution x strongly dominates solution y, then x is

better that y in all objective; if solution x dominates solution y, then x is not worse

then y in all objectives, and is better then y in at least one objective; if solution x

22 CHAPTER 2. PRELIMINARIES

weakly dominates solution y, that x is not worse than y in all objectives; finally,

if solution x is not worse than y in all objectives neither is y is worse then x,

than solutions x and y are incomparable. Clearly, if solution x strongly dominates

solution y, it also dominates and weakly dominates it, i.e., x ≺≺ y =⇒ x ≺ y =⇒

x � y.

As the weak domination relation is reflexive (x � x), antisymetric (x � y ∧

y � x =⇒ x = y) and transitive (x � y ∧ y � z =⇒ x � z), it defines a non-

strict partial order, while the domination and the strong domination relations

define a strict partial order, as they are irreflexive (x ⊀ x, x ⊀⊀ x), transitive

(x ≺ y∧y ≺ z =⇒ x ≺ z, x ≺≺ y∧y ≺≺ z =⇒ x ≺≺ z) and asymmetric

(x ≺ y =⇒ y ⊀ x, x ≺≺ y =⇒ y ⊀⊀ x).

Consider solution a in in figure 2.3b: it strongly dominates solution b, because

for all objectives, the values of solution a are better then those of solution b.

Solution a is also dominates solution c, because they have the same value for

one objective (f1), but for the other objective, solution a has a better result. On

the other hand, comparing solution a with solution d has an interesting aspect:

solution a is better than solution d in the first objective (f1), but is worse in the

second objective (f2), i.e., they are incomparable. As none dominates the other,

they are called non-dominated solutions.

Using a pair-wise comparison, every solution in a finite set of solutions can be

compared to each other, to determine which solutions dominates which; which

solutions is dominated by which, and which are the solutions that are non-

dominated in relation to one another. The purpose of this is, in the end, to obtain

a set with the solutions that are non-dominated in relation to one another. All

solutions in this set doesn’t dominate any other solution in it, and for all solutions

not in this set, there exists at least one solution in the set that dominates it.

In figure 2.4 is a resume for comparing two solutions: In relation to solution

x, any solution in the upper-right quadrant is dominated by solution x, in the

lower-left are the solutions that dominate solution x, and in the upper-left and

22

2.2. MULTI-OBJECTIVE OPTIMIZATION 23

Figure 2.4: Dominating, dominated and incomparable solutions to X, in the ob-
jective space.

lower-right are the solutions that cannot be compared to solution x, i.e., they are

incomparable to x.

Definition 2.5. From a set of solutions P , the non-dominated set of solutions P ?

are those that are not dominated by any other solution in P :

P ? = {x : y ⊀ x, ∀x,y∈P} . (2.2.9)

Representing these non-dominated set of solutions in the objective space would

result in a non-dominated front. If the set P is the decision space S, i.e., P = S,

then this non-dominated set is called the Pareto-optimal set, and each solution

x ∈ P ? is a Pareto-optimal solution. Likewise, the representation of the Pareto-

optimal set in the objective space is called the Pareto-optimal front.

In figure 2.5, solutions {e, c, a,d} define the non-dominated set, and the line

connecting them is the non-dominated front. The grey area is the dominated re-

gion, i.e., for every solution in the dominated region, there exists at least solution

in the non-dominated set that dominates it, as is the case of solution b, that is

dominated by both solutions c and a.

24 CHAPTER 2. PRELIMINARIES

Figure 2.5: Non-dominated set {e, c, a,d} and non-dominated front (black line).

If the outcome of a multi-objective optimization problem is a non-dominated

set of solutions, henceforth called approximation set, how to compare two approx-

imation sets to decide which is better? Although most times is not easy to answer

that question, by extending the concept of Pareto dominance to sets of solution, a

relation can be given between two approximation sets [99, 42]:

Definition 2.6. Given two approximation sets A,B, A is said to weakly dominate

B (denoted by A � B) if

∀y∈B∃x∈A : x � y. (2.2.10)

Definition 2.7. Given two approximation sets A,B, A is said to better than B

(denoted by A C B) if

A 6= B ∧ ∀y∈B∃x∈A : x � y. (2.2.11)

Definition 2.8. Given two approximation sets A,B, A is said to dominate B (de-

noted by A ≺ B) if

24

2.2. MULTI-OBJECTIVE OPTIMIZATION 25

∀y∈B∃x∈A : x ≺ y. (2.2.12)

Definition 2.9. Given two approximation set A,B, A is said to strongly dominate

B (denoted by A ≺≺ B) if

∀y∈B∃x∈A : x ≺≺ y. (2.2.13)

2.2.3 Evolutionary multi-objective optimization

As seen previously, in multi-objective optimization is common for all objectives

to be equally important, and because of this, the methods used to find the op-

timal solution in single-objective problems cannot be used here, as using single-

objective algorithms to find solutions for multi-objective problems would result in

optimal solutions for one objective, disregarding all other objectives, but solutions

to multi-objective problems, as already discussed, need some compromise to be

made between each objectives. To find this type of solutions, an algorithm for a

multi-objective optimization problem, need, itself, to solve another multi-objective

optimization problem, as there are two (possibly conflicting) objectives it needs to

achieve:

1. Proximity, i.e., needs to find an approximation set of solutions as close as

possible to the Pareto-optimal set,

2. Diversity, i.e., the approximation set solutions found need to be as diverse

as possible, in order to represent the entire Pareto-optimal front. If there

are too many solutions in certain zone of the Pareto front and none or few

solution in other zones, the approximation set would not correctly represent

the Pareto-optimal front.

To find an approximation to the Pareto-optimal front, first, a set of solutions is

needed, to then determine the non-dominated set. A very common way to find

26 CHAPTER 2. PRELIMINARIES

them is using Evolutionary Multi-Objective Optimization (EMO) algorithms, also

referred in the literature as Multi-Objective Evolutionary Algorithms (MOEA).

Their intrinsic characteristics are that main reason to use them for this type of

problems, but also their main drawback: the main advantage of using EMO is

the fact that, as they are usually population-based algorithms, they evolve a pop-

ulation of solutions in each generation, and use this population to find the non-

dominated set, this way approaching the Pareto-optimal front in each generation.

On the other hand, as they are heuristic algorithms, they search the decision space

for feasible solutions, evolving and improving them in each generation of the pro-

cess, with the final objective of approaching the Pareto-optimal front. But, in

the end, there is no guarantee that the final non-dominated set of solutions are

the Pareto-optimal solutions, only that they were best non-dominated set from all

generated solutions.

The other problem is guaranteeing that the set of solutions are diverse enough

to represent the entire range of the Pareto-optimal front. If an approximation

to the Pareto front is found, but is not diverse enough to cover the entire Pareto-

optimal front, or at least a very good part of if, them this approximation is skewed,

as most likely a good enough decision cannot be made using it. Consider figure

2.6: although representing an approximation to the Pareto front, neither figure

2.6(a) nor figure 2.6(b) are diverse enough to represent the entire front, because

there isn’t a good distribution of the solutions regarding both objectives. In figure

2.6(a) the approximation front is skewed for good values in the first objective,

disregarding completely the second objective, and in figure 2.6(b) is the other

way around, only the second objective has good approximations.

Over the years, several EMO algorithms have been developed to accomplish

these two goals, and they can be divided according to the technique used to do it.

A thoroughly discussion of some can be found in [93, 87], but the most common

are the three presented next.

26

2.2. MULTI-OBJECTIVE OPTIMIZATION 27

(a) (b)

Figure 2.6: Two approximation fronts that don’t represent the entire Pareto-
optimal front.

The most common technique uses the Pareto dominance to find solutions ap-

proximated to the Pareto-optimal set, and computed a distance between each solu-

tion in the non-dominated set to maintain the diversity in this set. State-of-the-art

algorithms, such as the non-dominating sorting genetic algorithm II (NSGA-II)

[23] and the strength Pareto evolutionary algorithm 2 (SPEA2) [96] use this type

of technique. NSGA-II, in particular, is one of the most used algorithms for bench-

marking and comparing with new algorithms [29, 11], and was, inclusive, the

most used algorithm, in a recent survey by von Lücken et al. [87]. This algorithm

uses a two stage approach to select which individuals to keep for the next gen-

eration: first it joins in the population with the offspring generated by the usual

evolutionary operators (crossover and mutation), then it sorts all individuals into

fronts according the the Pareto dominance, and then uses a crowding distance to

maintain the diversity of the solutions. After this two measures, it selects the pop-

ulation for the next generation by selecting first the individuals in the first front,

then those on the second, and so on, until either it reaches the size of the popula-

tion, or until the number of missing individuals in the population is less that the

size of the next front. In the first case, the population is found, and the algorithm

proceeds to the next generation, otherwise, it selects from the next front, the num-

ber of missing individuals, based on their crowding distance, i.e., select first the

28 CHAPTER 2. PRELIMINARIES

individuals in a less crowded region of the objective space, until it reaches the size

of the desired population.

The SPEA2, on the other hand, uses an archive population to keep the non-

dominated individuals, and the population to generate the offspring. First, it

calculates the strength of each individual in both population and archive. The

strength is the number of individuals that each one dominates, and then assigns

a fitness to each individual, that is the combined strengths of its dominators. To

preserve the diversity, it uses an adaptation of the kth nearest neighbour method,

in which, for each individual, the distances to each other individual is calculated

and sorted in a list. The density of each individual is an inverse function of the

kth element of that list, being k, according to the authors, the square root of the

size of the sample, i.e., population and archive. Finally, this density is added to

the fitness. To create the archive population for the next generation, first, using

the union of the old archive with the population, it selects the non-dominated in-

dividuals and copy then to the new archive. As the size of the archive population

is fixed, three cases can occur: If the non-dominated individuals fit exactly in the

archive, then this step is done, and the algorithm proceeds to calculate the next

generation; If the size of the archive is too small, the add the best dominated in-

dividuals from the union until archive is complete; If the size of the archive is too

large, some non-dominated individuals must be removed. This removal is done

one individual at a time, selecting each time the individual with the minimum

distance to another individual, until all exceeding elements are remove from the

archive.

Other technique is to decompose the multi-objective problem into several

single-objective problems (SOP), using a vector of weights for each objective, that

can be solved using any traditional algorithm for single-objective optimization.

The solutions for the objective problems are used to construct the non-dominated

set, and the vector with the weights controls the diversity of the solutions. The

multi-objective evolutionary algorithm based on decomposition (MOEA/D) [75]

28

2.2. MULTI-OBJECTIVE OPTIMIZATION 29

is an example of an algorithm using this technique. The core any decompo-

sition algorithm is how to decompose the multi-objective problem into several

single-objective. In [75], the authors proposed three approaches: a simple weight

sum approach, a Tchebyshev approach, or a boundary intersection approach. In

MOEA/D, the population of is composed of the best solutions found so far for

each problem, and the non-dominated solutions a kept in an external popula-

tion. The MOEA/D algorithm starts by creating a set of weight vectors, one for

each sub-problem to be considered, and calculates the pairwise distance between

them. This distance defines the neighbours of each weight vector. Then, for each

sub-problem, select two random neighbours and use their solutions to create an

offspring using usual genetic operators. This offspring is then used to update all

the current sub-problem’s neighbours solution, using the decomposition formula.

The external population is also updated accordingly, i.e., place the offspring in

the external population if no individual in it dominate the offspring, and remove

any individuals in the external population dominated by the offspring, and repeat

everything for the next sub-problem.

The final technique is to use a scalar indicator, developed to measure the “qual-

ity” of the solutions obtained, as will be presented later (see section 2.2.4). Using

this technique, a fitness is assigned to each solution, and this fitness guides the

search for better solutions. Unary indicators give a value to each solution us-

ing some performance criteria, and binary indicators compare two solutions to

measure their relative quality. These type of algorithms usually don’t need any

additional method to maintain diversity, as the indicator already guarantee it. The

indicator-based evolutionary algorithm (IBEA) [95] was the first to use this idea,

and the idea is a simple one: Define a fitness function based on an Pareto compli-

ant indicator (see 2.2.4) and using this function assign a fitness to each individual

in the population. Apply any usual genetic operators to create an offspring popu-

lation, and join both populations. To select the individuals to the next generation,

just choose the individual with the smallest fitness, remove it from population, and

30 CHAPTER 2. PRELIMINARIES

update the remaining individual’s fitness accordingly, repeating these steps until

the size of the population is adequate.

2.2.4 Performance measures

When solving single-objective optimization problems, it is relatively easy to com-

pare two outputs, and see which is “best”, as the output is a single solution corre-

sponding to the minimum or maximum of a single-objective function. But when

the problem is multi-objective, the output is not a single solution, is an approxi-

mation set of solutions.

In addition, it is very unlikely that a EMO will reach the Pareto-optimal set,

either because the number of Pareto-optimal solutions is to high, or because de-

termining a single Pareto-optimal solution is a NP-hard problem, or simple because

the intrinsic heuristic of EMOs. Instead, as the outcome of an EMO is an approx-

imation to the Pareto-optimal set, some type of measure is needed to qualify this

approximation, either to compare it with the Pareto-optimal set, if available; or

compare with other approximation sets from the same multi-objective optimiza-

tion algorithm; or even to compare approximation sets between different multi-

objective optimization algorithms.

Using the Pareto dominance, given in definitions 2.6 to 2.9, a partial order

can be used to compare different approximation sets, in a natural way. However,

although using it, one can say that, for instance, approximation set A is better

than approximation set B, this “betterness” cannot be quantified. Does it have

more solutions in it? Is it closer to the Pareto-optimal front? Does it have a better

diversity?

To answer this type of questions, other type of quantifiers were introduced,

commonly called performance measures. Zitzler et al. [94, 42] classified the

different quantifiers into three different groups, according to the method used: the

dominance ranking method, the the quality indicator method, or the the attainment

30

2.2. MULTI-OBJECTIVE OPTIMIZATION 31

function method.

The dominance ranking assigns a ranking value to each approximation set,

based on comparison between approximation sets. Although there are several

ways to determine the rank to an approximation set based on the dominance con-

cept, Zitzler et al. [94] suggested that counting the number of sets by which

each approximation set is dominated by (Fonseca and Flemming [26]), extended

by the Pareto dominance gives a better ranking with less ties. Suppose A1, ..., Ar

and B1, ..., Br are approximation sets, resulting from running two different multi-

objective optimization algorithms r times (for simplicity, lets assume both algo-

rithms were executed an equal number of times). The rank of approximation set

Ai is determined by the number of approximation sets Bj, j = 1, ..., r that domi-

nates Ai:

rank (Ai) =
∣∣{B : B ≺ Ai,∀B∈{B1,...,Br}

}∣∣ . (2.2.14)

Analogously, the same is used for calculating the ranks for the approxima-

tion sets generated by the other algorithm, and the result is two sets, one for

each algorithm, with the rank of each approximation set when compared with the

other algorithm, like {rank (A1) , ..., rank (Ar)}, and {rank (B1) , ..., rank (Br)}. Fi-

nally, using a statistical rank test, such as the Mann-Whitney rank sum test or the

Kruskal-Wallis rank test when there are more than two optimizers to compare, can

be used to determine if there is a significant difference between the algorithms.

This method, although being simple and computationally inexpensive, only

gives very general information about the relative performance of the optimizers,

and others methods should be used to complement it, unless a significant differ-

ence can be demonstrated between the optimizers using it alone [94].

Another method is the attainment function. This method is based on goal-

achievement probability, meaning the probability that at least one element of an

approximation set X attains the goal-point z ∈ Rm in a single run [31, 25]. Defin-

32 CHAPTER 2. PRELIMINARIES

ing attain by

Definition 2.10. Given an approximation set X, and a solution in the objective

space z, X is said to attain z (denoted X E z) if

∃x∈X : x � z. (2.2.15)

Although in practice the attainment function is unknown, it can be estimated

using data from several independent executions from an multi-objective optimiza-

tion algorithm. The empirical attainment function, used in this method, is defined

by

αr (z) =
1

r

r∑
i=1

I (Xi E z) , (2.2.16)

where Xi, i = {1, ..., r} is the ith approximation set of r runs of a multi-objective

optimization algorithm and I (·) is the indicator function, returning zero if the ar-

gument is false, or one otherwise. Basically, this empirical attainment function

will estimate the relative frequency on which each objective point in the objec-

tive space was weakly dominated by an approximation set in r runs. Statistical

tests can now be made using these results, to compare the results of two multi-

objective optimization algorithms. This method also allows to compare two differ-

ent multi-objective optimization algorithms visually, and even see the differences

between them, i.e., the area were one algorithm behaves better then the other

[54], which can be important to understand how an algorithm behave, in the

developing phase.

However, its computational cost is very high, which is the disadvantage of this

method.

Finally, the most used method in literature [94] are the quality indicators.

These came in various “shapes” and “forms”, but the basic idea behind them all is

to assign a real value to approximation sets. Theoretically, a n-ary indicator can

32

2.2. MULTI-OBJECTIVE OPTIMIZATION 33

be defined by

I (A1, ..., An) : Sn → R, (2.2.17)

and, although there is no limit to n, in literature is not frequent to appear anything

higher then binary indicators, being the unary, by far, the most frequent [99, 77].

An explanation for this could be the fact that unary indicators assign a value to

each approximation set, regardless of any other approximation set; and the num-

ber of results given by high order indicators. Suppose r approximation sets are

to be compared: using an unary indicator, r results will be obtained; in a binary

indicator, as a pairwise comparison is used, will end up with r(r − 1) results [99];

and so on.

Suppose two approximation sets A and B, a good unary indicator should not

only be able to establish an order between them, but the difference between the

indicators should also reveal the difference in the quality between the approxima-

tion sets.

As each unary indicator is only able to measure one characteristic of the ap-

proximation set, for instance, the distance to the Pareto-optimal front or the diver-

sity within the approximation set, different unary indicators, measuring different

characteristics, can give different values to the same approximation set, possibly

resulting in a different classification of the approximation sets. For this reason,

when comparing two approximation sets using a unary indicator, one has to al-

ways refer to the indicator used, i.e., “approximation set X is better than approxi-

mation set Y , according to indicator I”.

An explanation of the most used performance measures will be presented next.

Hypervolume

The hypervolume metric, also known as S-metric, was proposed initially by Zitzler

and Thiele [97, 98] as the portion of the objective space weakly dominated by

34 CHAPTER 2. PRELIMINARIES

an approximation set, and is to be maximized. To calculate the hypervolume, an

additional point in the objective space must be used, to bound the approximation

set. Assuming a two-objective problem (the concept can be canonically extended

to multiple dimensions), for a maximization problem, is common to use the ori-

gin ((0, 0) in an two-objective problem), but for a minimization problem, a point

“outside” the extreme values of the approximation set is required. For instance, if

X is an approximation set with cardinality n and xk ∈ X, k = {1, ..., n}, the point

(max(f1 (x1) , ..., f1 (xn)) + 1,max(f2 (x1) , ..., f2 (xn)) + 1), defines a point strongly

dominated by all solutions in the approximation set.

As it depends on the magnitude of the values, it should be normalized, and

becomes a ratio:

IHV R(A) =
IHV (A)

IHV (R)
, (2.2.18)

where A is an approximation set, R is a reference set (or the Pareto-optimal set, if

available), and IHV (·) defines the hypervolume for a given approximation set.

This indicator measures in both the proximity and the diversity and an approx-

imation set, since the higher the value, the close is the approximation set from the

Pareto-optimal set and the higher its diversity along the Pareto front.

The hypervolume is also the only known unary indicator to strictly comply to

Pareto dominance, i.e., ∀A,B∈S : A ≺ B =⇒ IHV (A) > IHV (B), but this depends

on using the same bounding point for both approximation sets, and that bounding

point being strongly dominated by all solution in both approximation sets.

Recent surveys [87, 77] show that this indicator is, by far, the most used in the

specialized literature, despite the very computational cost, as it is exponential on

the number of objectives.

34

2.2. MULTI-OBJECTIVE OPTIMIZATION 35

Generational distance

The generational distance [85, 86] is an indicator that measures the distance of an

approximation set to a reference set, either the Pareto-optimal set or a very close

approximation, and is defined by

IGD(A,B) =
1

|A|

(∑
a∈A

d (a)p
)1/p

, d(a) = min
b∈B
‖f(a)− f(b)‖ (2.2.19)

where A and B are an approximation sets. Although the authors initially proposed

p = 2, this was later changed to p = 1, for a simpler computation and interpre-

tation, as now the generational distance is the average of the Euclidean distances

between each solution in A and the nearest solution in B, meaning the lower the

result of the indicator, the closer approximation set A is to B. Instead of two

approximations sets, a reference set R can be used, and the indicator becomes

I1
GD(A) = IGD(A,R).

This indicator measures only the proximity, and does not comply to Pareto

dominance, i.e, an approximation set A could be better than B, but the genera-

tional distance of A (in respect to a reference set R) is not necessarily lower than

that of B, i.e., A C B 6=⇒ I1
GD(A) ≤ I1

GD(B). It is also sensitive to the cardinality

of the approximation set, as an approximation set with a lower cardinality can

obtain a better (lower) indicator value than another set, with a higher cardinality,

but in which all solutions dominate the solutions on the first set.

Although its usage is decreasing [77], it is still very used in the specialized

literature.

Inverted generational distance

The inverted generational distance [14] was proposed to improve the generational

distance, and its idea was to simple reverse the order of the approximation sets,

i.e., it calculates the distance between each solution in the reference set and its

36 CHAPTER 2. PRELIMINARIES

nearest solution in an approximation set, averaging it over the cardinality of the

reference set, mathematically

IIGD(A,R) = IGD(R,A). (2.2.20)

As it computes the difference based on the reference set, it is not sensitive to

the cardinality of the approximation set, as GD, it measures both the diversity and

the proximity, and is simple to compute. According to the literature its usage has

been growing [77], albeit recently been proved that it does not comply to Pareto

dominance [39].

ε-indicator

The epsilon indicator family are a set of indicators introduced by Zitzler et al.

[99], and they determine the minimum value needed to transform a dominating

reference set, into a set that is weakly dominated by another set. Is called a family

because there are four variations of the same concept: it can be a unary or binary

indicator, and can be additive or multiplicative. In any case, the fundamental

concept is the ε-dominance, defined as

Definition 2.11. Given two solutions x, y ∈ S, x is said to ε-dominate y (denoted

by x �ε y) if

∀i∈1,...,m : fi (x) ≤ ε · fi (y) . (2.2.21)

Using the ε-dominance, the multiplicative binary epsilon indicator, is defined

by

Iε(A,B) = inf
ε∈R
{∀b∈B∃a∈A : a �ε b} (2.2.22)

and the unary counterpart is defined by replacing the second approximation set B

by a reference set R

36

2.2. MULTI-OBJECTIVE OPTIMIZATION 37

I1
ε (A) = Iε(A,R). (2.2.23)

The additive versions are defined analogously, replacing the product in defini-

tion 2.11 by an addition, and using Iε+ and I1
ε+ to represent the binary addition

and the unary addition epsilon indicators, respectively.

This indicator is compliant to the Pareto dominance, i.e., ∀A,B∈S : A C B =⇒

I1
ε (A) ≤ I1

ε (B) and cheap to compute, although being sensitive to scaling.

R indicators

The R indicators [35, 34, 40] are based on a utility function, in a sense, trans-

forming the decision maker’s preference information into an indicator. Sup-

pose set of weight parameters vectorsΛ and a utility function uλ(z), that trans-

forms a solution into a scalar value, using the specified parameter vectorλ, where

λ = {λ1, ..., λm} ∈ Λ. The utility function is usually defined using the weighted

Tchebyshev function:

uλ(z) = max
i∈{1,...,m}

λi · |z?i − zi| , (2.2.24)

where z ∈ Z is an objective solution, z? is the ideal point, i.e., z?i = min
z∈Z

zi, i ∈

1, ...,m. Using this utility function, the R2 indicator can be defined by:

IR2(A,B) =
1

|Λ|
∑
λ∈Λ

(
min
b∈B

uλ (b)−min
a∈A

uλ (a)

)
, (2.2.25)

and the R3 as:

IR3(A,B) =
1

|Λ|
∑
λ∈Λ

min
b∈B

uλ (b)−min
a∈A

uλ (a)

min
b∈B

uλ (b)
. (2.2.26)

If, instead of two approximation sets, a reference set R is used, they became

unary operators, defined by I1
R2(A) = IR2(A,R), and I1

R3(A) = IR3(A,R). Further

details can be found in the original papers [35, 34, 40].

38 CHAPTER 2. PRELIMINARIES

In every case, the set Λ should contain a sufficiently large number of uniformly

weighted vectors λ, with ∀i∈{1,...,m} : λi ≥ 0 and
m∑
i=1

λi = 1.

This indicators cover both the proximity and the diversity of the approximation

set and comply to Pareto dominance.

2.3 Combinatorial optimization

The name combinatorial optimization (CO) is derived from combinatorial prob-

lems, in which the domain of the problem is both a discrete and finite set of some

kind of objects, that can be combined in different forms. In combinatorial opti-

mization problems, the objective is to find the optimal combination to answer a

certain problem. Basically, combinatorial optimization consist in finding the op-

timal solution, from a finite set of possible solutions. When explained like that,

it looks simple, just find all of possible combinations and select the best. In a

small set of possible combinations this is feasible, the problem is, as the sets grows

larger, the size of the number of possible combinations “explodes”, and there is no

efficient algorithm capable of determining them all. This type of problems belong

to a class called NP-hard problems [28, 6], and most combinatorial optimization

problems belongs to this class.

One famous problems in combinatorial optimization is the knapsack problem,

in which given a set of items, each with is own weight and value, find which

items to put in the knapsack, maximizing the value but keeping the weight under

a predefined limit. Suppose we have just 3 items, with their respective value

and weight, as illustrated in figure 2.7, and we wanted to store those items in

a knapsack with a weight limit of 40Kg. In this very simple example, with just

three items, the possible combinations are easily calculated: Not forgetting that

not all items are necessarily going into the knapsack, the different combinations

are
3∑
i=1

3

i

, or 7 possible combinations, showed in table 2.1, with the respective

38

2.3. COMBINATORIAL OPTIMIZATION 39

Figure 2.7: Example of a knapsack problem: How to optimize the knapsack capac-
ity, maximizing the carried value?

Items Packed Weight Value

#1 20Kg C500
#2 15Kg C1000
#3 20Kg C700

#1,#2 35Kg C1500
#1,#3 40Kg C1200
#2,#3 35Kg C1700

#1,#2,#3 55Kg C2200

Table 2.1: Possible ways to solve the knapsack problem, with respective weight
and value.

weight and value.

From this, very few, possible solutions, one can easily see that 1) the last com-

bination is not feasible, because it exceeds the limit of the knapsack; and 2) the

one that maximizes the value and keep the weights within the bounded limits is

the solution that uses items #2 and #3, giving a maximum value of C1700, and

weighing 35Kg.

This very simple example was just to illustrate a combinatorial optimization

problem, in which we could make a simplified analysis due to very low number

of possible solutions, but that served to illustrate the combinatorial optimization

problem: with only three feasible solutions, its easy to find the optimal one, but

remember that if instead of 3 items we had just a few more, say 10, the number

of combinations would raise from 7 to 1023, which would not be easily solved by

hand, albeit not impossible, but the more items, the harder would the problem

40 CHAPTER 2. PRELIMINARIES

became.

As said earlier, this is a characteristic of NP-hard problems: they are solvable

for a low number of inputs, but there is no provable efficient algorithm to solve

them for any number of inputs.

2.3.1 Travelling salesman problem

Probably, the most famous NP-Hard combinatorial optimization problems is the

traveling salesman problem (TSP), commonly stated as “Given a number of cities

and a distance between each, find the shortest path that travels through each city

exactly once and ends in the same city where it started”. This is probably the most

studied combinatorial optimization problem, and is commonly used to benchmark

optimization algorithms. There exists algorithms to find an exact solution to small

instances of TSPs, but as the number of cities increase, the number of possible

solutions raise exponentially, making impossible to apply brute-force algorithms

to find the optimal solution in an acceptable time.

The core application of TSP is transport problems, but it has many applications

to other real life problems. In [47, 57] many are introduced, amongst them:

Drilling printed circuit boards [30]: After the circuit boards is “printed”,

holes need to be made for each electronic component to be soldered. As these

components may have connections of different sizes, different sized holes are

needed. Each time a different size hole is needed, the machine needs to go to

the toolbox and change the size of the drill, wasting time. This can be viewed

as consecutive TSP, one for each hole size, where the “cities” are the position of

the holes to be drilled, and the edges are the distance to move from hole to hole,

starting (and ending) in the toolbox, to change to the next drill size. The objective

is to minimize the travel time of the machine head.

Satellite positioning [7]: To study and explore the universe, there are satel-

lites in orbit, free from Earth’s atmosphere interference. Particularly, there are

40

2.3. COMBINATORIAL OPTIMIZATION 41

missions involving more than one satellite, that need to move in coordination.

Each time they need to be repositioned to study to a different position in the sky,

precious fuel is needed for the satellite’s rockets to move his position. The objec-

tive is to minimize the fuel needed to move from one position to the next, knowing

that the mission is over as soon as one satellite runs out of fuel.

Warehouse merchandise distribution [5]: Very large warehouses have auto-

matic crane mechanisms to collect and store material. When an item is ordered,

the crane goes to the item position and brings it to the respective loading plat-

form, and the inverse when items are delivered to the warehouse. In this type of

warehouses, the crane usually don’t stop all day, going back and forth between

the item’s position and the loading platforms. Considering each arc (i, j) as the

possibility to deliver order j after delivering order i, this can be formulated as a

TSP problem, aiming to minimize the travel of an empty crane.

X-ray crystallography [9]: To study the structure of crystals is measured their

reflection to x-rays, using hundred’s of thousands of positions. Although the mea-

sure is fast, the motors to move the x-ray machine, always takes some time to do

it. The order of the positions is not important, but the time of the measure does, at

it depends on repositioning the x-ray machine. Therefore, the problem is finding

the best sequence to minimize the repositioning time.

As simple as an TSP problem can be understood, also a simple algorithm to

solve it can be enumerated: Just calculate all permutations of nodes, and find

the optimal solution. This is called a brute force algorithm and the caveat of this

type of algorithms is the NP-hardness of the problem, which means that although

this approach can be used for small dimension problems (with a small number of

nodes), for real world problems this would be unfeasible, as the time required to

compute all permutations of nodes would be unreasonable.

The TSP problem can be defined using a graph, i.e., a data structure capable of

representing the cities and their connections. Consider the graph G = (N,E,w),

where N is a set of nodes or vertices, E is a set of edges E = {{u, v} : u, v ∈ N},

42 CHAPTER 2. PRELIMINARIES

where {u, v} represent connection between node u and node v, and a weight

function w : E → R+, associating each edge to a non negative weight w(u, v),

representing the distance, the cost, the time, etc., of going from node u to node v.

To simplify the notation, is frequent to use the wuv to mean w(u, v).

If the edges are symmetric, i.e., ∀u,v∈N : wuv = wvu, the graph is said to be

undirected, and the TSP is said to be a symmetric traveling salesman problem

(STSP), or simply TSP; otherwise, if at least one of the edges is not symmetric

∀u∈N∃v∈N : wuv 6= wvu, the notation used is (u, v) to represent an edge starting in

node u and ending in node v, the graph is said to be directed, and, accordingly,

the TSP is an asymmetric traveling salesman problem (ATSP).

When each node defines a point in Rd and the weight function is defined by

the Euclidean distance wuv =
(∑d

i=1(ui − vi)2
)1/2

, the TSP is an Euclidean TSP, on

which the triangle inequality is satisfied ∀u,v,k∈N : wuv ≤ wuk +wkv. The Euclidean

TSP is, obviously, symmetric.

When w : E → Rn+, each edge as n values associated (time, cost, distance,

etc.), and the problem is said to be an multi-objective traveling salesman problem

(MOTSP).

Unless stated otherwise, when referring simply to TSP we are always referring

to the Euclidean TSP.

Solving the TSP is a special case of the of finding an Hamiltonian circuit in a

graph, which is a known NP-complete problem [28, 6]. An Hamiltonian circuit

is a cycle that visits each node exactly once, as such, solving the TSP problem is

finding the shortest path Hamiltonian circuit.

From the many formulations (see [70, 65] for a detail analysis), the most fre-

quently used is the one defined by Dantzig et al. [13]. Assigning a binary variable

xuv to

xuv =


1 exists an edge between node u and node v

0 otherwise

, (2.3.1)

42

2.3. COMBINATORIAL OPTIMIZATION 43

the TSP can be formulated as [57]:

minimize
∑
u<v

xuvwuv (2.3.2)

Subject to

∑
u<k

xuk +
∑
k<v

xkv = 2 (k ∈ N) (2.3.3)

∑
u,v∈S

xuv ≤ |S| − 1 (S ⊂ N, |S| > 1) (2.3.4)

xuv = 0 or 1 {u, v} ∈ E (2.3.5)

where (2.3.3) is known as degree constraint and (2.3.4) as subtour elimination

constraint. To put it simply, equation (2.3.3) guarantees that between any three

nodes exists only two edges, and (2.3.4) says that the number of existing edges

in a proper subset S of N is, at most, |S| − 1. Suppose a solution with a subtour

S with |S| < |N |. If S defines a subtour, then
∑
u,v∈S

xuv = |S|, but this breaks

constraint (2.3.4), as it would became |S| ≤ |S| − 1, which is impossible, so the

solution cannot contain the subtour S.

As previously stated, the TSP is a NP-hard problem, and for that reason, exact

solvers, as the brute force approach, cannot be generally used to solve the TSP,

and some approximation algorithms are needed. These algorithms don’t return

the exact optimum solution, but give an good enough approximation in a com-

putational reasonable time. Amongst the several heuristic algorithms available to

solve the TSP, we can divide them in two groups: the tour building ones, that

create a tour (solution) to the TSP, and the tour improving, that try to improve a

given initial solution. In the first group we can refer the nearest neighbour algo-

rithm, that starting from a random node, always choose the nearest neighbour not

yet visited, until gets back to the starting node; and the Christofides’ algorithm [12]

44 CHAPTER 2. PRELIMINARIES

(a) (b)

Figure 2.8: A 2-opt move: the initial solution (a), and after the move (b).

(a) (b) (c)

Figure 2.9: Two possible k-opt moves: An initial solution (a), and after a 3-opt
move (b) or a 4-opt move (c).

that used the principle that, if removing an edge from a TSP results in a spanning

tree1, then starting with the minimum spanning tree2 it possible to create the TSP

(see [12] for further details). for the secong group, two possible algorithms are

the 2-opt [15], that swaps two edges if this swap result in an improved solution

(see figure 2.8); and the Lin-Kerninghan algorithm [50], that is a generalization

of the 2-opt algorithm, where the number of swaps is dynamically calculated (see

figure 2.9). As it should be clear, for any of the second group to work, a starting

solution is needed, and the better the solution, the fastest this type of approach

would return their “optimal” solution. The better heuristics to solve the TSP in-

corporate these two groups into a single algorithm, as the Lin-Kernighan heuristic

(LKH) [36] and the edge assembly crossover (EAX) [62], state-of-the-art algorithms

to solve the TSP.

The Lin-Kernighan algorithm, has was introduced in [50], is basically a k-opt

1A spanning tree (ST) is a particular case of a graph, in which all nodes are connected but there
isn’t any cycle.

2The minimum spanning tree (MST) is a tree that connects all the nodes with the minimum
total weight.

44

2.3. COMBINATORIAL OPTIMIZATION 45

variant, in which k is not a static parameter, but is dynamically determined in

each iteration. In [36], the LKH implementation was formulated, in which the

basic move is a 5-opt. The EAX algorithm is a genetic algorithm based approach,

using the crossover as its main focus, as it uses two parents for create an offspring.

The create this offspring, first creates a small set of cycles (called AB-cycles) using

alternating edges from both parents, and then join these AB-cycles into a TSP by

removing one edge from each AB-cycle and create two new edges to join each

AB-cycle, until a feasible solution is reached (further details in [62].

46 CHAPTER 2. PRELIMINARIES

46

Chapter 3

Differential evolution for

combinatorial optimization

3.1 Introduction

As stated previously, the differential evolution algorithm was introduced to solve

problems defined on real spaces, i.e., the domain of the problem is continuous.

This type of problems is very different from combinatorial problems, where the

domain is discrete, and many times the representation is not numeric but symbolic,

meaning there is nothing we could optimize in this realm, as symbols cannot be

subject to any arithmetic operators, as the ones defined in DE’s operators. Some

form of representation for this type of problems is needed, so they can be encoded

using numeric terms, and in this form, be subject to some optimization.

Due to the discretization of the domain of the problem and the fact that most

of them are NP-hard, combinatorial optimization problems are not easily tackled

by most evolutionary algorithms, and a careful approach must be used, either in

the codification of the individuals and in the operators used in the evolutionary

process. In DE, both codification of the individuals and operators are defined in

the real domain, and to be applied to combinatorial optimization problems, one

or both of them need to be, somehow, converted to work in the discrete space.

47

48 CHAPTER 3. DIFFERENTIAL EVOLUTION FOR COMBINATORIAL ...

Moreover, another thing to consider is the feasibility of the mutant individual,

i.e., the result of combining the base individual with the difference between other

two individuals should be a valid individual, and this is the main problem for

most combinatorial optimization problems. If the result of the mutation operator

is an unfeasible individual, a repair/replace mechanism is needed and this could

influence substantially the success of the algorithm, more so than the algorithm

itself, as Price et al recognized in [72].

Nevertheless, several approaches have been introduced over the years to allow

the usage of discrete values in continuous methods. One of the first codification

approaches was introduced even before DE itself, in 1994 by Bean [8], and is

known as random keys encoding, and basically transforms a floating-point vector

into their discrete counterpart by assigning each floating-point value to a discrete

one based on their relative order, i.e. to the higher value was assigned the value 1,

to the second higher the value 2, etc. Using this encoding, the algorithm worked

with real values in their core, and this transformation was only applied when an

evaluation was needed.

A similar approach was introduced by Nearchou [63], but he uses intervals to

encode the floating-point values to discrete ones, instead of a direct translation.

Litchblau [48, 49] developed the relative position indexing, which is also based

on the random keys approach, but instead of using random floating-point values,

it creates them by dividing each element of the individual by their largest value.

Onwubolu [66, 68, 67, 69] gave us the forward/backward transformation, which

transforms the discrete values to/from floating-point using a mathematical for-

mula. Lampinen and Zelinka [46], introduced a mixed integer-discrete-continuous

optimization, further developed by Zelinka [92], resulting in a discrete set handling

approach, that basically substitutes the discrete value by their index, and optimize

the index, instead of the value itself.

DE’s authors implicitly recognized that the algorithm working only for contin-

uous domains was a shortcoming, and in [72] Price et al. suggested two meth-

48

3.2. PREVIOUS APPROACHES 49

ods based on matrices, for it to work in combinatorial problems: The first uses a

permutation matrix as the difference between two vectors, and is known as the

permutation matrix approach; the other is the adjacency matrix approach, which

encodes the solutions using adjacency matrices, instead of vectors, then uses a

logical operator to calculate the difference between two matrices. Although being

introduces by the authors of the algorithm, this approaches were never, if ever,

much used. Prado et al. [71] suggested what they dubbed as a general approach,

where the difference between two vector to be the list of swaps of elements needed

to transform one into the other, usually referred to differential list of movements.

Recently, several authors proposed set-based approaches to handle the discrete

space in DE. The common with all of the approaches from Maravilha et at. [55,

56], Liu and Maeda [51, 52], Liu et al. [53] and Guerreiro et al. [32, 33] is the

usage of set operations (union, intersection, etc.) instead of arithmetic ones, with

different custom rules to accomplish the scale factor in the mutation. These are but

some of the most used implementations to use DE in combinatorial optimization

problems, an extensively listing can be found in [18, 17].The ones introduced

above will be further explained in the next section.

3.2 Previous approaches

3.2.1 Permutation matrix approach

The basic idea behind DE is adding some mutation (the difference between two

vectors) to another vector, and this, as seen extensively, cannot be translated di-

rectly into the discrete domain. Price et al. [72] introduced the permutation ma-

trix approach, as this matrix can be used as the “difference” between two discrete

vectors, because it gives the “transformation” from one into the other. Multiply-

ing this permutation matrix to another vector, transforms it, in accordance to the

permutation matrix.

50 CHAPTER 3. DIFFERENTIAL EVOLUTION FOR COMBINATORIAL ...

(a) (b) (c) (d)

Figure 3.1: An example of a TSP with five cities. In (a) is the domain of the
problem, (b)-(d) shows three possible solutions.

Suppose an instance of traveling salesman problem with five cities, labeled 1

though 5. The full domain of the problem is a complete graph1 shown in figure

3.1(a). In this domain, several solutions are possible, for instance those shown

in figures 3.1(b) to (c). Representing this example solutions using vectors, would

result in

x1 =


4
2
1
5
3

 , x2 =


1
3
5
4
2

 , and x3 =


4
1
2
5
3

 .
To calculate the mutation operator given in equation 2.1.3, first the difference

between xr2 and xr3 need to be calculated, and this “difference” is the permutation

matrix. In this example, the permutation matrix would result in

P =


0 1 0 0 0
0 0 0 0 1
0 0 0 1 0
1 0 0 0 0
0 0 1 0 0

 , where P · x3 = x2. (3.2.1)

Before adding this permutation matrix to the base vector x1, in accordance

equation 2.1.3, a scale factor F should be “multiplied” to the permutation matrix.

Price et al. suggested an algorithm to exchange some columns of the permutation

matrix using a probability based on a δ factor, that would have an effect similar
1A complete graph is a graph where every node is connected to every other node through one

edge.

50

3.2. PREVIOUS APPROACHES 51

to scaling the permutation matrix. If δ = 0 the permutation matrix would be

the identity matrix, and this would result in no permutation to be applied, and

if δ = 1 the permutation matrix would remain the same as previously calculated.

The δ parameter will have here the same effect F has in the original formula for

the continuous domain, the only difference being that δ represents a probability,

as such δ ∈ [0; 1], where F , theoretically, could take any real value, although in

practice was defined as F ∈ [0; 2]. The whole procedure to find the permutation

matrix and scale it, can be observed in algorithm 3.1, where any two vectors x and

y are given (assuming they have equal number of elements) and the final scaled

permutation matrix is returned. Refer to [72] to a full analysis of the algorithm.

Algorithm 3.1 Computing the scaled permutation matrix.
Input: x, y
Output: P

1: n← sizeof(x)
2: P← On,n // Create a zero matrix with order n
3: // Compute the permutation matrix P
4: for i = 1..n do
5: j← {j: xi =yj,∀j=1..n} // position of xi in y
6: Pi,j ← 1
7: end for
8: // “Multiply” the permutation matrix by a scale factor probability δ
9: for j = 1..n do

10: if Pj,j = 0 and rand()> δ then
11: i← {i: Pi,j = 1,∀i=1..n} // find row where Pi,j =1
12: swap_rows(i, j)
13: end if
14: end for

We can then multiply the base vector xr1 by this scaled permutation matrix,

that will exchange the elements of the base vector using the permutations defined

between x2 and x3.

In the previous example, suppose δ = 1, and the result of multiplying the scaled

permutation matrix P to the base vector x1would result in

52 CHAPTER 3. DIFFERENTIAL EVOLUTION FOR COMBINATORIAL ...

P · x1 =


0 1 0 0 0
0 0 0 0 1
0 0 0 1 0
1 0 0 0 0
0 0 1 0 0

 ·


4
2
1
5
3

 =


2
3
5
4
1

 .
Recall that, as the vectors are given in columns, to change the rows in a vector,

it has to be left multiplied by the permutation matrix. If the vectors were lines,

the multiplication would be a right one.

This method has the drawback of not identifying rotated vectors, i.e., suppose

this two different vectors:

x =


1
2
4
5
3

 , and y =


5
4
2
1
3

 .
When representing them vectors in a graph, both would result in the same solu-

tion, presented in figure 3.1(c). If both vectors represent the same solution, their

“difference” should be zero, but calculating the permutation matrix between them

results in

P =


0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0
0 0 0 0 1

 ,
which is clearly not zero. For combinatorial optimization problems, this means

that the method is “wasting” computational resources, calculating and using dif-

ferent vectors to represent the same solution.

3.2.2 Adjacency matrix approach

The adjacency matrix approach was developed in [72], by Price et al., as a way

to circumvent the drawback of the previous approach, i.e., to recognize rotated,

but otherwise equal solutions. The reasoning behind this approach is to use an

adjacency matrix to represent the solutions, instead of vectors. Using this latter

52

3.2. PREVIOUS APPROACHES 53

representation, the difference between two vectors could not be zero, albeit the

two vectors represented the same solution (x = [1, 2, 4, 5, 3]T and y = [5, 4, 2, 1, 3]T

represent the same solution). If the solutions are encoded using adjacency ma-

trices, the representation of both solutions would be the same, and its difference

would be zero.

To calculate the difference between two matrices, they used

Ai ⊕ Aj = (Ai + Aj) mod 2

to represent the modulo 2 addition, also known as the eXclusive-OR (XOR) logical

operator, and then defined the difference matrix as

∆i,j = Ai ⊕ Aj (3.2.2)

which is analogous to the difference between two vectors in continuous case.

Considering two possible solutions for the TSP, their adjacency matrix could be

A1 =


0 1 0 0 1
1 0 0 1 0
0 0 0 1 1
0 1 1 0 0
0 1 0 1 0

 and A2 =


0 1 1 0 0
1 0 0 1 0
1 0 0 0 1
0 1 0 0 1
0 0 1 1 0

 ,
and calculating the difference between these two matrices, i.e., the difference

matrix as defined in equation (3.2.2), would result in

∆1,2 =


0 0 1 0 1
0 0 0 0 0
1 0 0 1 0
0 0 1 0 1
1 0 0 1 0

 .
The solutions and the respective difference matrix are represented in figure

3.2, where can be seen that, in practice, the difference matrix results only in the

edges that existed in one of the matrices but not in both, i.e., the removal of the

common elements, which is, obviously, how the logical XOR operator works.

But this approach is not without problems either, as can be seen in figure 3.2(c),

54 CHAPTER 3. DIFFERENTIAL EVOLUTION FOR COMBINATORIAL ...

(a) (b) (c)

Figure 3.2: A representation of two solutions for the TSP (a)-(b), and the respec-
tive difference matrix (c).

(a) (b)

Figure 3.3: Example of a 2-opt move.

where the difference matrix is clearly an unfeasible solution. Although this could

be overlooked, as this is but an intermediary result, adding a valid base matrix

(xr1, in equation (2.1.3)) to this difference matrix, would, very likely, not result

in a valid solution, meaning a repair mechanism must be used to fix this invalid

solution. One possible solution given by the authors is discarding this invalid

solution, and perform a 2-opt exchange in the base matrix. The 2-opt local search

chooses two edges (not incident) to remove, and reconnects the affected four

cities, each with the neighbour of the other one, guaranteeing a feasible solution

(see figure 3.3).

This approach correctly identifies rotated solutions as equals but, as the authors

recognize, most solutions generated are invalid, and the good results obtained

using this method are mainly due to the 2-opt repair mechanism, rather than the

DE algorithm itself.

54

3.2. PREVIOUS APPROACHES 55

3.2.3 Relative position indexing

The basic idea behind the relative position indexing (RPI) approach, as introduced

by Lichtblau [48, 49], is to transform the discrete values into floating-point by

dividing each discrete value by the maximum, use the classic DE operators as

usual, and transform them back to discrete based on their relative position in the

vector.

Suppose three possible solution for our five cities TSP were given by

x1 =


4
2
1
5
3

 , x2 =


1
2
5
4
3

 , and x3 =


3
4
1
2
5

 .

To transform these solutions into floating-point, each element in each solution

must be divided by the maximum value, which is 5 in this case, resulting in

x′1 =
x1

5
=


0.8
0.4
0.2
1.0
0.6

 , x′2 =
x2

5
=


0.2
0.4
1.0
0.8
0.6

 , and x′3 =
x3

5
=


0.6
0.8
0.2
0.4
1.0



that would be used in the classic DE operators. For instance, suppose a scale

factor F = 0.8, applying the mutation operator, as defined in equation (2.1.3), to

these solutions, would result in

56 CHAPTER 3. DIFFERENTIAL EVOLUTION FOR COMBINATORIAL ...

v′i = x′1 + F · (x′2 − x′3)

=


0.8
0.4
0.2
1.0
0.6

+ 0.8 ·




0.8
0.4
0.2
1.0
0.6

−


0.6
0.8
0.2
0.4
1.0




=


0.8
0.4
0.2
1.0
0.6

+ 0.8 ·


−0.4
−0.4

0.8
0.4
−0.4

 =


0.48
0.08
0.84
1.32
0.28

 .

This mutant vector could then be transformed to the discrete domain by, start-

ing with the lowest value (0.08 in this example), assigning to its position (0.08 is

in the second position in the vector) the label 1, then assign to the position of the

second lowest (0.28) the label 2, and so on and so forth, resulting in the vector

vi = [3, 1, 4, 5, 2]T . This transformation would always return a valid individual, ex-

cept if two floating-point values are equal. In this case some reconstruction would

be needed, or the vector would be discarded and another one would be calculated.

Also, unlike in the real domain, where any minor perturbation to a solu-

tion would not produce any major changes, here, any minor perturbation in the

floating-point vector could result in a completely different solution, for instance,

changing the previous vi solution by adding to it [0.21, 0.11,−0.2, 0,−0.1]T , and

then converting to discrete values, would produce [4, 2, 3, 5, 1]T , which is a com-

pletely different solution.

Although this approach allows the usage of DE operators without modifica-

tions, it basically shuffles the elements creating a new permutation and also fails

to identify rotated but otherwise equal solutions ([0.71, 0.54, 0.47, 0.29, 0.34]T and

[0.96, 0.15, 0.67, 1.42, 1.37]T are completely different, when but when translated,

produce the same solution, albeit rotated).

56

3.2. PREVIOUS APPROACHES 57

3.2.4 Forward/backward transformation

The forward/backward transformation (FBT), also known as the Onwubolu’s ap-

proach [66, 68, 67, 69] is another method to use DE in combinatorial optimization.

As the previous method, this also implements a transformation of the discrete val-

ues into floating-point, apply the DE operators in the real domain, and convert

them back to discrete.

As the name implies, the method consist of two steps: the first is the forward

transformation, where the discrete solutions are converted in floating-point values

by applying

x′i = −1 + αxi (3.2.3)

where α is a small number. In [68] the author suggested the value α = 500
103−1

as a

good ratio.

Suppose the TSP example given previously, where one of the solutions was

x = [4, 2, 1, 5, 3]T . Applying equation (3.2.3) to the first value 4, we would get

−1 + 500
103−1

· 4 = 1.002002, and applying it to all values would result in the vector

x′ = [1.002002, 0.001001,−0.499499, 1.502503, 0.501502]T .

After this transformation, the usual DE operators are applied, using the real

vectors, and, as the discrete values are needed to evaluate the solution, the trial

vector, resulting from these operators, must be transformed back to discrete val-

ues. This is done in the second step, the backward transformation, which trans-

forms the floating-point vector back to discrete values, according to

ui = round
(
(1 + u′i)α

−1
)
. (3.2.4)

Suppose that after applying the DE operators, we got the trial vec-

tor u′ = [0.901902,−0.099099,−0.299299, 1.602603, 0.401401]T . As this can-

not be directly evaluated, it needs to be converted back to discrete us-

ing equation (3.2.4). Converting the first value 0.901902, would result in

58 CHAPTER 3. DIFFERENTIAL EVOLUTION FOR COMBINATORIAL ...

round
(

(1 + 0.901902)×
(

500
10³−1

)−1
)

= 4, meaning the first value is 4. Apply-

ing equation (3.2.4) to the rest of the elements would result in the vector

u = [4, 2, 1, 5, 3]T .

Although the backward transformation returns integer values, it does not guar-

antee to always return valid solutions. For instance, transforming the vector

[0.2, 0.5, 1.2, 1.8, 0.3]T , back to discrete would produce [2, 3, 4, 6, 3]T , which is not

a valid solution to our problem, as not all nodes are represented in the path, and

some of them are repeated. The invalid solutions need to be discarded or fixed

using some repairing operations, as suggested in [68, 67, 69]. Also, it fails to

identify rotated, but otherwise equal, solutions, as the RPI approach.

3.2.5 Sub-range encoding

In 2006, Nearchau and Omirou proposed the sub-range approach [64] to trans-

form floating-point values to a discrete domain. This approach is based on the

random-key encoding proposed by Bean [8], but used an interval to transform the

floating-point values. In a d-dimensional problem, the vector [1, 2, . . . , d]T would

be divided into d intervals, called sub-ranges, by dividing each value by d, defining,

this way, the upper value for each range, in the form

SR =


1/d
2/d
3/d
· · ·
d/d

 .
Suppose our five cities TSP, where each city is labeled 1 through 5. To

create the sub-range vector, first create a vector with the values 1 through 5,

and then divide each value by 5 (the dimension of the problem), resulting in

SR = [0.2, 0.4, 0.6, 0.8, 1.0]T . Using this approach, a initial discrete solution

would be translated to a floating-point value by generating random numbers,

each in the range defined by the respective discrete value. Suppose the solution

58

3.2. PREVIOUS APPROACHES 59

x = [3, 4, 1, 2, 5]T : As the first value is 3, it defines the index of the maximum value

for the random number, in this case the maximum value is 0.6. A random value

is now generated between [0.4; 0.6], say 0.46, and this is the floating-point number

to represent the discrete value 3. Applying this to all discrete values would result

in the floating-point vector. Algorithm 3.2 represents this procedure.

Algorithm 3.2 Translate a discrete solution x into a floating-point vector fpv, using
the sub-range encoding.
Input: x, SR
Output: fpv

1: n← sizeof(x)
2: for i = 1..n do
3: max←SR[x[i]]
4: if x[i] = 1 then
5: min← 0
6: else
7: min← SR[x[i] -1]
8: end if
9: fpv[i]← rand(min, max)

10: end for

After applying the usual DE operators, the trial vector need to be converted

back to the discrete domain, to be evaluated. The procedure is represented in

algorithm 3.3, and goes like this: For each element of the floating-point vector,

search the sub-range vector for the lowest value in it still higher than the floating-

point element. The discrete value is the index of the value found. Suppose the

trial vector u′i = [0.58, 0.97, 0.14, 0.47, 0.39]T . Taking the first element, 0.58, and

searching in SR, for the lowest value higher than 0.58 is 0.6, which is the third

element of SR, so the first discrete element is 3. Doing the same for the sec-

ond element, 0.97, would result in the discrete value 5, and so on, until the final

result would be ui = [3, 5, 1, 3, 2]T . Although being discrete and in the correct

range of values, there could exists duplicated values, as in this case. To fix this

unfeasible solution, the authors proposed a simple fix, consisting in removing the

duplicated values (maintaining the first appearance), and randomly selecting un-

used elements to each empty slot. In the previous example, we would delete the

60 CHAPTER 3. DIFFERENTIAL EVOLUTION FOR COMBINATORIAL ...

duplicated 3
(

ui = [3, 5, 1, _, 2]T
)

, and fill the empty position with a randomly se-

lect unused element. In this case the only unused element is 4, so the final solution

would be ui = [3, 5, 1, 4, 2]T .

Algorithm 3.3 Translate a floating-point vector fpv into a discrete solution x, using
the sub-range encoding.
Input: fpv, SR
Output: x

1: n← sizeof(fpv)
2: d← sizeof(SR)
3: for i = 1..n do
4: k← min

k
(fpv[i] ≤ SR[k]), ∀k=1..d

5: x[i]← k
6: end for

As this approach uses floating-point values and only decodes them to discrete

values when the fitness value is needed, we can apply the usual operators from

DE, but otherwise, this approach is another shuffle generator, suffering from the

same problem as the previous two, as it fails to recognize rotated solutions.

3.2.6 Discrete set handling

Another approach is the discrete set handling (DSH), introduced by Lampinen and

Zelinka in 1999 [46] as a mixed integer-discrete-continuous optimization method,

but expanded further and named discrete set handling by Zelinka in 2009 [92]. In

this approach each solution is represented by the indexes of the respective discrete

element, instead of the discrete values themselves. Suppose another five cities

TSP, where the cities are named A,B,C,D,E, but could be 1, 2, 3, 4, 5, or any

other symbol. In table 3.1 we can see the index for each of our cities. Suppose we

had the solution A − E − D − B − C, using the respective indexes for each city,

this solution would be encoded as xi = [1, 5, 4, 2, 3]T .

But as classic DE were not defined for integer domain problems, some changes

need to be done to the algorithm to surpass this. According to the authors, its

simple to use integer values with DE: first, the initial population should be cre-

60

3.2. PREVIOUS APPROACHES 61

city A B C D E

index 1 2 3 4 5

Table 3.1: Five cities, with their respective indexes, for the discrete set handling.

ated, using whatever domain the problem is defined upon, and then it should be

encoded using the respective indexes, as demonstrated earlier. Then the classic

DE operators are used, for the mutation and crossover, generating floating-point

values in the process. This values must then be converted back to valid indexes, by

truncating the floating-point values to its nearest integer value. If out-of-range val-

ues exist, they should be replaced by random generated values, within the defined

boundaries; and if some indexes are repeated, they must be repaired by removing

the repeated indexes and randomly replacing them with the missing indexes. This

convert/repair procedure is shown in algorithm 3.4, where the first cycle converts

the floating-point values to integer, leaving “empty” positions when a duplicated

value is found, and the second randomly selects the missing indexes and inserts

them in the “empty” positions. Line 15 find the missing indexes by removing the

indexes already in the solution from a set of all indexes, and then shuffles them,

to randomize the list.

Suppose the trial vector u′i = [1.25, 7.68, 3.98, 4.47, 1.78]T . Applying the method

in algorithm 3.4, value 1.25 would be truncated to 1, and placed in the first po-

sition of the discrete solution, then 7.68, as its greater them the maximum value,

which is 5, is replaced by a random value, between 1 an 5, suppose 3, and so

on, until, after the first cycle, the result could be x = [1, 3, _, 4, _]T . The missing

indexes 2, 5 are then randomly placed in the missing positions of the solution, and

in the final a possible feasible discrete solution could be xi = [1, 3, 5, 4, 2]T .

As others approaches presented previously, this approach also fails to recognize

rotated, but otherwise equal, solutions, and, as it doesn’t take into account the

underneath problem and its combinatorial design, is another shuffle generator.

62 CHAPTER 3. DIFFERENTIAL EVOLUTION FOR COMBINATORIAL ...

Algorithm 3.4 Convert/repair floating-point vectors using discrete set handling.
Input: fpv, min, max
Output: x

1: I← ∅
2: for i = 1..sizeof(fpv) do
3: v← truncate(fpv[i])
4: // control out-of-range values
5: if v < min or v > max then
6: v← truncate(rand(min, max))
7: end if
8: // if the value is not repeated
9: if v not in x then

10: x[i]← v
11: else
12: I← I ∪ i //save indexes without values
13: end if
14: end for
15: missing← { min, ..., max } \ x // defining the missing indexes
16: suffle(missing) // shuffle the missing set
17: for i = 1..sizeof(I) do
18: x[i]←pop(missing) // removes the first item from missing
19: end for

3.2.7 Differential list of movements

Most of the previous approaches, basically, shuffe the order of the elements in

the solutions, without taking in consideration the core aspect of DE, which is the

difference between vectors in a Rn space. In 2010, Prado et al. introduced the

differential list of movements (DLM) [71], in which they presented a new idea to

express the difference of two solutions in the discrete space.

They define the difference between two solutions as a list of exchanges that

must be made in the sequence of the elements in a solution, to transform it in the

other solution. The differential list of movements is defined by

Mj→i = xi 	 xj, (3.2.5)

where 	 is a binary operator that receives two solutions and returns a list of

movements representing the transformation from xj to xi. To scale this list, it

needs to be “multiplied” by the scale factor F , defined by

62

3.2. PREVIOUS APPROACHES 63

M ′
j→i = F ⊗Mj→i, (3.2.6)

where ⊗ is a binary operator, that receives a list of movements and a constant and

returns n = dF · |Mj→i|e elements of the initial list, with |·| being the size of the

list. The idea behind this operator is to select F percent of the values from the list

of movements Mj→i, meaning, for instance, if F = 0.5 and the list of movements

have 10 elements, the resulting of F ⊗Mj→i would be a list with 5 elements (50%

of the original list). Prado et at. gave several definitions for the product of a list of

movements by a constant F ∈ [0, 1], refer to [71] for a formal definition of them

all.

Applying the scaled list of movements to a given solution xk would swap the

elements of xk using the given list, and is defined by

x′k = xk ⊕M ′
a→b (3.2.7)

where ⊕ is another binary operator that receives one solution and a list of move-

ments and by applying the movements defined in the list to the initial solution,

results in a transformed solution.

Using equations (3.2.5)-(3.2.7),we could define a new mutation operator for

DE, as

vi = xr1 ⊕ F ⊗ (xr2 	 xr3) , (3.2.8)

and algorithm 3.5 present the whole procedure.

Lets illustrate these operators with an example: suppose F = 0.5 and the

solutions

64 CHAPTER 3. DIFFERENTIAL EVOLUTION FOR COMBINATORIAL ...

Algorithm 3.5 Mutation operator, using a differential list of movements.
Input: x1, x2, x3, F
Output: v

1: // Create the differential list of movements between x2 and x3

2: dlm← ∅
3: n←sizeof(x2)
4: for i = 1..n do
5: j← {j: x2,i= x3,j,∀j=1..n } // position of the ith element of x2, in x3

6: if i 6= j then
7: dlm← dlm ∪ (i, j) // insert the indices for the swap
8: swap(x3, i, j) // swaps the elements in x3

9: end if
10: end for
11: // scale the differential list of movements
12: qt← ceiling(F * sizeof(dlm))
13: sdlm← sample(dlm, qt)// Removes qt random elements from dlm
14: // Add the scaled list to the base solution
15: v← x1

16: for k = 1..sizeof(sdlm) do
17: (i, j)← sdlm(k)
18: swap(v, i, j)
19: end for

xr1 =


4
2
1
5
3

 , xr2 =


1
2
3
4
5

 , and xr3 =


5
1
4
2
3

 .
First, calculating xr2	xr3, would result in a list of exchanges necessary to trans-

form xr3 into xr2 in the following way: The first element of xr2 is 1, which is in the

second position in xr3. So we need to exchange the first and the second element

of xr3, creating the list Mr3→r2 = {(1, 2)}, and the intermediate vector would be

x′r3 = [1, 5, 4, 2, 3]T . Next in xr2 is 2, which is in the fourth place in xr3, so we need

to swap the second with the fourth element, adding it to the list of movements

Mr3→r2 = {(1, 2), (2, 4)}, and resulting in a new x′r3 = [1, 2, 4, 5, 3]T . Applying this

throughout all xr3 would produce Mr3→r2 = {(1, 2) , (2, 4) , (3, 5) , (4, 5)}. Now for

scaling this list, F ⊗Mr3→r2, F percent elements of Mr3→r2 are randomly selected.

Since F = 0.5, the result could be M ′
r3→r2 = {(3, 5) , (2, 4)}. Finally, applying these

64

3.2. PREVIOUS APPROACHES 65

movements to xr1 would result in exchanging the third with the fifth element, re-

sulting in the intermediate solution x′r1 = [4, 2, 3, 5, 1]T , and then the second with

the fourth, resulting in the final mutant vector vi = [4, 5, 3, 2, 1]T .

This approach doesn’t need any repair mechanism and it actually makes DE

operators aware of the problem, but as others, it fails to identify rotated, but

otherwise identical solutions, as the difference between two equal, but rotated,

solutions is not an empty list of movements, as it should if it recognized them as

equals.

3.2.8 Set-based approaches

In 2013, 4 different groups of authors proposed different set-based approaches to

use differential evolution in combinatorial optimization problems. Maravilha et

al. [55, 56] proposed an approach in which the arithmetic operators in equation

(2.1.3) are replaced by set operators:

vi = xr1 ∪ F · (xr2 ⊕ xr3) (3.2.9)

where ⊕ represents the eXclusive-OR logical operator, or set symmetrical differ-

ence, ∪ in the union if two sets, and the multiplication used the definitions from

Prado et al. [71], for the DLM approach. This process is represented if figure

3.4, where in (a) to (c) are three possible solutions, (d) is the difference between

solutions (b) and (c), and the final mutant solution is in (f).

As seen in the example, the resulting mutant solution, most of the times, is

unfeasible, and the authors proposed a repair mechanism incorporated in the

crossover operator: Basically, the crossover would consist in solving the sub-

problem defined in vi ∪ xi, where xi is the corresponding individual in the popu-

lation. In practice, this means the mutation operator is used to create an “easier”

problem, by removing edges from the original TSP domain, and then an exact

method is used to solve this “easier” problem, creating a valid trial individual in

66 CHAPTER 3. DIFFERENTIAL EVOLUTION FOR COMBINATORIAL ...

(a) xr1 (b) xr2 (c) xr3

(d) xr2 ⊕ xr3 (e) xr1 ∪ F · (xr2 ⊕ xr3)

Figure 3.4: Illustration of the set-based proposal by Maravilha et at. [55]. In (a)-
(c) are three possible solutions for a seven cities TSP. The differential set xr2⊕ xr3
is represented in (d), and assuming, for simplicity, F = 1, the final result of the
mutation operator is represented in (e). In (d) is represented the complete domain
for this seven cities TSP.

the process. The process is illustrated in figure 3.5.

Liu and Maeda [51, 52] proposed an approach where they use a mixture of set

operators and redefined arithmetic ones to create the mutant vector, according to

vi = ω × xr1 + rand()× (xr2 − xr3) (3.2.10)

where ω and rand() ∈ [0; 1] are random values, generated for each element, the−

operator is the set relative complement (or set difference), × is defined as an as-

signment of a probability to an element, and + is similar to the union operator,

but if two elements are equal but with different probabilities, it selects the one

with higher probability. Basically, the mutation operator works with each element

being defined by something like 0.6(1, 2), meaning the element (1, 2) with a prob-

ability to be chosen of 0.6. For instance, if ω×xr1 = {0.4 (1, 2) , 0.6 (3, 4) , 0.2 (1, 4) ,

0.5 (2, 3)} and rand() × (xr2 − xr3) = {0.2 (1, 3) , 0.8 (2, 3)}, the result of the “ad-

66

3.2. PREVIOUS APPROACHES 67

(a) Mutant solution vi (b) Current solution xi (c) Trial solution ui

Figure 3.5: Illustration of the crossover for the set-based proposal by Maravilha et
at. [55]. In (a) is the mutant solution obtained in the mutation operator, in (b) is
a possible solution in the current population, and in (c) is a possible trial solution,
obtained from the edges in (a) and (b).

dition” operator would be {0.4(1, 2), 0.6(3, 4), 0.2(1, 4), 0.2(1, 3), 0.8(2, 3)}. In every

generation there will be defined a random probability α ∈ [0; 1] to each individ-

ual. Using this probability, every element in the respective individual will enter a

tournament, and if the element’s probability is not smaller than α, the element is

reserved to construct the mutant, otherwise is discarded.

To construct the mutant individual, elements from the reserved set are selected

based on their probability. If a feasible solution is not reached and there are no

more elements in the reserved set, choose the missing elements using an heuristic,

for instance, the nearest neighbour.

Liu et al. [53] proposed another set-based approach, where they divided the

domain E of the combinatorial optimization problem in a d-tuple (E1, ..., Ed),

where each Ei, i ∈ {1, ..., n} is the domain of the ith dimension of the search

space, and d is the dimension of the search space. Each solution x for the problem

is also a d-tuple
(
x1, ..., xd

)
, where xi ∈ Ei. For instance, in a TSP, the domain E

of the problem are all edges connecting two nodes, each Ei is composed by the

edges that are connected to node i, and each xi is composed by the two incident

edges to node i. Then they redefine the mutation operator as

vi = xr1 + F × (xr2 − xr3) (3.2.11)

68 CHAPTER 3. DIFFERENTIAL EVOLUTION FOR COMBINATORIAL ...

where the − operator is the set relative complement, and × is a binary operator

between a constant parameter F and the differential set, resulting in a scaled

differential set, defined by

SDSj = F ×DSj =


DSj if rand(0, 1) < F

∅ otherwise

, j = 1, ..., d, (3.2.12)

where DSj ⊆ xjr2 is the j-dimension of the differential set. The scaled differen-

tial sets SDS resulting from the previous operation are then “added” to the base

solution, using

vji = xjr1 + SDSj =


xjr1 if SDSj = ∅

SDSj otherwise

, j = 1, ..., d. (3.2.13)

Suppose a complete graph with five nodes, representing the domain of the TSP.

The domain E would be all edges in the graph, and each E1, ..., Ei, ..., E5 would

be composed by the edges incident to node i. If the three selected solutions for

the mutation are those represented in figure 3.6, their representation would be

xr1 =



(1, 2)

(1, 5)

(2, 4)

(3, 4)

(3, 5)


, xr2 =



(1, 2)

(1, 3)

(2, 4)

(3, 5)

(4, 5)


and xr3 =



(1, 2)

(1, 4)

(2, 5)

(3, 4)

(3, 5)


,

and for each, of them, xik k ∈ {1, ..., 3} would be, respectively,

68

3.2. PREVIOUS APPROACHES 69

(a) xr1 (b) xr2 (c) xr3 (d) xr1+F × (xr2 − xr3)

Figure 3.6: Three possible solutions for a TSP with five cities (a)-(c), and the
resulting mutation solution (d).

x1
r1 = {(1, 2), (1, 5)}

x2
r1 = {(1, 2), (2, 4)}

x3
r1 = {(3, 4), (3, 5)}

x4
r1 = {(2, 4), (3, 4)}

x5
r1 = {(1, 5), (3, 5)}

,

x1
r2 = {(1, 2), (1, 3)}

x2
r2 = {(1, 2), (2, 4)}

x3
r2 = {(1, 3), (3, 5)}

x4
r2 = {(2, 4), (4, 5)}

x5
r2 = {(3, 5), (4, 5)}

, and

x1
r3 = {(1, 2), (1, 4)}

x2
r3 = {(1, 2), (2, 5)}

x3
r3 = {(3, 4), (3, 5)}

x4
r3 = {(1, 4), (3, 4)}

x5
r3 = {(2, 5), (3, 5)}

.

Calculating the differential set, i.e., DS = xr2 − xr3, results in DS =

{(1, 3), (2, 4), (4, 5)}, with DS1 = DS3 = {(1, 3)}, DS2 = {(2, 4)}, DS4 =

{(2, 4), (4, 5)} and DS5 = {(4, 5)}. Applying equation (3.2.12), assuming

randj(0, 1) = {0.6, 0.2, 0.7, 0.3, 0.5}, ∀j∈{1..5}, and F = 0.5, the respective scaled

differential set would be

SDS1 = ∅

SDS2 = {(2, 4)}

SDS3 = ∅

SDS4 = {(2, 4), (4, 5)}

SDS5 = ∅

,

and by applying equation (3.2.13), the final mutant solution would be v =

{(1, 2), (1, 5), (2, 4), (3, 4), (3, 5), (4, 5)}, represented in figure 3.6(d).

As the resulting mutant solution is not a feasible solution, must be fixed in the

70 CHAPTER 3. DIFFERENTIAL EVOLUTION FOR COMBINATORIAL ...

crossover operator, defined by

uji =


learn_from

(
vji
)

if randj(0, 1) < CR or j = jrand

learn_from
(
xji
)

otherwise

j = 1, ..., d (3.2.14)

where jrand is a random integer ∈ {1, ..., d}, randj (0, 1) is a random value defined

for each dimension j, and the learn procedure is defined by selecting elements

from the given set (either vji or xji), or from the respective sub-domain Ej, if no

more elements are available to create a valid solution.

All these approaches correctly identify rotated solutions, as the set operator

used to defined the difference between two solutions always returns empty if they

are equal, i.e., if both solutions are the same, and also use the domain of the prob-

lem in the new defined operators, but all of them generate unfeasible solutions,

and a repair mechanism needs to be used to reach a final, valid, solution.

The fourth set-based approach is the work of this thesis, and will be presented

in the next section.

3.3 Set-based operators

As seen in the previous section, the main problem for using DE for combina-

torial optimization problems is also the core of DE optimization process, i.e.,

the mutation operator. The problem is that the mutation operator defined in

equation (2.1.3) have no meaning in combinatorial problems, and almost all ap-

proaches given above try to solve the combinatorial problem using the real space,

instead of trying to find a discrete domain operators to use in DE. The folowing

proposal try to do exactly that.

70

3.3. SET-BASED OPERATORS 71

3.3.1 Representation

As seen previously, the mutation operator defined in equation (2.1.3) cannot be

used in combinatorial problems without some sort of adaptation, either by trans-

lating the problem to real domain, or by redesigning the operator to work in the

problem’s domain. The latter approach should be more suitable, as, if done cor-

rectly, allows to use the DE steering mechanism in the domain of the problem, as

it does with problems in the continuous domain.

Combinatorial optimization problems, by definition, have a discrete, enumer-

ated and finite set as its domain, and if possible, this domain should be used in the

problem, not DE’s usual real space. And if in the classical DE, defined for continu-

ous domain problems, real-domain arithmetic operations are used, to be possible

to consider Sets for the domain of the problem, operations from the set-domain

should be used, instead of arithmetic ones. These operations are the union, the in-

tersection, the relative complement (or difference) and the symmetric difference.

Of course this means that the problem must be represented in a way to work

with these operations. Considering the TSP as an example of a combinatorial

problem, it can be represented in a graph, and the usual way to represent solutions

for the problem is to either use the nodes or the edges of the graph as elements

of each solution. In literature, is more frequent to see TSP represented as nodes,

where each solution consist of the nodes that compose that solution. Two possible

solutions for a TSP could be x1 = {4, 2, 1, 5, 3} and x2 = {1, 2, 5, 3, 4}, and, for

instance, calculating the intersection between these two solutions would result in

a set with all nodes, although the solutions are not equal. This happens because

Sets, by definition, have no order, and as such, the two solutions given above

are one and the same, as they have the same elements (nodes). As this would

occur to any solution when using node representation, our approach represents

the solutions using edges. In figure 3.7 is illustrated the solutions above using

edges, and the resulting intersection operation. The intersection would only result

72 CHAPTER 3. DIFFERENTIAL EVOLUTION FOR COMBINATORIAL ...

(a) x1 (b) x2 (c) x1 ∩ x2

Figure 3.7: Two solutions for a TSP using edge encoding (a)-(b), and the respec-
tive intersection (c).

in a set with all elements from both solutions if both solutions were exactly equal.

3.3.2 Mutation

Considering set-based operations for the mutation operator, the basic idea was to

use some type of building blocks between the solutions, and use these building

blocks to “construct” a new solution. As seen previously, the intersection between

two sets results in the common elements between them, and so this set opera-

tor was used to find the afore-mentioned building blocks, defining this way the

difference between two solutions as

DF = xr2 ∩ xr3,

obtaining, this way, the common elements between the two sets. The multiplica-

tion operator must be defined between a scalar and a set, and we used one given

in [71]:

Definition 3.1. Given a scalar F ∈ [0; 1] and any set S, the multiplication of a

scalar by a set is represented by F ⊗ S, and this operation results in another set

S ′ ⊆ S, containing dF× | S |e random elements from S, where | · | represents the

cardinality of the set.

Finally, to replace the addition arithmetic operator, the closer concept in Sets is

the union, as this operator will create a new set, with all elements from both sets.

72

3.3. SET-BASED OPERATORS 73

However, the resulting solution would, probably, be an unfeasible solution, as it

would have more elements than needed. The repair mechanism would depend on

the problem at hand, but for the TSP, could consist in selecting a starting edge from

those incident to the nodes with lowest degree, and then select edges incident to

the last, using those in xr1∪F⊗(xr2 ∩ xr3), until either a feasible solution is found,

or no more edges can be added without breaking a problem constraint, in which

case this repair is discarded, and the base solution xr1,g is used.

Using these operations, we defined in Guerreiro et al. [32], the set-based

mutation operator as

vi,g = xr1,g] F ⊗ (xr2,g ∩ xr3,g) . (3.3.1)

Algorithm 3.6 represents this mutation operator, using the above formula, with

the proposed repair mechanism. Note that this repair mechanism is not an heuris-

tic to find a TSP on purpose, as the goal is for the work to be done by the mutation,

with some help from the repair, not for the repair to do the work and the mutation

to be nothing but an excuse to have something to be repaired.

To test if this idea was feasible, it was tested on some instances from the TSPLIB

[76], using a scale factor F = 0.8 and a crossover CR = 0.9, with a population Np

twice as much as the dimension of the problem instance used. We used the TSP not

with the idea of introducing “the next best thing” to solve the TSP, but because it

is the most studied combinatorial optimization problem, and the one usually used

to compared results. We also implemented the DLM approach from Prado et al.

[71] and the sub-range approach from Nearchau and Omirou [64], with the same

parameters, to serve as comparison. As a stopping criteria was defined the full

convergence of the population, meaning when all solutions are equal, or when no

evolution occurred after 30 generations, meaning all solutions were local optima.

Due to the core functionality of all evolutionary algorithms, the results cannot

be taken individually, but rather averaging the results from a number of runs of

74 CHAPTER 3. DIFFERENTIAL EVOLUTION FOR COMBINATORIAL ...

Algorithm 3.6 Algorithm for the mutation operator, with a repair mechanism for
the TSP problem.
Input: x1, x2, x3, F
Output: v

1: DF← x2 ∩ x3

2: qt← sizeof(DF) - ceiling(F ∗ sizeof(DF))
3: while qt > 0 do
4: remove a random edge from DF
5: qt← qt − 1
6: end while
7: union← x1 ∪ DF
8: tail← random node from those in union with lowest degree
9: head← node from tail’s neighbours with the lowest degree

10: v← { tail, head }
11: remove { tail, head } from union
12: tail← head
13: neighbours← nodes neighbour of tail in union
14: while neighbours6= ∅ do
15: head← node in neighbours with the lowest degree
16: v← v ∪ { tail, head }
17: remove all edges incident to tail from union
18: tail← head
19: neighbours← nodes neighbour of tail in union
20: end while
21: if v is not valid then
22: v← x1

23: end if

74

3.3. SET-BASED OPERATORS 75

ulysses22 berlin52

Generation Best Error Generation Best Error

Sub-range 491 10827.3 54.39% 953 22407.4 197.10%
DLM 3002 7016.0 0.04% 15069 9038.2 19.84%

Set-based 126 7054.1 0.59% 213 8703.2 15.40%

Table 3.2: Results for some TSP instances, using F = 0.8, CR = 0.9 and a popula-
tion twice as much as the dimension of the problem.

the algorithm. The results shown in table 3.2 are the average of 10 runs for each

instance of the problem, always with the same parameters. As can be seen, the

results obtained by the sub-range approach cannot be compared neither with the

DLM, not with our set-based approach, with always an error higher than 50% of

the optimum value. Both DLM and the set-based approach got very close to the

optimum on the smaller instance, but DLM did it at the expense of a much higher

number of generations, when compared with the set-based approach. A similar

result can be observed on the other instance regarding the number of generations,

although here the set-based approach reached a better result then the DLM.

From those results we could conclude that this approach was not bad, but some

more development were needed, mainly because this operator, has was defined in

equation (3.3.1), had some downfalls. In the beginning of the evolutionary pro-

cess, when, theoretically, all solutions are different, the result of the intersection

of any two solutions will be an empty (or almost) set, and the union of any so-

lution with an empty set will result in itself, meaning that the mutation operator

will result, most of the times, in the initial base solution xr1,g. As the generations

evolve, the solutions will, again theoretically, became more and more equal, i.e.,

will have more common elements as each generation goes by, and the result of an

intersection between any two solutions will be a set almost identical to the two

initial solutions, and by the same principle, the union of this set with the initial

base solution, will result, again, in a solution very close to the base one xr1,g, as

most elements will be already in it (remember all solutions will be, theoretically,

very similar). This means that in the start and at the end of the evolutionary pro-

76 CHAPTER 3. DIFFERENTIAL EVOLUTION FOR COMBINATORIAL ...

cess, equation (3.3.1) will result almost always in the base solution, in practice,

meaning that there will be no real “mutation” applied.

Another thing to consider is the cardinality of the mutant individual, created

by equation (3.3.1). When using any set operation, the one thing one can take

for granted is that the cardinality of the resulting set will not be the same as the

initial ones. As in most combinatorial problems the cardinality of each solution is

fixed, it’s easily to see that the mutant solutions resulting from equation (3.3.1)

will have a different cardinality than the solutions used to create it. As always

when having an unfeasible solution, it can be discarded or repaired. In this case,

if the mutation operator results, almost always, in an unfeasible solution, if this

solution is discarded, there would never be any evolution, so the other option is to

repair this unfeasible solution, and this is probably the reason for the good results,

and not the DE algorithm itself.

Improved mutation

As the previous approach had some downfalls, some variations of it were formu-

lated, and studied, to create a more generic approach. An empirical study was

made and from several conceivable formulas, those that, in the end, would result

in empty, or almost, sets were removed from consideration, and presented bellow

are the ones that worth a closer look.

vi,g = xr1,g ∩ F ⊗ (xr2,g ∪ xr3,g) (3.3.2)

vi,g = xr1,g ∩ F ⊗ (xr2,g ∩ xr3,g) (3.3.3)

vi,g = xr1,g ∪ F ⊗ (xr2,g \ xr3,g) (3.3.4)

76

3.3. SET-BASED OPERATORS 77

vi,g = xr1,g ∪ F ⊗ (xr2,g ∪ xr3,g) (3.3.5)

vi,g = xr1,g ∪ F ⊗ (xr2,g ∩ xr3,g) (3.3.6)

vi,g = xr1,g ∪ F ⊗ (xr2,g M xr3,g) (3.3.7)

vi,g = xr1,g \ F ⊗ (xr2,g \ xr3,g) (3.3.8)

vi,g = xr1,g \ F ⊗ (xr2,g M xr3,g) (3.3.9)

In all formulas, M represents the symmetric difference xr2,g M xr3,g =

(xr2,g \ xr3,g) ∪ (xr3,g \ xr2,g) and the definition for ⊗ has been given previously.

The rest are the usual set operators, union, intersection and relative complement.

To simplify, lets ignore the generation index g, and consider F = 1, this way re-

moving this parameter from the subsequent analysis.

Inspecting equations (3.3.2)-(3.3.9), two situations can be seen: (3.3.4) to

(3.3.7), due to their outer union operator, would end up a cardinality higher than

the desired one, and the other equations would end up with a lower cardinality,

because of the outer intersection and relative complement operators. Either way,

some repairing mechanism would almost always be needed (except when the so-

lutions are exactly the same), when using set-based operations, but this effect is

should be minimum the closer to the desired cardinality the mutant solution is.

Considering the beginning of the evolution, where almost all solutions are dif-

ferent from one another, equations (3.3.2) and (3.3.3) would result in a close to

zero cardinality, as the intersection of a base solution xr1 with any other (very dif-

ferent) solutions, would result empty, and due to this, the repair mechanism is a

78 CHAPTER 3. DIFFERENTIAL EVOLUTION FOR COMBINATORIAL ...

major factor in the initial evolutions, using these formulas. As the evolution goes

by, the initial (almost) empty solution would get closer to the base solution xr1,

and in the end of the evolution stage, the resulting mutant solution’s cardinality

would be very close to the desired one, because, near the end of the evolution,

all solutions would be (almost) equal, and when this happens, equation (3.3.2)

and (3.3.3), result in a solution very close to xr1, although with a lower cardinal-

ity (except if the three solutions are exactly the same). In this case, the repair

mechanism would have a minor effect, as it wouldn’t have much to repair.

Equations (3.3.4), (3.3.5) and (3.3.7), as stated above, will always end up with

a higher cardinality than any of the initial used solutions, but a closer analysis re-

sults in two possible initial cases: for equations (3.3.5) and (3.3.7), if all solution

are mostly different, then | (xr2,g 4 xr3,g) | ≤ | (xr2 ∪ xr3) |, because if xr2 is mostly

different from xr3, than (xr2 \ xr3) would result similar to xr2, and (xr3 \ xr2) would

result similar to xr3, and from this, (xr2,g 4 xr3,g) would be similar to (xr2 ∪ xr3),

so their cardinality would be almost double of the desired. Due to this, equa-

tions (3.3.5) and (3.3.7) would be, in fact, closer to vi = (xr1 ∪ xr2 ∪ xr3), and

the resulting solution’s cardinality would be almost three times as much as each

solution. The second initial case is equation (3.3.4), where the set relative comple-

ment (xr2 \ xr3) would result in a cardinality slightly lower than the one of xr2, and

this make the resulting final union to have a cardinality double of the desired one.

In either case, in the beginning of the evolution, the resulting mutant solution has

a cardinality that is three or two times higher, which means the repair mechanism

must be used to create feasible solutions. Towards the end of the evolution, when

all solution should be almost identical, another two cases are possible: in equation

(3.3.5), the inner union operator (xr2 ∪ xr3) would result in a cardinality slightly

higher to either of them, and when joining this to the base solution using the outer

union, the mutant solution would have, again, a slightly higher cardinality than

any of then; for the second case, consider equations (3.3.4) and (3.3.7). If all

solutions are almost equal, ∅ ⊆ (xr2 \ xr3) ⊆ (xr2,g 4 xr3,g), because the elements

78

3.3. SET-BASED OPERATORS 79

that are in one solution and not the other are close to zero, and so the resulting

set is almost empty, meaning their cardinality is almost zero. The union of any

solution with an (almost) empty set results in a solution very similar to the initial

one, and as such, these equations would return a mutant solution that is close the

base solution xr1, but with a cardinality somewhat higher. In both cases, the final

mutant solution would be very similar to the base solution xr1, but with a higher

cardinality, and this means that although some repair is needed, its effect would

be minimum, as the mutant solutions wouldn’t need much repair.

Finally equations (3.3.6), (3.3.8) and (3.3.9). In the start of the evolution-

ary process, the result is a mutant solution with a cardinality close to the one

of the base solution xr1, either because: 1) in (3.3.6) the union of any solution

with an almost empty set (resulting from the inner intersection), produces a solu-

tion with a cardinality slightly higher than the initial solution; or 2) in (3.3.8),

the relative complement (xr2 \ xr3), results in a cardinality a little lower than

|xr2|, and then the final operation results in a solution with a cardinality slightly

lower than the one in xr1; or finally 3) in (3.3.9) the inner symmetric difference

(xr2 \ xr3) ∪ (xr3 \ xr2) would result in a solution similar to (xr2 ∪ xr3) (see jus-

tification for (3.3.7), above), and the final relative complement would return a

cardinality slightly lower than |xr1|. In all possible cases, the mutant solution

would a cardinality very close to the desired one, which means, that the repair

mechanism wouldn’t have much effect here. Towards the end of the evolution-

ary process, when all solution are very similar to one another, again all of them

would result in an mutant solution with a cardinality close to the base solution

xr1, due to: 1) in (3.3.6), the inner intersection would result in a cardinality close

to, although slightly lower, either solution, and then the outer union would return

a cardinality a little higher than the one of xr1; or 2) in (3.3.8) and (3.3.9), the

inner operations would result in a close to zero cardinality because when two so-

lution are almost equal, there are very few (if any) elements not in both of them,

and the cardinality of a relative complement of an almost empty set in any set,

80 CHAPTER 3. DIFFERENTIAL EVOLUTION FOR COMBINATORIAL ...

results in the cardinality of this latter set, in this case, the base solution xr1. Again,

in all cases, the cardinality of the mutant solution is very close to the desired one,

which means that the repair mechanism would not have much impact. However,

this three formulas behave differently from the others in the main core of the

evolutionary process. All the others would either start with a high cardinality and

would descend into the desired one, or start with a very low cardinality and would

ascend into the desired one, but these three start close to the desired cardinality

but then, (3.3.8) and (3.3.9) will lower it, because when the solution start getting

somewhat similar, those formulas would remove some elements from the base

solution, resulting in a lower cardinality, or in (3.3.6), as some elements will be

added to the base solution due to the union operator, the resulting solution will

have a higher cardinality. In a nutshell, these three formulas start with an accept-

able cardinality, then will either lower or raise it, hopefully not much, and finally,

end with an acceptable cardinality, making, in theory, these three formulas those

that will have the least influence on the repair mechanism in the mutant solution.

All this analysis is resumed in table 3.3, where are presented the expected cardi-

nality of each solution in the beginning and in the end of the evolutionary process,

a well as the general evolution of the cardinality in between the two extremes.

In figure 3.8 are represented the actual measured cardinality for two instances

of the TSPLIB. These results are the average cardinality of 5 executions for each

generation’s solutions, with a limit of 500 generations for the smaller instance

and 1000 generations for the larger one. The black horizontal line represent the

desired cardinality to either instance.

As expected, no equation returns the expected cardinality, meaning none a re-

turn feasible mutant solution, and all must be subject to a repair mechanism. It

can be observed also, that all formulas behave as predicted, regardless of the di-

mension of the problem, as show when comparing figure 3.8(a) and figure 3.8(b).

Somewhat surprising is the evolution of equations (3.3.2) and (3.3.3), that

were expected to converge to a cardinality close to the desired one, but here

80

3.3. SET-BASED OPERATORS 81

Operation xr1 6= xr2 6= xr3 · · · xr1 ≈ xr2 ≈ xr3

xr2 ∪ xr3 ≤| xr2 | + | xr3 | \ ≥| xr2 | or ≥| xr3 |
xr2 ∩ xr3 ≥| ∅ | / ≤| xr2 | or ≤| xr3 |
xr2 \ xr3 ≤| xr2 | \ ≥| ∅ |

xr2,g M xr3,g ≤| xr2 | + | xr3 | \ ≥| ∅ |

Equation (3.3.2) ≥| ∅ | / ≤| xr1 |
Equation (3.3.3) ≥| ∅ | / ≤| xr1 |
Equation (3.3.4) ≤| xr1 | + | xr2 | \ ≥| xr1 |
Equation (3.3.5) ≤| xr1 | + | xr2 | + | xr3 | \ ≥| xr1 |
Equation (3.3.6) ≥| xr1 | _ ≥| xr1 |
Equation (3.3.7) ≤| xr1 | + | xr2 | + | xr3 | \ ≥| xr1 |
Equation (3.3.8) ≤| xr1 | ^ ≤| xr1 |
Equation (3.3.9) ≤| xr1 | ^ ≤| xr1 |

Table 3.3: Expected cardinality for the different variations of the set-based mutant
operator, in the beginning of the evolutionary process (left) and at the end (right),
and the expected evolution, as the generations go by (middle).

shown to stagnate, and never reaching this value. In particular, equation (3.3.3)

don’t show any type of convergence, nor in the cardinality, nor in the optimum

value, otherwise it would have stopped before reaching the generation limit, as

does equation (3.3.2), that don’t converge to the desired cardinality, but shows a

faster convergence to either the global or a local optimum, as will be shown in the

results, latter. This behaviour by equation (3.3.3) could be explained by either it

having a very, very, slower convergence, as in figure 3.8(a) it seems to be slowly

raising; or due to the algorithm used in the selection of the solutions to be used in

the formulas, explained below.

As expected, equations (3.3.6), (3.3.8) and (3.3.9) have the best values for

the cardinality, and equations (3.3.4), (3.3.5) and (3.3.7) shows the predictable

higher cardinality in the beginning, declining toward the desired one, although

this convergence is much slower on the larger instance than on the smaller one.

These results show, as expected, that the results of all but equations (3.3.6),

(3.3.8) and (3.3.9), depend much on the repair mechanism, and this three are

the ones that show a less dependence of this mechanism, resulting in an evolution

82 CHAPTER 3. DIFFERENTIAL EVOLUTION FOR COMBINATORIAL ...

closer to a “pure” DE (without any repair) as possible, using set-based operators.

Apart from these, equation (3.3.2) will also be subject to further study, mainly

because it has a faster convergence, when compared to the other equations, al-

though this probably is caused by the repairing mechanism, and not the formula

itself.

As a last, but not least, note is the fact that from these last four, only two

respect the meaning of “difference” in the arithmetic domain, meaning that when

two numbers are equal, their difference is zero. In equations (3.3.2) and (3.3.6),

the difference between two equal sets, is not an empty set, but rather the same set,

because the intersection and the union are idempotent operations, i.e., for any set

A, (A ∩ A) = (A ∪ A) = A. The relative complement and the symmetric difference

used in equation (3.3.8) and (3.3.9), on the other hand, respect the principle of

the arithmetic difference, i.e., when two sets are equal the result is the empty set

(A \ A) = (A M A) = ∅.

From this analysis, the formula for the mutation that most respects the DE’s

principles are equations (3.3.8) and (3.3.9), as both respect the “difference” oper-

ator, and both return sets that need a minimal repair. Remember the idea is not to

solve a specific problem, but to have an operator that is the least intrusive in the

algorithmic process as possible, leaving the task to find the optimum for whatever

problem, for the algorithm as a whole.

Selecting the random solutions for the mutation

Another issue to have in consideration in the mutation operator is the selection of

the solutions xr1, xr2, and xr3 to use. In classic DE, equation (2.1.3) only obligates

their indexes to be different, i.e., r1 6= r2 6= r3 6= i, and in the continuous space,

this should be sufficient, because the values of xk should be different from one

another, depending on the precision defined. But in combinatorial optimization

problems, the probability that two random selected solutions are equal, is much

higher than in the continuous space, especially further down in the evolution. If

82

3.3. SET-BASED OPERATORS 83

(a) (b)

Figure 3.8: Evolution of the average cardinality of the mutant solutions in two
instances of the TSPLIB. In (a) a 22 dimensions problem (ulysses22) and in (b)
a 52 dimensions one (berlin52). The black horizontal line represent the desired
cardinality of each problem.

this is not taken into account, the evolution will probably stagnate because there

will be no different solutions to generate a difference. To prevent this, the selection

method was changed, with a tighter restriction to have the three solutions really

different from one another, regardless of their indexes, i.e., xr1 6= xr2 6= xr3 6= xi.

Of course it will get to a stage in the evolution where almost all solutions are equal,

and maybe there aren’t four different solutions in the population. To prevent this

possible stalemate, this restrictions was relaxed to try to find a different solution

(if an equal one is already selected) a predefined number of times. If no different

solution is found in any of these tries, use the last solution selected. This prevents

the possible infinite loop, where the algorithm would try to find a different solu-

tion, when there aren’t different solutions to find. Algorithm 3.7 implements this

procedure. In it, the inner while loop tries to find a solution different from the

ones already found for a maximum of 50 times, if it doesn’t succeed, gives up and

uses the last solution found.

84 CHAPTER 3. DIFFERENTIAL EVOLUTION FOR COMBINATORIAL ...

Algorithm 3.7 Algorithm for selecting three different random solutions.
Input: population, i
Output: random_solutions

1: initialize random_solutions as an empty list
2: for r = 1..3 do
3: k← 1
4: repeat
5: sol← select a random solution in population
6: k← k + 1
7: until sol /∈ random_solutions and sol 6= population[i] or k > 50
8: insert sol in random_solutions
9: end for

Repairing the solutions

Although the usage of the repair mechanism is as minimum as possible, it is still

needed, and some changes were made, regarding the previous version. Instead

of the, somewhat, complex reconstruction done previously, now is using a simple

greedy mechanism, where the elements (edges) with the lowest value are pre-

ferred to repair the solution, instead of others with an higher value. To prevent

this complexity, before the algorithm starts, all edges are analyzed, and an ordered

list using the value of each edge is created. When a reconstruction is needed, it

uses this list, starting from the lowest value edge to the highest, using the first

possible edge that don’t break the constrains, then the second lowest, and so on,

until the solution is repaired.

This was done mainly to remove unneeded complexity in the reconstruction,

and has two implications on the algorithm: Although improving the solutions, as

it serves as a local search, it also could impede the algorithm from exploring thor-

oughly the search space, steering it very quickly to some local sub-optimum. To

prevent this, a random probability was used, where the repair as a 50/50 hypothe-

ses to use a greedy algorithm or being completely random.

In algorithm 3.8 is a high level description of the repair procedure. As said

previously, this mechanism is problem dependent, meaning the repair for one type

of problems of not the same for other type of problem, with different constrains.

84

3.3. SET-BASED OPERATORS 85

Algorithm 3.8 A possible repair algorithm for the TSP.
Input: mutant, ordered_edges
Output: solution

1: initialize solution as an empty list
2: edges_not_in_solution← ordered_edges
3: order edges in mutant according to their value
4: // first pass to eliminate edges in mutant that break constrains
5: for all edges in mutant do
6: remove edge from mutant
7: if inserting edge into solution don’t break any constrain then
8: insert edge into solution
9: remove edge from edges_not_in_solution

10: end if
11: end for
12: if rand() < 0.5 then
13: shuffle(edges_not_in_solution)
14: end if
15: // Second pass to insert the missing edges
16: i← 1
17: repeat
18: edge← edges_not_in_solution[i]
19: if inserting edge into solution don’t break any constrain then
20: insert edge into solution
21: end if
22: i← i + 1
23: until solution is valid

86 CHAPTER 3. DIFFERENTIAL EVOLUTION FOR COMBINATORIAL ...

3.3.3 Crossover

The crossover also needed some changes in order to work for combinatorial op-

timization problems, as equation (2.1.9) cannot be applied to a set-based muta-

tion, mainly because it needs some order in the elements to apply the crossover,

and as we’ve seen, sets by definition are not ordered. Even if we somehow,

managed to order the elements of a set, the result would, most likely, not be a

valid solution. If we had the solution in figure 3.7(a) as xi and in figure 3.7(b)

as vi, they could be represented as xi = {(1, 2) , (2, 4) , (3, 4) , (3, 5) , (1, 5)} and

vi = {(1, 2) , (2, 5) , (4, 5) , (3, 4) , (1, 3)} . Using equation (2.1.9), one possible result

could be ui = {(1, 2) , (2, 5) , (3, 4) , (3, 5) , (1, 3)}, and this is not a feasible solution.

Instead of using the classic DE crossover and then repair these trial solutions,

an operator that creates feasible solutions is preferred, and a different ones can be

used depending on the problem. For the TSP example, the ordered crossover (OX),

introduced by Davis [19] was used, as its a proven crossover for combinatorial

problems, and for the TSP in particular. The ordered crossover works by selecting

two points to cut the parent individuals, and then create the offspring by coping

the elements between the two cut points of each parent to the respective offspring,

and then select from the other parent the missing elements. Suppose the two

parents and the cut points “|” are defined as

p1 = (1 | 2 4 | 3 5)

p2 = (1 | 2 5 | 4 3).

To create the offspring, first the values between the cutting points of each

parent would be copied to the respective offspring

o1 = (_ | 2 4 | _ _)

o2 = (_ | 2 5 | _ _),

and then the empty spaces would be filled using the missing elements from the

86

3.3. SET-BASED OPERATORS 87

other parent, starting after the second cut point, and wrapping around when the

end is reached, and the end result would be

o1 = (5 | 2 4 | 3 1)

o2 = (4 | 2 5 | 3 1).

As in DE only one offspring is needed, they are both evaluated and the best

one is selected as the trial solution.

Two notes about using this operator in a set-based approach: first, as can be

seen in the example above, a node representation was used, instead of the edge

representation given earlier, because this operator only works with nodes, not with

edges, more on this latter; and second, as implied by the name, this operator needs

the order of the elements to work, and as said earlier, in Sets there is no order.

This means that some further work is needed to use this crossover, namely

a translation to a node representation before applying it, and then translate the

trial solution back to edge representation, to continue the evolution. Although

this means that some execution time is “lost” doing this operation, the results

obtained using this crossover were better than those using other crossover opera-

tors that use edge representation, for instance the generalized partition crossover

(GPX) [89] or alternating edge crossover (AEX) [59]. In table 3.4 are the results

for these three crossovers, and four variations of the mutation operator, using a

TSPLIB problem instance, with 22 nodes (ulysses22). The results shown that the

OX crossover gives the better results across the board, especially with equation

(3.3.2) and (3.3.9) variations, the first being the best for all crossovers, but this is

probably due to the reconstruction mechanism.

3.3.4 Parameter analysis

As said earlier, DE has three control parameters, that should be tuned as efficiently

as possible, to get the best results from the algorithm. Unfortunately, as there is

88 CHAPTER 3. DIFFERENTIAL EVOLUTION FOR COMBINATORIAL ...

OX GPX AEX

Equation Gen Best StDev Gen Best StDev Gen Best StDev

(3.3.2) 1549 7013.0 0.0 1128 7032.6 37.8 1675 7032.6 37.8
(3.3.6) 426 7189.3 78.3 59 9570.3 963.0 39 9694.1 530.9
(3.3.8) 133 7063.0 47.2 49 9424.8 1157.2 37 10352.7 1132.0
(3.3.9) 274 7014.6 5.1 7620 8245.8 899.4 92 8051.1 520.6

Table 3.4: Results for OX, GPX and AEX crossovers, and different mutation varia-
tions, using ulysses22 instance from TSPLIB.

no such thing as “the best algorithm” capable of always solving every problem bet-

ter/faster/efficiently (see the no free launch theorems, by Wolpert and Macready

[90]), also there is no “magic values” for the parameters, always giving the best

results for every problem. What this means is that, if the algorithm used a cer-

tain type of problems, or in a specific problem, performs in a certain form (say,

for instance, always find the optimum value after an average of x generations)

using some parameters, using the same set of parameters, in a different problem,

or a different set of problems, are not guaranteed to have the same performance

(it could never find the optimum, or find it in an average of y generations, with

y � x or y � x).

Despite this, both Storn and Price [83] and later Lampinen and Storn [45], said

DE is not very sensitive to its control parameters, and choosing good values for

them is not difficult to do, in order to obtain good results. In fact, Lampinen and

Storn go further and affirm that is much more difficult to choose the parameters

in order to fail convergence at all [45]. As a rule of thumb, they suggested, as first

approach, to use a population size between 5d and 10d, where d is the dimension

of the problem, a scale factor F = 0.5, and a crossover rate should be an high

value, usually CR ≥ 0.9, to speed up the convergence. This recommendations,

however, were based solely on continuous problems, combinatorial problems are

a completely different type of problems, and the recommendations may not hold.

Using an the berlin52 instance from TSPLIB, several executions were made for

each variation of the control parameters, to study their behavior in this type of

88

3.3. SET-BASED OPERATORS 89

problems. The scale factor F and the crossover CR were given values from 0.0 to

1.0, in 0.1 increments, and the population size Np was tested for 2d, 5d and 10d,

respectively, Np = 104, Np = 260 and Np = 520. Each combination of parameters

were run 10 times for a maximum of 100 generations, for each of the mutation

formulations given in equations (3.3.2), (3.3.6),(3.3.8) and (3.3.9).

In figure 3.9 is represented a heatmap with the average fitness values for differ-

ent combinations of F/CR, considering: in figure 3.9(a) using a constant popula-

tion size Np = 104, for all mutation formulations; in figure 3.9(b) using a constant

population size Np = 260 for all mutation formulations; and in figure 3.9(c) using

a constant population size Np = 520 and all formulations; and in figure 3.9(d) all

different mutation formulations and all population sizes. Observing (a), (b) and

(c), i.e., studying the evolution with a constant, but increasing, population size,

it can be seen that for a “small” population size (a), the best results are achieved

with high values for both F ∈ [0.7; 1.0] and CR ∈ [0.3; 0.9], although a very large

crossover CR > 0.9 shows to worsen the results. This tendency is verified as the

population size increases, in (b) and (c), but as it does so, also increase the range

of acceptable values for F and CR. Also, as the population grows, CR shows to

be somewhat sensitive to F , as the lower the F parameter goes, the lower the CR

can go (always with F > CR), but higher values for F also need high values of

CR, showing a peak around CR = 0.9. This shows an algorithm sensitive to F

and CR parameters with a lower population size, but this sensitivity decreases as

the population size increases. In figure (3.9)(d) is the average results regardless of

the population sizes, and, as expected, shows this tendency, with the best results

are centered around F ∈ [0.8; 1.0] and CR ∈ [0.6; 0.8].

This is confirmed in figure 3.10, where is shown the evolution of the aver-

age fitness for all mutation formulation and population sizes. In 3.10(a) for the

crossover CR, showing the overall tendency of better results with an higher value

of F , regardless of the CR value, and on the contrary, as the value for F lowers,

the results are worse, independent of the CR value. However, when F = 1.0, some

90 CHAPTER 3. DIFFERENTIAL EVOLUTION FOR COMBINATORIAL ...

(a) All mutations, Np = 104. (b) All mutations, Np = 260.

(c) All mutations, Np = 520. (d) All mutations, all Np.

Figure 3.9: Average fitness for different values of the scale factor (F) and crossover
(CR) parameters. In (a), (b), and (c) averaging the values from different mutation
formulas, with a constant population size of, respectively, Np = 104, Np = 260
and Np = 520; in (d) averaging the values through different population sizes and
mutation formulations.

90

3.3. SET-BASED OPERATORS 91

values for the CR, especially the ones with a lower value, have a slight worse re-

sults then for F = 0.9. The fact that, when F = 0.0, the results are simply not

acceptable is due to the mutation operator is not being used, and as the mutation

is the core factor in DE to evolve the population, this means that only the crossover

operator is working, and solely, is incapable to give good results, at least in the

maximum number of generations given. In 3.10(b) is presented the reverse, i.e.,

the evolution of the fitness for different values of the scale factor F , shows the

more uniform spread of the crossover for any given value of F . Unlike for F , CR

shows acceptable values, independent of the scale factor value, except of very low

values for F . This figure shows that, generally, for each, increasing, value of F ,

the best fitness value is obtained for a different value of CR, also increasing, i.e.,

the fitness values are getting better as both F and CR are getting higher., reaching

the best values when F ∈ [0.9; 1.0] and CR ∈ [0.7; 0.8]. With values of CR > 0.8

the results get worse, except in the extreme CR = 1.0, where the results get better

again. This could be explained by the operation of crossover operator itself. Notice

that 3.10(b) shows similar results for CR = 0.0 and for CR = 1.0, regardless of

the scale factor used. In both these extreme values, the crossover, in fact, does no

crossover whatsoever, is just gives the current individual in the population or the

mutant individual (refer to equation (2.1.10)).

In figure 3.11 is the average fitness for the three distinct population sizes, for

different scale factor values in 3.11(a), and crossover 3.11(b), were can be seen,

as expected, that as the population size increases, the fitness results are better in

both cases.

Considering now the different mutation formulations, in figure 3.12 are the

heatmaps for the evolution the parameters for each pair of population size and

mutation formula. From top to bottom are equations (3.3.2), (3.3.6), (3.3.8) and

(3.3.9), and from left to right are population sizes of Np = 104, Np = 260 and

Np = 520. Starting with the bottom two lines, corresponding to equation (3.3.8)

and (3.3.9), the results are similar to those presented earlier, however, equation

92 CHAPTER 3. DIFFERENTIAL EVOLUTION FOR COMBINATORIAL ...

(a) (b)

Figure 3.10: Evolution of the average fitness values for: (a) different crossover CR
values with constant same scale factor F , and (b) different scale factors F values
with a constant crossover CR.

(a) (b)

Figure 3.11: Average fitness for different population sizes, for (a) different scale
factor F , and (b) different crossover CR.

92

3.3. SET-BASED OPERATORS 93

(3.3.9) seems to accept a wider range parameters. In the second line, although

similar to those discussed, deserves a special mention, as it gives acceptable results

with broader range of parameters, especially F , but for good results the range is

much narrower than the other two, and also need a bigger population size. Finally,

the first line shows a somewhat different map. As all the others, has a wide range

of acceptance to the CR value with incidence in high values, particularly with

lower population sizes, the difference is the much greater sensitivity to the F

parameter, as anything lower than F = 0.7 produces very bad results, regardless

of either CR or population size.

Finally, in table 3.5 are the fitness for the different mutation equations and pop-

ulation size, and also the averaged results, ordered by this averaged results. For

each equation, along with the fitness result is the order in which the parameter’s

fitness was classified using the respective parameters. It’s clear from this, short,

table that there isn’t a perfect combination of parameters resulting in the best val-

ues for every mutation equation formulated. For instance, the best combination

of parameters for equation (3.3.2) only got the 12th result using equation (3.3.6),

and the best parameters for equation (3.3.8) were the second best for (3.3.9), but

only the 24th for equation (3.3.6).

As there isn’t a good set of parameters all around, the next big thing is to use

the average, with all its advantages and disadvantages, and he best average result

was 7757.2, using a scale factor F = 0.9, and a crossover rate CR = 0.7. As for

the population size, from the tests made, the larger the population the better the

results, as is clear from figure 3.11, but this is not a reason to set a population

size astronomically high, as with this larger population size comes an increase in

computation time and/or space.

94 CHAPTER 3. DIFFERENTIAL EVOLUTION FOR COMBINATORIAL ...

Np = 104 Np = 260 Np = 520

Eq
ua

ti
on

(3
.3

.2
)

Eq
ua

ti
on

(3
.3

.6
)

Eq
ua

ti
on

(3
.3

.8
)

Eq
ua

ti
on

(3
.3

.9
)

Figure 3.12: Average fitness for different values of the scale factor F and crossover
CR parameters. In the left column are population sizes of Np = 104, the middle
column is for Np = 260 and the right columns is for values of Np = 520. From top
to bottom are the mutation formulations used in equation (3.3.2), (3.3.6), (3.3.8)
and (3.3.9), respectively.

94

3.3. SET-BASED OPERATORS 95

Equation (3.3.2) Equation (3.3.6) Equation (3.3.8) Equation (3.3.9) Average

F CR # Fitness # Fitness # Fitness # Fitness Fitness

0.9 0.7 1 7651.1 12 7905.3 2 7742.7 11 7729.5 7757.2
1.0 0.7 7 7731.9 24 7966.2 1 7691.5 2 7672.3 7765.5
0.9 0.8 4 7682.2 4 7849.7 11 7842.1 14 7736.1 7777.5
1.0 0.8 6 7723.1 7 7865.2 5 7767.2 22 7780.0 7783.9
0.9 0.6 5 7698.2 20 7937.5 7 7788.5 7 7712.0 7784.1

Table 3.5: Best average fitness by mutation formulation and respective parame-
ters.

3.3.5 Results

Using the operators given in this section, an DE algorithm was implemented in

Python, using the DEAP [27] and the SCOOP [37] libraries. The first library imple-

mented some basic evolutionary algorithms, with common libraries and auxiliary

toolboxes to implement other EA. The SCOOP library allows to use distributed pro-

cessing in the code in a very straight-fashion way. Since nowadays, almost every

computer has multi-core processors2, this processing power should not be wasted,

and the SCOOP libraries allows an easy distribution of the computing processes

though these CPU cores, or even to other computers, on a network.

The code as run using several instances of TSPLIB, of different sizes. For each

instance was used a population size of five times the dimension of the problem,

as this was a good enough size, without being too excessive in computational re-

sources, a scale factor of F = 0.9 and a crossover rate of CR = 0.7. Each instance

was run 10 times for the four different mutation formulas, and the stopping cri-

teria was 1000 generations, or when all the elements in the population converge

to the same solution. For comparison, the relative position indexing (RPI), the

forward/backward transformation (FBT), the subrange approach (SBR) and the

differential list of movements (DLM) were also run, using the same parameters.

In figure 3.13(a) is the evolution of the average fitness, for the berlin52 instance.

As easily seen, all the other approaches show a very slower convergence, if any,

2Multi-core processors are single computer chips with several central processing units (CPU) in
it.

96 CHAPTER 3. DIFFERENTIAL EVOLUTION FOR COMBINATORIAL ...

(a) (b)

Figure 3.13: Evolution of the search for the optimum. In (a) for all approaches, in
(b) a closer look of only our formulations.

that any of equations (3.3.2), (3.3.6), (3.3.8) or (3.3.9). In figure 3.13(b) is a

closer look of only these formulations, and the black line represents the optimum

value. Here can be seen that, for this instance, the best result was obtained by

equation (3.3.2), but at the cost of many more generations.

Table 3.6 shown the average of the best values obtained for each problem,

as well as the standard deviation, the number of generations needed, and the

relative error to the optimum value. As the figures already have shown for a

particular problem, the best value is obtained using equation (3.3.2), however,

as already discussed, this results are probably heavily influenced by the repair

mechanism. Nevertheless, all other variations of the formulation show acceptable

results, with relative errors to the optimum, usually below 5%, with equation

(3.3.9) showing better results than the other two, both in the average as also in

the standard deviation, as the problems grow in dimension. The other approaches,

clearly need many more generations to have a possibility to achieve similar values.

For instance, a second look at table 3.2 on page 75, shows that for the berlin52

problem, the DLM approach needed about 15000 generations to archive worse

96

3.3. SET-BASED OPERATORS 97

results then those obtained after only about 500 generations for equation (3.3.2),

and less then 150 generations for any of the others three.

For the reasons already explained, although equation (3.3.2) shows the best

results, is not the one suggested to serve as base for the set-based approach, but

rather equation (3.3.9), because is one of the least affected by the repair mech-

anism, and also don’t show as much premature convergence as any of the other

two.

98 CHAPTER 3. DIFFERENTIAL EVOLUTION FOR COMBINATORIAL ...

ulysses16 ulysses22 eil51 berlin52 eil76 kroA100

Avg 6859,6 7020,0 436,2 7550,5 551,4 21670,3
Equation StDev 1,9 22,1 6,7 26,9 2,6 239,9
(3.3.2) Gen 69 84 762 466 825 912

Rel.Err 0,01% 0,10% 2,39% 0,11% 2,49% 1,82%

Avg 6867,3 7049,0 443,7 7804,3 556,3 22458,5
Equation StDev 13,5 38,0 6,3 198,4 9,8 569,2
(3.3.6) Gen 63 55 110 101 172 141

Rel.Err 0,12% 0,51% 4,15% 3,48% 3,40% 5,53%

Avg 6862,4 7020,0 442,2 7697,7 562,0 22132,7
Equation StDev 4,7 22,1 9,3 218,7 9,2 362,7
(3.3.8) Gen 60 80 111 99 148 134

Rel.Err 0,05% 0,10% 3,80% 2,06% 4,46% 4,00%

Avg 6869,6 7020,6 448,2 7582,0 554,0 22036,3
Equation StDev 20,8 22,0 9,7 42,2 5,5 358,7
(3.3.9) Gen 110 78 122 144 307 198

Rel.Err 0,15% 0,11% 5,21% 0,53% 2,97% 3,54%

DLM

Avg 7260,0 9324,8 1220,9 21336,1 1960,0 131416,8
StDev 145,7 384,6 16,7 569,1 33,8 1739,9

Gen 1000 1000 1000 1000 1000 1000
Rel.Err 5,85% 32,96% 186,60% 182,90% 264,31% 517,50%

FBT

Avg 8173,3 10389,7 1204,6 22003,4 1875,9 130779,0
StDev 263,0 234,8 31,8 337,6 261,3 1395,0

Gen 1000 1000 1000 1000 1000 1000
Rel.Err 19,16% 48,15% 182,77% 191,74% 248,68% 514,51%

RPI

Avg 7663,6 9394,8 1162,8 20558,9 1949,0 130983,3
StDev 276,2 364,4 34,9 594,6 16,1 2170,3

Gen 372 930 1000 1000 1000 1000
Rel.Err 11,73% 33,96% 172,96% 172,59% 262,27% 515,47%

SBR

Avg 7258,7 8214,2 743,3 12991,7 1162,6 71445,6
StDev 239,2 287,1 45,3 590,7 58,8 4093,8

Gen 568 885 1000 1000 1000 1000
Rel.Err 5,83% 17,13% 74,48% 72,26% 116,10% 235,71%

Table 3.6: Average results for different TSP instances, using different approaches.

98

Chapter 4

Multi-objective differential evolution

for combinatorial optimization

In the previous chapter was introduced a new methodology to use the differential

evolution algorithm in combinatorial optimization problems. In this chapter will

be shown how to adapt that methodology to use in multi-objective combinatorial

optimization problems, focusing on how to keep the best solutions from generation

to generation and how to select them, using more than one population to evolve

the solutions and using self-adaptive parameters.

4.1 Introduction

In the previous chapter was introduced a new methodology to use the differential

evolution algorithm in combinatorial optimization problems, using the TSP as an

example, has this is one of the most, if not the most, known and used problem in

combinatorial optimization. But, although the TSP example is very understand-

able, in real live the TSP usually has more to it. Suppose a salesman, not only

wanted to minimize the time spent to visit all his customers, but also wanted to

minimize the cost of the travel, knowing that some roads have tolls, and/or that

he will have to sleep some nights on a hotel. This type of situation is said to be

99

100 CHAPTER 4. MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION FOR ...

a multi-objective optimization problem, as there are more than one (two in this

example) objectives to be optimized, and frequently these objectives are contra-

dictory to one another, as in the TSP example, where, for instance, if the salesman

wanted to minimize the time, he probably would use tolls roads, as this allow usu-

ally faster travel, but in doing so, he would spend more money, this way raising

the second objective value. And the same happens the other way around. De-

pending on the dimension of the problem, inspecting and evaluating the different

hypothesis to determine the best, is very difficult if not impossible, as even with

all the hypotheses at hand, it is very unlikely that the one optimum solution are

found. In multi-objective optimization problems, the algorithms usually don’t find

the optimal solution, simple because there isn’t one, they rather return a set of

solutions, each one better at one objective and worse at others. This set of non-

dominated solutions are called the Pareto set, and their representation is called

the Pareto front, as seen previously.

The decision about the best solution is not in the algorithm itself, but on an

external entity, called the decision maker, usually a human, that will inspect the

solutions in the Pareto front and decide which is the “best” solution, according to

his preferences. When the algorithm finds the Pareto set without any information

about the decision maker preferences is called a posteriori approach, as only after

the algorithm finishes its execution does the decision maker intervenes in the pro-

cess. In some cases, it is possible to incorporate the decision maker preferences

into the algorithm, making, this way, the solutions found by algorithm biased to-

wards the decision maker preferences, simplifying his latter decision. This are

called priori approaches, as the decision maker’s preferences are incorporated in

the algorithm before its execution. A third type are the interactive approaches,

where after a certain number of iterations, the algorithm gives some information

to the decision maker, and ask him for some preferences to be used for the next

iterations, and so on and so forth.

Each of these approaches have advantages and disadvantages, and choosing

100

4.1. INTRODUCTION 101

one over the others may vary from problem to problem and even from decision

maker to decision maker. In evolutionary multi-objective optimization algorithms,

usually the posteriori approach is the one used, meaning that the algorithm will

be executed without any external information about the preferences of the deci-

sion maker, and because of this, the set of solutions found, must be as close to the

Pareto-optimal set as possible, and at the same time, maintain a diversity in the so-

lutions in that set for them to correctly represent the entire Pareto front, otherwise

the decision maker may not have enough information, or even good information,

to make his decision.

The common methodologies to accomplish this dual-objective of proxim-

ity/diversity, is using the Pareto dominance concept, decomposing the multi-

objective problem into several single-objective, or using quality indicators. Each

of these techniques have already been introduced and discussed in section 2.2.3,

and although all these techniques origin different evolutionary multi-objective op-

timization algorithms, our objective is to use the differential evolution algorithm

introduced in the previous chapter, and modify it to solve multi-objective combi-

natorial optimization problems.

Is not as DE as not been used previously to solve multi-objective optimization

problems before, several authors have provided adaptations to DE to this type of

problems, as the Pareto differential evolution (PDE) [1], the generalized differ-

ential evolution 2 (GDE2) [44] and GDE3 [43], the multi-objective differential

evolution (MODE) [24] or the differential evolution for multi-objective optimiza-

tion (DEMO) [78], just to name a few (see [58, 18] for further information), but

these have been constructed to work in the real domain, not for combinatorial

optimization, and although some principles are similar, others need to be adjusted

and/or modified.

The first thing to consider is what to to with the non-dominated set of solu-

tions, as they can be either stored in a separate population, or be in the main

population. As the former approach was used, this is the first modification to the

102 CHAPTER 4. MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION FOR ...

algorithm needed. The repair mechanism also needs consideration, as its based

on a greedy algorithm, and for multi-objective problems, this procedure is not

the most effective, as the results would be skewed towards some really good val-

ues for some objective, but this type of problems is about reaching good trade-off

solutions, not exceptionally good for some objective and very bad at others.

Although the Pareto dominance concept is probably the most used in evolu-

tionary multi-objective optimization algorithm to replace the population from one

generation to the next, other approaches are possible. Examining the way this pro-

cedure works, one first alternative is to use the convex hull instead of the Pareto

dominance, which is a similar concept, with the advantage that several efficient

algorithms exist to determine the convex hull. This will further explained and ex-

panded using a concave hull algorithm, based on the one used for the convex hull,

allowing for an efficient detection and usage of this type of hull in multi-objective

problems.

Other techniques used in evolutionary algorithms are the usage of more than

one population in the evolutionary process and the usage of some type of self-

adaptation of the parameters. While the former is usually implemented when

using in parallel computation, this is not a requirement, and we will implement

it without using parallel computing. Self-adapting the parameters, although not

a requirement of multi-objective problems, in fact most implementations, if not

all, have originated in single-objective problems, is probably more important in

the former than in the later, as if in single-objective problems the parameters can

usually be tuned using a similar problem whose optimal solution is known, in

multi-objective problems, there is no optimal solution to compare with, all non-

dominated solutions are valid, and tuning the parameters is actually more difficult

in this type of problems. Both of these techniques will be tested, using some

existing implementations along with other ideas, and the results will be analyzed,

to see which techniques can be used and which are worth it.

In the rest of the chapter the different implementation of these different ap-

102

4.2. SAVING THE NON-DOMINATED SOLUTIONS 103

proaches will be described, and the results discussed, to conclude with the sug-

gested final implementation of the evolutionary multi-objective combinatorial op-

timization. As an example of this type of problem, the multi-objective traveling

salesman optimization problem will be used in the examples.

4.2 Saving the non-dominated solutions

Unlikely single-objective problems, that usually (but not always) have just one

population of solutions to evolve, in multi-objective optimization, is frequent to

use an external archive, a second population, to keep the non-dominated set of

solutions. This solutions are separated from the general population, and are not

used in the evolutionary process. When a non-dominated solution is found in

the general population, is copied to the archive, and any existing solution in it,

dominated by this new solution have to be deleted.

The differential evolution algorithm don’t contemplate any archive population

in its evolutionary process, so an adaptation has to be made to allow it to save

the non-dominated solutions. This adaptation consists in, after the initial pop-

ulation is created, the archive is filled with the non-dominated solutions in the

initial population. Then the algorithm evolves this population as usual, and af-

ter replacing the population for the next generation, it updates the archive with

the non-dominated solutions in the new population. The non-dominated solutions

are usually determined using the Pareto dominance concept. This process goes on

during the entire evolution, and in the end, the archive contains the Pareto set of

solutions for our multi-objective optimization problem. Algorithm 4.1 shows the

differential evolution algorithm with an archive population. In line 2, the archive

is created using an empty list and the initial population, the empty list being the

initial (empty) archive.

104 CHAPTER 4. MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION FOR ...

Algorithm 4.1 Differential evolution algorithm with an archive to save the non-
dominated solutions.

1: population← initialization()
2: archive← update(empty, population)
3: while not end criteria do
4: mutant← mutate(population)
5: trial← crossover(mutant)
6: population← replace(population, trial)
7: archive← update(archive, population)
8: end while

4.3 Adapting the repair mechanism

In the previous chapter, a repair mechanism was constructed to repair the unfea-

sible solutions created by the set-based mutation. But this repair mechanism, al-

though not completely, has a greedy component in it, meaning the “best” element

is selected at a given point so repair a solution. If in a single-objective problem,

this may be interesting, as it, possible, pushes the algorithm toward the optimum

solution, in multi-objective there is no “best” element to use in the reconstruction,

as each can have a better value for some objective but a worse for the others.

In fact, a greedy repair, would be very similar to a priori approach, in which

the decision maker preferences had been incorporated in the algorithm, except

that this preferences would be all-or-nothing, i.e., a greedy repair would focus

exclusively on one objective, and the results would be similar to those in figure 2.6

in page 27. In fact, those Pareto front are the result of a greedy repair, focusing

solely in the first objective (a) and in the second (b).

As a repair mechanism is a necessity in our set-based mutation, it cannot be

dismissed, but neither can a greedy one be used. One approach was to dismiss the

greedy repair, and use a full random repair, where each missing element in out

solution would be filled by a random selected element, from the decision space

domain.

Another more general idea was to make each solution work toward an objec-

tive, by incorporating an objective preference in each solution. Thus, each solution

104

4.3. ADAPTING THE REPAIR MECHANISM 105

are represented by

Xi = (xi, objective) , (4.3.1)

where Xi is the new extended solution, xi is the actual solution, and objective is

the objective for that solution to focus, when a repair is needed. This allows for

each solution to be repaired with the focus on its objective, but, as the mutation

and crossover are indifferent to this, each solution will be combined with other

solutions, with the same or other objective, this way incorporating good elements

from other objective. However, as each solution need to have an objective, both

the mutation and the crossover operators, need to defined a default objective for

the mutant and the trial solution, respectively. The mutant solution’s objective

will be the same as the solution used as base solution in the mutation operation,

as for the trial solution, it will inherit the objective of the current solution, i.e, the

solution in the current population, not the mutant solution. The initial objective

for each solution is assigned when the initial population is created, by randomly

selecting one of the objectives of the problem.

Algorithm 4.2 shows the repair mechanism for multi-objective traveling sales-

man optimization problem, where mutant is the mutant solution to be repaired,

repair_objective is the objective to be used in the repair process, and can be

0, 1, 2, ...,m or random, where values ∈ {1, 2, ...,m} is the objective to be used

in the repair, meaning a greedy repair will be used; 0 means the process de-

scribed above, where each solution will be reconstructed using one objective, in-

herited from the base solution; and random means a completely random repair.

ordered_edges is a list with as many elements as the number of objectives, and each

element is a composed by a list of edges, ordered using only the respective objec-

tive. Suppose the multi-objective problem represented by the graph in figure 2.1,

where each edge has two values, the first is the value to use in the first objective,

the second is for the second objective. The first element of ordered_edges would

106 CHAPTER 4. MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION FOR ...

be the list of edges ordered according to the first objective, i.e., ordered_edges[1]

= [BC, AB, CD, AD], and the second element would be composed by the edges

ordered according to the second objective, ordered_edges[2] = [AD, BC, AB, CD].

As in the algorithm for single-objective problems, this list is created before the

evolutionary process starts, and not changed in it, as these values are always the

same. Lines 3-10 defines which element in ordered_edges will be used, according

to the value of repair_objective.

Algorithm 4.2 A repair mechanism for the multi-objective TSP.
Input: mutant, ordered_edges, repair_objective
Output: solution

1: solution← empty list
2: // initialize edges_not_in_solution according to repair_objective
3: if repair_objective = 0 then
4: objective← mutant.objective
5: else if repair_objective is random then
6: objective← chose a random objective
7: else
8: objective← repair_objective
9: end if

10: edges_not_in_solution← ordered_edges[objective]
11: // first pass to eliminate edges in mutant that break constrains
12: order edges in mutant according to their value
13: for all edge in mutant do
14: remove edge from mutant
15: if inserting edge into solution don’t break any constrain then
16: insert edge into solution
17: remove edge from edges_not_in_solution
18: end if
19: end for
20: if repair_objective is random then
21: shuffle(edges_not_in_solution)
22: end if
23: // Second pass to insert the missing edges
24: i← 1
25: repeat
26: edge← edges_not_in_solution[i]
27: if inserting edge into solution don’t break any constrain then
28: insert edge into solution
29: end if
30: i← i + 1
31: until solution is valid

106

4.3. ADAPTING THE REPAIR MECHANISM 107

Figure 4.1: An example of a graph with two values for each edge.

Of course this means that “groups” of solutions will exist virtually in the popu-

lation, each group being formed by all solutions with the same objective to repair.

But with each solution in the population having his own objective, and due to

the process used to mutate and repair the solutions, the objective of the ith so-

lution can change from one generation to the next, this means that, theoretically,

one group of solutions could overcame the all others and have all solutions in

the population in it, i.e, all solutions with the same objective to repair, much like

the greedy repair discussed earlier. However, due to the stochastic evolutionary

process and to the DE mutation operator that creates a new solution using three

others, this is unlikely to happen. In fact, represented in figure 4.2 are the number

of solutions for each of the two objectives of a bi-objective problem for a popula-

tion size of 200 individuals and a maximum of 100 generations. On the left are

the values of one execution, and on the right are the averaged values for 10 exe-

cutions. As can be seen, the number of solutions for each objective is not constant,

in fact, the number keeps changing in each generation, meaning that the majority

of the population goes toward one objective, then changes to the other, and so on

and so forth, dynamically, and without any external influence. In an average of

10 executions, can be seen that the values are nearly divided halfway, with both

objectives getting half the population.

The results after 500 generations of a multi-objective optimization TSP in-

stance, can be seen in figure 4.3, using greedy repairs, one for each objective,

a random repair, and the repair using “groups of solutions”, where each solution is

108 CHAPTER 4. MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION FOR ...

Figure 4.2: Number of solutions for each of the two objectives for a maximum of
100 generations of a bi-objective problem: on the left are the values for a single
execution; on the right are the average values of 10 executions.

repaired considering only its own objective, regardless of the other solutions. Even

using only the figure, without any further analysis, it’s obvious that the greedy re-

pair, as expected, obtained good results in the respective objective, but very bad

results on the other, and is not a good repair mechanism, as for the other two,

is also easy to conclude that the Pareto front reached using the “group” repair

method is much better than the random repair, because the resulting Pareto front

has clearly a better approximation to the Pareto optimal front; has a better diver-

sity of the solutions, as they are spread through larger values for both objectives;

and even has a larger number of solutions in the Pareto front.

4.4 Replacing the population

The main difference between a single-objective and a multi-objective optimization

problem, is that a single-optimization problem returns a single solution, and a

multi-objective returns a set with the best trade-off solutions, the Pareto set, as

seen in the previous figure, where the Pareto set in represented using their im-

ages, i.e., the Pareto front. How to make the differential evolution algorithm to

108

4.4. REPLACING THE POPULATION 109

Figure 4.3: Pareto front after 500 generation, for the kroAB100 problem, using a
random repair, and the repairing each solution considering its own objective.

keep these solution between generations has already been discussed, not how to

actually found them. Although three different approaches will be shown, the basic

idea is the same: using all solutions in the population, rank the solutions according

to some criteria, and assign each solution a diversity measure. The first approach

uses the Pareto dominance concept, in the same form as the NSGA-II, to replace

the population for the next generations, other uses the convex hull, and the third

uses a concave hull.

Pareto dominance

The most used evolutionary multi-objective algorithm to compare new algorithms

with, is the NSGA-II algorithm [87, 29, 11], and for this reason, its technique to

replace the population from one generation to the next will be used in DE.

To select which solutions will be kept for the next generation, the NSGA-II al-

110 CHAPTER 4. MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION FOR ...

gorithm first assigns all solutions a ranking value, based on how many layers of

non-dominated solutions, each solution has above it, and then uses a crowding

distance, to assure a diversity in the population. To assign a rank to each solution,

first it joins the current population with the offspring, and using this combined

population, will determine the non-dominated solutions. This non-dominated so-

lution will be assign the ranking zero, as it doesn’t have any other non-dominated

set above it. This set is then removed from the population, and a new non-

dominated set is determined, and assigned to rank one, has this second set has

one set that dominates it. This second set is then removed from the population,

and the process continues until a ranking is assigned to all solutions. This pro-

cess is illustrated in figure 4.4(a), showing the rank assigned to each solution.

Although the figure shows all solutions ranked, practice it only needs to rank as

many solutions as the number of solutions in the initial population, and the reason

is simple: this procedure is used to select a population of size Np, from a popula-

tion of size 2Np (remember the offspring were joined to the population), so when

more than Np solutions are ranked, no more are needed, as the best Np solutions

are already selected. Supposing all solutions are represented in figure 4.4(a), only

half of them (seven in this case) needed to be ranked, meaning only solutions in

the first two rankings (in this example) are needed, because the first two ranks

together have nine solutions from the seven needed. Next is the calculating of the

crowding distance, to assure a diversity in the population. The crowding distance

is only calculated using solutions the the same rank, there is no crowding distance

between solutions in different ranks. For a two dimensional problem, the crowd-

ing distance is calculated using the principle of the Pythagoras’s theorem, adding

the distance of the sides of the right triangle between the two neighbours of every

solution, as shown in figure 4.4(b), to calculate the crowding distance of the ith

solution. The concept is extended to upper dimensions. A detailed explanation of

each of these procedures is in the NSGA-II algorithm, in [23].

110

4.4. REPLACING THE POPULATION 111

(a) Ranking the Pareto fronts. (b) Crowding distance

Figure 4.4: The NSGA-II selection using Pareto dominance: in (a) the ranking
procedure, in (b) the crowding distance.

Convex hull

As seen in figure 4.4(a), the ranking of the non-dominated consists in finding the

different layers of solutions, similar to the onion-peeling concept, except that, in-

stead of peeling the “whole” onion, it was cut in four parts, and only the lower left

part is peeled. A simple algorithm for the onion-peeling is using the convex hull

to determine each layer, and the same principle can be used to rank the solutions,

instead of the Pareto dominance.

Although almost all research in multi-objective optimization problems use the

concept of Pareto dominance, the convex-hull has the advantage having efficient

algorithms to determine it, and some researchers have used it before [60, 79, 91,

4].

From the different algorithms to determine the convex hull of a set of points,

some work in multi-dimensional space, others only in two dimensions. Due to the

complete convex hull not being needed to determine the Pareto front, a modified

version of the Graham’s scan algorithm was used, that determine only a section of

the convex hull. The caveat is that this algorithm only works in two dimensions,

112 CHAPTER 4. MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION FOR ...

i.e., we are limited to work in bi-objective optimization problems, but if necessary,

a different algorithm could be used, removing this limitation.

The modified algorithm works like this: First, the solutions are ordered in

lexicographic order, using the first objective (assuming first objective is in the x

coordinate), and if two solutions have the same value for the first objective, sort

them by the second objective. Then find the solution with the minimum value

for the second objective (assuming a minimization problem), and using Graham’s

scan, find the convex hull only using the solutions up to the one found. The

reasoning behind this is simple, in a minimization problem, the solutions are in the

third “quadrant”, if thinking in the trigonometric circle, i.e., where are the lower

values for both axis. If the search for the hull would be allowed to continue passing

the solution with the minimum value for the second objective, obviously, those

values would start raising, and those values would no longer be the minimum

values for that objective. If the initial lexicographic order of the solutions are

altered, this algorithm would works with problems other then minimization, it’s

just a matter of thinking to which “quadrant” the solutions will evolve, and sort

accordingly.

This algorithm for the convex hull is used to determine the ranks for each so-

lution much the same the Pareto dominance is used if the NSGA-II algorithm: the

current population is joined with the offspring, and using this joint population,

the appropriate section of the convex hull is determined and the solutions belong-

ing to it are assigned rank zero and removed from the joint population. The next

layer of the convex hull is determined, but this time is assigned the rank one. The

process continues until at least as many solutions are ranked as the size of the

initial population Np. The process is illustrated in algorithm 4.3. The sort pro-

cedure in line 4 depends in the type of problem, i.e., if the scan for the convex

hull is to be made using the lower part, (problems where the second objective is

to be minimized), the solutions must be sorted in ascending order, allowing a left

to right scan, otherwise they are sorted in descending order (in problems where

112

4.4. REPLACING THE POPULATION 113

the second objective is to be maximized), meaning the scan for the convex hull

is made using the upper part, or right to left scan. Lines 7-15 allow to find the

convex hull in only a subset of the entire population, depending on the type of

problems. When both objectives are to be maximized (max-max), the Pareto front

is located towards (∞,∞), as such, the only solutions needed to be searched to

find the respective section of the convex hull are those up to the maximum value

of the y-coordinate (the second objective), otherwise the convex hull would start

descending, and those are not the optimum solutions for a max-max problem. If

the first objective is to be maximized but the second is to be minimized (max-min

problem, meaning the Pareto front is towards (∞,−∞)), then the scan only needs

to start in the solution with the minimum value of the y-coordinate (remember the

solutions are sorted according to the x-coordinate), because those before have an

higher value for the second objective, but a lower value for the first, which is not

the type of optimum solutions for a max-min problem. Starting with the lowest

y, means that it starts with the “best” solution considering the second objective,

but as the value for the second objective gets worse, the value for the first (the x-

coordinate) gets better, until it reaches the last solutions in the population, which

is the one with the maximum value for the first objective. A similar analogy can be

made for the other two. Apart from limiting the search of solutions in population

from start_idx position to end_idx position, lines 16 to 24 constitute the Graham’s

scan algorithm to find the convex hull. Each convex hull section found is placed

in the ranked_population list, meaning the first element of this list is the solutions

with the lowest rank, in the second element are the solutions with the second low-

est rank, and so on. The main loop makes this whole procedure repeats until more

solutions than the population size Np are ranked.

As this ranking procedure is very unlikely to return the exact number of so-

lutions needed, some need to be discarded. To select the solutions to discard,

the crowding distance is used to assure that the solutions discarded are those in

a more crowded location, and not isolated solutions, assuring, this way, a diver-

114 CHAPTER 4. MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION FOR ...

Algorithm 4.3 Rank solutions using convex hull.
Input: population
Output: ranked_population

1: ranked_population← empty list
2: count← 0
3: while count < Np do
4: sort population according to type of problem // min-min, min-max,

max-max, max-min
5: start_idx← 1
6: end_idx← sizeof(population)
7: if problem is max-max then
8: end_idx← index of maximum value of y-coordinate
9: else if problem is min-max then

10: start_idx← index of maximum value of y-coordinate
11: else if problem is min-min then
12: end_idx← index of minimum value of y-coordinate
13: else if problem is max-min then
14: start_idx← index of minimum value of y-coordinate
15: end if
16: hull← population[1] // first element of population
17: for solution in population[start_idx : end_idx] do
18: while sizeof(hull) > 1 and turn(hull[-2], hull[-1], solution) is

clockwise do
19: remove hull[-1]
20: end while
21: if solution 6= hull[-1] then
22: insert solution in hull
23: end if
24: end for
25: remove all solutions in hull from population
26: insert hull in ranked_population
27: count← count + sizeof(hull)
28: end while

114

4.4. REPLACING THE POPULATION 115

sity in the population. The crowding distance is the same used in the NSGA-II

algorithm, and described in [23].

Using the convex hull ranking and the crowing distance, the population is re-

placed for the next generation, according to algorithm 4.4. Due to the way the

ranking procedure works, all solutions up to those in the last rank are guaranteed

to survive to the next generation, and the first loop (lines 5-8) guarantees that,

also counting the number of solutions still missing. From those solutions in the

last rank, only those with the higher diversity should pass to the next generation,

up to the number of missing solutions, and this is accomplished by calculating the

crowding distance of all solutions in the last rank, sorting those solutions in re-

verse order using the crowding distance, i.e., those in less crowded areas are first,

and selecting the missing number of solutions from the first sorted ones.

The main advantage of ranking the solutions using the convex hull instead

of the Pareto dominance is the existence of efficient algorithms to compute the

convex hull, on the other hand, one possible disadvantage is when the Pareto

front is non-convex, the convex hull can have some difficulties, as the solutions in

the non-convex area would get a worse rank, and may even be discarded, leading

to a possible empty zone in the Pareto front.

Concave hull

But why go from creating the Pareto front using the Pareto dominance to the con-

vex hull? There are a whole lot of possible solutions in the space between the

two approaches. Consider the Pareto front in figure 4.5(a): all solutions presented

there belong to the Pareto front, and will be in the first rank, using when using the

Pareto dominance, but when thinking in the “big picture”, i.e., on the final solution

to be picked by the decision maker, it’s obvious even to the naked eye, that some

are better solutions, while others are worse. For instance, solutions similar to so-

lution D, although belonging to the Pareto front, are very unlikely to be chosen

116 CHAPTER 4. MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION FOR ...

Algorithm 4.4 Replacing the population for the next generation, using convex hull
ranking and crowding distance.
Input: population, trial_solutions
Output: population

1: count← Np
2: insert trial_solutions into population
3: ranked_population← rank population using convex hull
4: population← empty list
5: for rank in 1 to sizeof(ranked_population) - 1 do
6: insert solutions in ranked_population[rank] to population
7: count← count - sizeof(rank)
8: end for
9: if count > 0 then

10: calculate crowding distance for ranked_population[-1] // Last
ranked_population

11: sort ranked_population[-1] according to reverse crowding distance
12: insert first count solutions in ranked_population[-1] into population
13: end if

by the decision maker, because both solutions C and E are almost as good as solu-

tion D in one objective, but are much better in the other. If the algorithm would

“discard” those solutions from the Pareto front, not much information would be

lost.

On the other hand, when considering the convex hull, like in figure 4.5(b), only

solutions A and E would be in the Pareto front, i.e., only those solutions would be

in the rank zero. This way, much information would be lost, as, for instance,

both solutions B and especially C have a good trade-off, when compared with the

solutions in the first rank. Using the convex hull ranking approach, solutions B,

C and D would all be in a second rank, although the information each of them

brings to the final decision process is very different.

Based on this reasoning, we introduce a concave hull selection mechanism,

where not all non-dominated solutions (using the Pareto dominance) will be in

the same rank, but not all will be passed to a later rank. Look again at figure

4.5(a): solution D, when compared with solutions C and E, makes an angle of

almost 90º, i.e., looking at the triangle formed by solutions C, D and E, is almost

a right-angled triangle. The concept of Pareto dominance can be seen as right-

116

4.4. REPLACING THE POPULATION 117

(a) Pareto dominance (b) Convex Hull

Figure 4.5: A possible Pareto front using two different approaches.

angled triangles, where the hypotenuse is the segment between the two solutions,

and there cannot be any solutions bellow the other legs of the triangle. On the

other hand, looking at figure 4.5(b), and considering only solutions A, C and E, is

easy to see that those solutions are almost collinear, i.e., the angle formed by them

is close to being a straight angle. This means that solution C is a good solution,

and should not be passed to a secondary rank, as it would be if using the convex

hull. The idea is to select a threshold angle α, between 90º (Pareto dominance)

and 180º (Convex hull), and if the angle formed by three consecutive solutions is

higher than the threshold angle, the last solution is kept in the same rank. Figure

4.6(c) shows the solutions selected for the first rank using this procedure, and

using α = 135º. As can be seen, solution D is, correctly, passed on to a secondary

rank, while solutions B and C are kept in the first rank, as they have good trade-off

values. However, if the threshold angle were higher, for instance, α = 150º, then

solution B would be passed to a second rank, and only solutions A,C and E would

be in the first rank.

The algorithm to determine the concave hull is similar to the convex hull, but

instead of checking that every three solutions in the hull make a counter-clockwise

118 CHAPTER 4. MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION FOR ...

turn, the angle between them is used to decide to keep or discard a solution.

First, the solutions are ordered and only those in the appropriate quadrant are

searched to find the hull, much the same way as for the convex hull, considering

also the type of problem. As the solutions are ordered, from one solution to the

next, the value for the first objective never gets worse: either is better or is equal,

in this latter case, with a worse value for the second objective. For this reason,

every counter-clockwise turn can be accepted, as a “turn around” would never

happen due to the ordering and the section of solution used in the search. In

the concave hull approach, the clockwise turns are not automatically discarded,

as they indicated a concave angle, and some but not all concave angles are to be

accepted. Algorithm 4.5 shows the implementation of the search for a section of

a concave hull, and works like this: for all solutions to be searched, if the two last

solutions in the hull with the new solution make a clockwise turn, but the angle

between the three is lower than α, it means that the last solution in the hull is

worse than the other two being considered, and must be removed from the hull.

This removal process is repeat until either the turn is not clockwise, or the angle

in higher than α. Consider state in figure 4.6(a), where the hull is composed by

solutions A,B,C and D, and solution E is under evaluation to be included. Clearly,

when looking at the turn that the three solutions under consideration made, is a

clockwise turn, meaning is not automatically accepted, is necessary to determine

the angle. Assuming α = 135º, clearly the angle made by the three solutions is

lower (is close to 90º, as seen before), as as such the last solution in the hull (D) is

removed, and the last three solutions (now B, C and E) are again evaluated. This

time the turn is counter-clockwise (see figure 4.6(b)), and as such the process can

continue, and solution E is inserted in the hull, as shown in figure 4.6(c).

However, as is, the search could end up finding hulls like those in figure 4.7(a),

as every three consecutive solutions in it are either counter-clockwise turns, or

when clockwise, their angle is higher then α (a value of α = 135º were used).

But clearly, if before an argument was made about solution D not being a good

118

4.4. REPLACING THE POPULATION 119

(a) (b)

(c)

Figure 4.6: Concave hull search in progress. In (a), as CDE is a clockwise turn,
does ∠CDE is lower then the threshold? In (b) solutions BCE make a counter-
clockwise turn. In (c) are the final hull.

120 CHAPTER 4. MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION FOR ...

Algorithm 4.5 Search for a section of the concave hull.
1: hull← population[1] // first element of population
2: for solution in population[start_idx : end_idx] do
3: while sizeof(hull) > 1 and turn(hull[-2], hull[-1], solution) is clockwise

and angle(hull[-2], hull[-1], solution) < α do
4: remove hull[-1]
5: end while
6: if solution 6= hull[-1] then
7: insert solution in hull
8: end if
9: end for

final solution for the decision maker, solutions F, G, H and I are not good solutions

either, as all have values for both objectives worse than solution E. Uninteresting

solutions as those should be discarded, but as is, the algorithm for the concave

hull selects them as the threshold angle is verified.

What all those solutions have in common, when looked under the Pareto dom-

inance, is the fact that they all are dominated solutions, in this case, dominated

by solution E. Relating the concave hull with the Pareto dominance, it’s easy to

see that the only solutions interesting to include in the concave hull are those in

the non-dominated set, but not all solutions in the non-dominated set are to be

included in the concave hull, as is the case of solution D.

Algorithm 4.6 shows the final algorithm to rank a set of solutions using the

concave hull approach, where after the angle analysis, only those solutions that

are not dominated by the last solution in the hull are to be included in it. This is

much simpler to compute than the full Pareto dominance, as is only need see if

the next solution is non-dominated relating to the last solution already in the hull,

a full blown comparison of Pareto dominance is not needed.

When compared to the convex hull, this approach should allow a better ap-

proximation in the case of non-convex Pareto fronts, for obvious reasons, albeit

needing one more parameter α, than any of the other two approaches. A good

starting value for α is halfway through the Pareto dominance and the convex hull,

around the 135º.

120

4.4. REPLACING THE POPULATION 121

(a)

(b)

Figure 4.7: In (a) the problem with concave hull search. After correcting the
search algorithm, it correctly identifies the concave hull in (b).

122 CHAPTER 4. MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION FOR ...

Algorithm 4.6 Rank solutions using convex hull.
Input: population, α
Output: ranked_population

1: ranked_population← empty list
2: count← 0
3: while count < Np do
4: sort population according to type of problem // min-min, min-max,

max-max, max-min
5: start_idx← 1
6: end_idx← sizeof(population)
7: if problem is max-max then
8: end_idx← index of maximum value of y-coordinate
9: else if problem is min-max then

10: start_idx← index of maximum value of y-coordinate
11: else if problem is min-min then
12: end_idx← index of minimum value of y-coordinate
13: else if problem is max-min then
14: start_idx← index of minimum value of y-coordinate
15: end if
16: hull← population[1] // first element of population
17: for solution in population[start_idx : end_idx] do
18: while sizeof(hull) > 1 and turn(hull[-2], hull[-1], solution) is

clockwise and angle(hull[-2], hull[-1], solution) < α do
19: remove hull[-1]
20: end while
21: if solution is not dominated by hull[-1] then
22: insert solution in hull
23: end if
24: end for
25: insert hull in ranked_population
26: remove solutions in hull from population
27: count← count + sizeof(hull)
28: end while

122

4.4. REPLACING THE POPULATION 123

Figure 4.8: Pareto front obtained using different replacement operators.

In figure 4.8 are the Pareto fronts obtained for one execution of a multi-

objective TSP, using all three approaches, and with different values for α in the

concave hull approach. Unlike in the different repair mechanisms, here is not

clear which is the best overall option, and probably different executions of the

same configuration will return different values, as such further analysis is needed

to conclude about the replacement operator. All three approaches will be available

in the final evolutionary multi-objective optimization algorithm.

Further statistical analysis is needed to see which type of replacement operator

is expected to perform better. In figure 4.9 are the boxplot of the results of the

hypervolume quality indicator, for the kroAB100 problem, a multi-objective trav-

eling salesman problem, using a population of 500 individuals, with F = 0.9 and

CR = 0.7, with a maximum of 500 generations. It’s clear that the Pareto domi-

nance based replacement operator returns the best non-dominated solutions, with

the convex hull (CVH) returning the worst and the concave hull (CCH) some-

124 CHAPTER 4. MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION FOR ...

Figure 4.9: Hypervolume’s boxplot for 10 executions of a multi-objective TSP, with
a maximum of 500 generations, for replacement operators based on the Pareto
dominance, on the concave hull (CCH) with different values for α, and on the
concave hull (CVH).

where in the lower middle. However, just looking at different values for α, the

middle 135º return the best non-dominated set of solutions, and the most regular,

with the values for the different executions closer to each other than any other

approach.

The hypervolume is a unary indicator that returns the value of the area covered

by the Pareto front, considering one reference point (refer to section 2.2.4 for fur-

ther details), and table 4.1 present the mean and average values the hypervolume

for these approaches where is clear both the best non-dominated solutions, and

the more regular solutions using the concave hull with α = 135º, albeit with worse

results. But have to be said that these conclusions are drawn based on the hyper-

volume indicator, other quality metrics may have different results. The cardinality

of the Pareto front is very similar, with the Pareto dominance having as slightly

higher number of solutions. However, in table 4.1 is also the mean and standard

deviation of the time, in seconds, for ten executions of the algorithm, and here is

124

4.4. REPLACING THE POPULATION 125

Cardinality of Hypervolume Time

Pareto front µ σ µ σ

Pareto dominance 206 2.6182E+10 1.2086E+8 7704 422
Concave hull (α = 120º) 195 2.6011E+10 1.5873E+8 3979 1346
Concave hull (α = 135º) 194 2.6015E+10 1.1200E+8 3748 803
Concave hull (α = 150º) 194 2.5967E+10 1.7149E+8 3813 825
Convex hull 194 2.5860E+10 1.2823E+8 4995 731

Table 4.1: Statistical measures after for 10 executions of a multi-objective TSP,
with a maximum of 500 generations, for the different approaches for a replace-
ment operator.

clear that the complexity of the Pareto dominance is much higher than any of the

hull-based approaches, and this is due to the existence of efficient algorithms for

determining the hull, which is the main reason for even considering them in the

first place. While the Pareto dominance needs, in average, slightly more than two

hours for each execution of the algorithm, the concave hull needs a little more

than 1 hour, and the convex hull lies somewhere in the middle, with an average

around the hour and twenty minutes for each execution. From the hull-based vari-

ations, the one with α = 135º is both the fastest and the one that returns the best

non-dominated set. For reference, these results were on a Intel Core i7-5820K, 6

cores with hyper-threading, running at 3.30GHz and 32Gb of memory.

A final metric is the empirical attainment function, that allow the visualization

of the results obtained by multiple executions of an algorithm, and even com-

pare the outcomes of two algorithms to see exactly where they differ and by how

much. López-Ibáñez et al. [54] developed a software package to plot these func-

tions that we will use to compare these different approaches. In figure 4.10 are the

side by side differences between the empirical attainment function of the Pareto

domination approach with all the others. The dashed line represents the median

attainment surface of each approach, and the bottom and upper line represent the

best solutions attained in all executions on both approaches under consideration,

and the worst solutions for any execution of both approaches, respectively, and

the differences between approaches are the darker areas. In the top row we can

126 CHAPTER 4. MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION FOR ...

observe that the Pareto domination approach attains better results almost every-

where, but the concave hull, with both α = 120º and α = 135º got some results

better in the lower right, i.e., for the objective 2. In the other two, both the con-

cave hull with α = 150º and the convex hull, attain almost always much worse

results that the Pareto dominance approach, particularly the last one, as can be

seen in the bottom right image.

4.5 Using multiple populations

In the multi-objective’s adaptation of the repair mechanism, explained previously,

each solution is repaired with the focus on only one objective, grouping this way,

solutions that works toward the same objective. Although with a different motiva-

tion and implementation, in practice, this is a similar concept to having multiple

populations.

Several authors have already used the differential evolution algorithm with

multiple populations, for instance Tasoulis et al. [84], de Falco et al. [21, 20],

Appoloni et al. [3] and Weber et al. [88], they all suggested using more than one

population, but their focus was on parallel computing. All their implementations

evolved the different sub-populations using different processors, i.e., each popula-

tion evolves independently from all others, in its own processor. Of course, if each

sub-population were to evolve completely isolated from all others, solution-wise,

it would be no different than to use just one population, and execute the algorithm

as many times as the number of populations. They all suggested a separate evolu-

tion of the sub-populations, but using some predefined rules to exchange solutions

between sub-populations at certain times. For instance, Tasoulis et al. suggested

that at each generation, the best solution of each sub-population can migrate to

the next sub-population, in a network with a ring topology1, according to a prede-

1Network topology is the way in which a set of computer nodes are connected to each other.
The ring topology means that each computer is connected to two other nodes, forming a closed
circuit.

126

4.5. USING MULTIPLE POPULATIONS 127

Fi
gu

re
4.

10
:

D
if

fe
re

nc
es

in
th

e
es

ti
m

at
ed

at
ta

in
m

en
t

fu
nc

ti
on

be
tw

ee
n

th
e

ou
tc

om
es

of
th

e
Pa

re
to

do
m

in
at

io
n

ap
pr

oa
ch

an
d

al
lt

he
ot

he
rs

.

128 CHAPTER 4. MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION FOR ...

fined migration rate. This migration mechanism allows the sharing of information

between sub-populations, and, if any sub-population find itself stuck in a local op-

timum, receiving some “foreign” solution may permit it to escape. The difference

between the different implementations is the suggested network topology, and the

rules to migrate solutions between the sub-populations.

Other authors [2, 16] used multiple populations not for parallel computing,

but to use different parameters and/or mutation strategies in each sub-population,

hoping for each sub-population to take advantage of the respective technique and

propagate that to the other sub-populations when they migrate solutions.

Out motivation to experiment with multiple populations is neither parallel

computing, nor to try different parameters or strategies. Distributed processing

is already used in the single-objective algorithm to distribute the genetic oper-

ators between the different cores of the CPU, and the same implementation is

to be maintained for the multi-objective algorithm. Also, as seen extensively, in

multi-objective problems there is no “best” solution to be migrated between sub-

populations.

Our purpose is to experiment a generalization of the repair mechanism, where

each solution is repaired using its own objective, creating this way virtual groups

of solutions, each group with his own repair objective. Based on this concept, the

usage of multiple populations was implemented, using a sub-population to evolve

each objective, the difference being that instead of migrating solutions from pop-

ulation to population, we decided to use completely independent populations. As

this his, in fact, the same as using a greedy repair algorithm for each objective, at

the end of the evolutionary process, the solutions are very good for each objective

individually, but very bad for every other objective (see figure 4.3 on page 109),

instead of using always separate populations, these are used in the beginning of

the evolution, and at a certain δ point, all sub-populations are merged into one,

and the evolutionary process continues with just this single population. The idea is

128

4.5. USING MULTIPLE POPULATIONS 129

to initially reach good values for each objective regardless of the other objectives,

and then, with all the solutions together in the same population, evolve those

solutions to, hopefully, obtain good trade-offs between each objective.

We choose this rather unconventional mechanism to merge the different sub-

populations instead of migrating solutions between them, for two reasons: first, a

similar concept is already implemented in the repair mechanism, as each virtual

group of solutions evolves using random chosen solutions from all population,

allowing a dynamic migration from one group to another; and second, in evolu-

tionary multi-objective algorithms there isn’t one “best” solution to use to migrate

to another sub-population, and using a random solution don’t seemed justified as,

again, this is similar to what is done in the repair mechanism.

As to when to join the different sub-populations into one, considering the evo-

lutionary multi-objective optimization algorithm uses as a stopping criteria the

maximum number of generations, we decided to base this decision on the num-

ber of generations already calculated, from the maximum number of generations

to calculate. Several options was tested: from joining the solutions after 10%

(δ = 0.1), of the maximum number of generations have been calculated, after

20% (δ = 0.2), after 30% (δ = 0.3), to a maximum of after 40% (δ = 0.4) of the

number of generations. To simplify the writing, from now on, when referring to

x% of the generations, we are referring to using separated populations for x% of

the maximum number of generations given, after that number the sub-populations

are joined into one, and the evolution proceeds.

Table 4.2 shows the mean and standard deviation of the hypervolume metric

for 10 executions of a multi-objective TSP, after 500 generations. The first line

(δ = 0.0) serves as a base comparison, and means no sub-population were used,

all solutions were always in the same (single) population. All others means that

after x% of generations have been calculated, the solutions are joined into a single

population and the evolution continues until the maximum number of genera-

tions is reached. From the values in the table we can see that, considering the

130 CHAPTER 4. MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION FOR ...

δ
Cardinality of Hypervolume

Pareto Front µ σ

0.0 206 2.6182E+10 1.2086E+8
0.1 227 2.6208E+10 0.9174E+8
0.2 227 2.6326E+10 0.8116E+8
0.3 210 2.6377E+10 1.2924E+8
0.4 225 2.6283E+10 1.0496E+8

Table 4.2: Statistical measures, for 10 executions of a multi-objective TSP, with a
maximum of 500 generations, using two separate sub-populations, one for each
objective. The top line (δ = 0.0) means no sub-populations were used, all solutions
were always in the same population, an serves as comparison.

hypervolume metric, using sub-populations always gave better results than using

one single population, reaching its peak when δ = 0.3. When δ > 0.3 the algo-

rithm don’t have enough generations left to reach good trade-off solutions, and

the results start to deteriorate.

Also, if when δ = 0.3 we have the best overall result, the δ = 0.2 case, although

with a slightly lower value, it has a much lower standard deviation, which means

that the different results are more consistent through different executions. This

is confirmed with a boxplot of the values, in figure 4.11, here the much higher

diversity of δ = 0.3 is clearly seen.

The differences between the estimated attainment functions, when using a sin-

gle population or using two populations with the different options on when to

merge the populations back into one is shown in figure 4.12. In it we can observe

not only which technique are better, but where does the better results come from,

for instance, in the bottom right image we can see that joining the populations

after 40% (δ = 0.4) of the generations have passed, results in much better val-

ues in the extremes, i.e., for each objective when considered individually, which

is consistent with using specialized populations for too much time, but the single

population have better results in the zone of the trade-off solutions, as no spe-

cialized population is used. As for the others, the decrease of good results using

the single population is clear, as the percentage of generations using separated

130

4.5. USING MULTIPLE POPULATIONS 131

Figure 4.11: Hypervolume’s boxplot for 10 executions of a multi-objective TSP,
with a maximum of 500 generations, using two separate sub-populations, one for
each objective.

populations grows, until δ = 0.3. But the one thing clear in the images is that the

improvement in the results are mainly in the extremes, not in the trade-off area,

where, supposedly, should lye the interesting solutions.

In figure 4.13 are the differences between the estimated attainment function as

the percentage of generations used in separated solutions increases. In it we can

see that in the extremes, the results always improve when increasing the number

of generations with separated populations, but in the trade-off zone, after an ini-

tial improvement of results, is not clear that increasing the number of separated

solutions results in better results, in fact, in the bottom right image is clear that

raising δ from 0.3 to 0.4 with separated solutions, the results in the trade-off zone

are much worse, meaning that this type of approach needs a number minimum of

generations to get good trade-off solutions.

As, depending on the moment in which the populations were to be joined, this

could lead to the algorithm not having enough time to reach those good trade-

132 CHAPTER 4. MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION FOR ...

Figure
4.12:

D
ifferences

in
the

estim
ated

attainm
ent

function
betw

een
using

a
single

population
or

tw
o

sub-populations,
w

ith
different

option
on

w
hen

to
m

erge
back

to
one

population.

132

4.5. USING MULTIPLE POPULATIONS 133

Fi
gu

re
4.

13
:

D
if

fe
re

nc
es

in
th

e
es

ti
m

at
ed

at
ta

in
m

en
tf

un
ct

io
n

w
he

n
ra

is
in

g
th

e
pe

rc
en

ta
ge

of
th

e
nu

m
be

r
of

so
lu

ti
on

s
us

in
g

se
pa

ra
te

d
so

lu
ti

on
s.

134 CHAPTER 4. MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION FOR ...

off solutions, as in the δ = 0.4 above, an option to use one more sub-population,

were introduced. This “extra” population is a general one, that would evolve

without a defined objective, and the reasoning behind it is to have “specialized”

sub-populations for each objective, and at the same time, a general population

without objective. The algorithm would evolve all sub-populations separately, and

join them at a certain moment in the evolution, as this would allow that good

trade-off solutions were evolved along with the specialized ones, and when all so-

lutions were to be joined into a single populations, there would be good solutions

all around, not just for each objective. This extra population means that in an

m-objectives problem, there would be m+ 1 populations, where the first m popu-

lations would be assigned each their own objective, and the (m+ 1)th population

would evolve freely. Table 4.3 and figure 4.14 show the obtained results, for the

same problem, with the same initial parameters, and the influence of this “extra”

population is clear, as now there isn’t the need for each sub-population to exist for

so many generations, as the best value is reached is the sub-populations are all

joined with just δ = 0.1, and after this, the more generations the sub-populations

are kept separated, the worse the results are. When using just “specialized” sub-

populations, until all solutions are joined, there are no trade-off solutions, i.e.,

all solutions are good for either objective one or for objective two, but not for

both. As there are no trade-off solutions, the algorithm needs to get very good

solutions for either objective before joining all solutions and start to work in the

trade-off solutions. With this extra population, those solutions exist from the start

of the evolution, so the specialized sub-populations don’t need to extend its work

for so long, when the populations are joined, the lower quality “specialized” solu-

tions, when mating with the already existing trade-off solutions, would allow to

get better solutions, as there are generations to work on them.

In figure 4.16 are differences between the estimated attainment functions,

when using a single population or using three populations with the different op-

tions on when to merge the populations back into one, and the results in the trade-

134

4.5. USING MULTIPLE POPULATIONS 135

δ
Cardinality of Hypervolume

Pareto Front µ σ

0.0 206 2.6182E+10 1.2086E+8
0.1 215 2.6367E+10 1.4138E+8
0.2 212 2.6337E+10 1.2090E+8
0.3 217 2.6301E+10 1.4994E+8
0.4 217 2.6246e+10 1.7065E+8

Table 4.3: Statistical measures for 10 executions of a multi-objective TSP, with a
maximum of 500 generations, using three separate sub-populations: two special-
ized (one for each objective) and the third sub-population evolve freely.

Figure 4.14: Hypervolume’s boxplot for 10 executions of a multi-objective TSP,
with a maximum of 500 generations, using three separate sub-populations: two
specialized (one for each objective) and the third sub-population evolve freely.

136 CHAPTER 4. MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION FOR ...

off zone, unlike those when using just two “specialized” solutions (see figure 4.12)

are much better when using a third “global” population, although here we can see

that as the number of generations using separated population increases, these re-

sults do not improve, in fact the results using a single population start to improve

in these area than using separated populations.

When comparing the estimated attainment functions of increasing the number

of generations using separated solutions, in figure 4.16, after the δ = 0.1 mark,

all others don’t show any clear improvement, by the contrary, the results show

that increasing the number of generations using separated populations decrease

the quality of the overall solutions. Only when comparing the single population

with the δ = 0.1, do the results show a clear improvement, and not only in the

extremes, but all around.

Whichever way to create the sub-populations and when to join them back to-

gether, the implementation needs to be consistent with the single-objective ver-

sion. As in the differential evolution algorithm, the parameter Np is the num-

ber of solutions in “the” population, instead of creating each sub-population with

that number of solutions, we split the value of Np between the number of sub-

populations, i.e., if using p sub-populations, each population from 2, .., p would

have bNp/pe solutions in it, and the first would have Np − bNp/pe · (p − 1), to

make sure that altogether there are Np solutions. An high level description of the

differential evolution multi-objective optimization algorithm is shown in algorithm

4.7.

Another idea is to use the already existing second population, the archive popu-

lation, in the evolutionary process. Usually, the archive population is exactly that,

an archive where solutions are stored, unchanged, until either the evolutionary

process ends, or they are dominated by a new solution in the archive, and must be

removed from it. But once they are in the archive, they are never changed, hence

the usual name “archive” to designate this population. But nothing prevents this

population to be evolved using the evolutionary operators, as the main popula-

136

4.5. USING MULTIPLE POPULATIONS 137

Fi
gu

re
4.

15
:

D
if

fe
re

nc
es

in
th

e
es

ti
m

at
ed

at
ta

in
m

en
t

fu
nc

ti
on

us
in

g
a

si
ng

le
po

pu
la

ti
on

or
th

re
e

su
b-

po
pu

la
ti

on
s,

w
it

h
di

ff
er

en
t

op
ti

on
on

w
he

n
to

m
er

ge
ba

ck
in

to
on

e
po

pu
la

ti
on

.

138 CHAPTER 4. MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION FOR ...

Figure
4.16:

D
ifferences

in
the

estim
ated

attainm
ent

function
w

hen
raising

the
num

ber
of

generations
used

by
three

separated
populations.

138

4.5. USING MULTIPLE POPULATIONS 139

Algorithm 4.7 High-level differential evolution multi-objective optimization algo-
rithm, using multiple-populations.

1: population← empty list
2: for i = 1..p do
3: sub-population← initialization()
4: insert sub-population in population
5: end for
6: save in the archive the non-dominated solutions in all sub-population
7: while not end criteria do
8: for all sub-population in population do
9: mutants← mutate(sub-population)

10: repaired← repair(mutants)
11: trials← crossover(repaired)
12: sub-population← replace(sub-population, trials)
13: end for
14: if in generation to merge populations then
15: merge all solutions from each sub-population into one
16: end if
17: update archive of non-dominated solutions using all sub-population
18: end while

tion is, although this evolution cannot be made together, and has two differences:

first, solutions in the archive are not going back to the main population, once they

are in the archive, they can either help to improve the archive or not, but nei-

ther the original solutions in the archive nor the trial solutions, obtained after the

crossover operator being used in the archive population, are send back to the main

population. The second difference, is that the archive population is not replaced

using the respective “trial archive”, but rather updated, i.e., the archive popula-

tion and the trial archive are joined and all dominated solutions in this merged

population are removed. Evolving the archive population, as it contain only non-

dominated solutions, should help to approximate the real Pareto front. Algorithm

4.8 represents an high level description of the process, and the difference from the

base multi-objetive algorithm is after the populations being replaced for the next

generation, but before updating the archive with the non-dominated solutions,

the evolutionary operators are used in the archive population (except the replace,

as explained), and the process of updating the archive uses not only the existing

archive and the new population, but also the trial archive population.

140 CHAPTER 4. MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION FOR ...

Algorithm 4.8 High-level differential evolution multi-objective optimization algo-
rithm, using the archive population in the evolutionary process.

1: population← initialization()
2: save in the archive all non-dominated solutions in the population
3: while not end criteria do
4: // Evolve the main population
5: mutants← mutate(population)
6: repaired← repair(mutants)
7: trials← crossover(repaired)
8: population← replace(population, trials)
9: // Evolve the archive population

10: mutant_archive← mutate(archive)
11: repaired_archive← repair(mutant_archive)
12: trial_archive← crossover(repaired_archive)
13: update archive with solutions in population ∪ trial_archive
14: end while

Cardinality of Hypervolume

Pareto Front µ σ

Single population 206 2.6182E+10 1.2086E+8
Evolving the archive 215 2.6288E+10 1.2247+E8

Table 4.4: Statistical measures, for 10 executions of a multi-objective TSP, with
a maximum of 500 generations, using a single population and also evolving the
archive population.

As can be seen in table 4.4 and figure 4.17, evolving the archive population

along with the main population also improves the hypervolume quality metric,

when compared with using only one population, and although not reaching the

best average hypervolume value (see results of table 4.3), the results in the boxplot

shows that the results are more consistent across different executions than any

other multi-population approach tested.

When comparing the difference between the estimated attainment function,

in figure 4.18, the results confirm that evolving the archive solutions produces a

better outcome than using it just to store the non-dominated solutions, not just in

the extremes, but also in the trade-off area, where the interesting solutions should

be.

Overall, the results show that our evolutionary multi-objective optimization al-

140

4.5. USING MULTIPLE POPULATIONS 141

Figure 4.17: Hypervolume’s boxplot for 10 executions of a multi-objective TSP,
with a maximum of 500 generations, using a single population and also evolving
the archive population..

Figure 4.18: Differences in the estimated attainment function using the archive
just to store the non-dominated solutions and evolving it.

142 CHAPTER 4. MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION FOR ...

gorithm produces better results using more than one population, even using our

unorthodox method of not migrating elements between sub-populations, although

using just two “specialized” sub-populations probably isn’t worth it, as the good

results are mainly due to existing good “single-objective” solutions, i.e., good solu-

tions that only represent a single objective, not the entire multi-objective problem,

and probably are uninteresting solutions from the decision maker perspective.

4.6 Self-adaptive parameters

Another technique used in differential evolution is to adapt the parameters during

the evolutionary process, instead of using always the initial value. Although the

differential evolution algorithm has very few parameters, and, according to one of

the authors, is difficult not to get any result, regardless of the values for the param-

eters [45], several DE variations using adaptive and/or self-adaptive parameters

were developed. From the three control parameters of the differential evolution

algorithm, only the scale factor F and the crossover rate CR are usually subject

to adaption, leaving the population size Np as the only free parameter. Two of

the most used algorithms using adaptive parameters are the self-adaptive differ-

ential evolution (SaDE) by Qin and Suganthan [74, 73] and the jDE, by Brest

et al. [10]. In the SaDE algorithm, both the learning strategy used to create

the mutant individual (equations (2.1.4)-(2.1.8)) and the parameters F and CR

are adapted during the evolutionary process. The first implementation of SaDE

[74] used two strategies: DE/rand/1 (equation (2.1.4)) and DE/current-to-best/1

(equation (2.1.8)) for the mutation process, with a probability for each based on

the success of each strategy in the last generations, i.e., a probability p1 (with

initial value of 0.5) is assigned to each solution in the population, meaning that

strategy DE/rand/1 will be used in that solution with probability p1, otherwise,

the other strategy will be used). In each generation, the number of trial solutions

that used each of the strategies and survived to the next generation is counted,

142

4.6. SELF-ADAPTIVE PARAMETERS 143

and after a certain number of generations, this value is used to recalculate p1. A

crossover rate is also assigned to each solution in the population, initially created

using a normal distribution with center CRm = 0.5 and variance 0.1, denoted

N (CRm, 0.1). In each generation, the value of CR for each trial solution that sur-

vived to the next generation is saved, and after a number of generations, the value

of CRm is recalculated using all saved CR values, and new values of CR for all

solutions are recalculated using this new CRm. The value of the scale factor F is

the only one not self-adapted, as is randomly created using a normal distribution

N (0.5, 0.3) for each solution in every generation. In [73] the authors presented

another version of SaDE, in which they generalized for any number of strategies.

The jDE algorithm [10] is a self-adaptive algorithm, in which each solution is

extended to include the respective parameters F and CR, and in each generation,

the parameters are adapted according to

Fi,g+1 =


Fl + rand() · Fu if rand() < τ1

Fi,g otherwise

, (4.6.1)

and

CRi,g+1 =


rand() if rand() < τ2

CRi,g otherwise

, (4.6.2)

where rand() is a random uniform generator ∈ [0, 1], Fl and Fu represent the

lower and upper limit of the F parameter, and τ1 and τ2 represent the probability

to adjust the parameters. Although this seems to be switching two parameters

by four, in practice the authors suggested using always Fl = 0.1, Fu = 0.9, and

τ1 = τ2 = 0.1.

However, setting apart the different strategies used by SaDE, in practice what

both these self-adaptive algorithms do, is create new values for the parameters F

and CR, using a somewhat controlled random generator.

144 CHAPTER 4. MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION FOR ...

Anyway, if for single-objective, using self-adaptive parameters is a way to ease

the trial-and-error process of searching the best set of parameters for a certain

problem, in multi-objective optimization problems this is even more useful, due

to their final result not being one solution that can be easily compared with other

from another set of parameters, but rather a set of non-dominated solutions. In

evolutionary multi-objective optimization algorithms, the tuning of the parameters

can be a crucial task in trying to get good trade-off solutions in the convergence

vs. diversity objectives for the non-dominated set of solutions, and using a self-

adaptive algorithm can ease this task, as the algorithm itself adapts the parameters

according to its own results.

In the purposed self-adaptive mechanism, similar to the jDE algorithm, each

solution need to have its own set of parameters, so each solution is extended by

two values, to include both F and CR, and is represented by

Xi = (xi, F, CR) , (4.6.3)

where xi is the actual problem solution, F and CR are the control parameters used

to generate solution xi, and Xi is our new high-level solution. In the initial pop-

ulation, random values are assigned to each parameter, using an uniform random

generator ∈ [0, 1].

To adapt the scale factor, we purpose to use the classic DE mutation to evolve

the scale factor, i.e., before creating the mutant solution using three random so-

lutions in the population, use those solutions’ scale factor, and apply the same

operation (in the real domain) to evolve the parameter, using a random value

∈ [0, 1] instead of the scale factor in this mutation. The scale factor for the mu-

tated solution Vi is defined by

VF,i = max (0, min (1, XF,r1 + rand() · (XF,r2 −XF,r3))) (4.6.4)

and the crossover by

144

4.6. SELF-ADAPTIVE PARAMETERS 145

Cardinality of Hypervolume
Pareto Front µ σ

Fixed parameters 206 2.6182E+10 1.2086E+8
jDE 232 2.6656E+10 2.4565E+8
Evolving parameters 172 2.6478E+10 2.2827E+8

Table 4.5: Statistical measures for 10 executions of a multi-objective TSP, with
a maximum of 500 generations, using fixed parameters (F = 0.9, CR = 0.7), the
jDE algorithm and the evolving parameters idea.

VCR,i = max (0, min (1, XCR,r1 + rand() · (XCR,r2 −XCR,r3))) (4.6.5)

where XF,k and XCR,k are, respectively, the scale factor F and the crossover rate

CR, of solution xk, k ∈ {r1, r2, r3}, which are the three random selected solutions

for the mutation operator, the max() and min() functions serve to bound the pa-

rameter in the [0, 1] range, as both parameters need to be bounded by this values.

After the parameters are evolved, the usual operators are applied, but using VF,i

instead of F in the mutation operator, and VCR,i instead of CR in the crossover.

If the trial solution survived for the next generation, the values of the parameters

used to create it are saved with it, and used to evolve the next solutions, otherwise

they are discarded with the respective solution.

The results after 10 executions of the same multi-objective TSP with a maxi-

mum of 500 generations are shown in table 4.5 and figure 4.19. According to the

hypervolume metric, both self-adaptive algorithms return better values that using

fixed parameters, with the jDE algorithm giving the best overall result, and the

results can be confirmed in the figure, where is shown that our approach produces

some outliers, certainly due to the small number of experiences.

To try and justify the differences between the two self-adaptive algorithm, in

figure 4.20 are the average of each parameter in each solution, for every gener-

ation, and in it is clear the difference, as in the jDE algorithm the crossover rate

146 CHAPTER 4. MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION FOR ...

Figure 4.19: Hypervolume’s boxplot for 10 executions of a multi-objective TSP,
with a maximum of 500 generations, using fixed parameters (F = 0.9, CR = 0.7),
the jDE algorithm and the evolving parameters idea.

146

4.6. SELF-ADAPTIVE PARAMETERS 147

(a) jDE algorithm (b) Evolving parameters

Figure 4.20: Average values of the scale factor F and crossover rate CR param-
eters, for each generation, in (a) for the jDE algorithm; in (b) for the algorithm
evolving both parameters.

descends to a value around 0.1, and in our approach it raises to 1.0. This means

that in our approach the crossover is almost never really used, as a value of 1

means that the trial solution would be, in fact, equal to the mutant solution. Also,

probably due to the crossover rate value, the scale factor stabilizes around the

0.45, meaning that it never goes down enough to allow an exploitation of the

domain space.

To try a workaround for the shortcomings of the previous approach, another

formulation was tested for the crossover rate, and in it, it was just changed using

a random value, as

VCR,i = rand(), (4.6.6)

where rand() in a random uniform generator.

In figure 4.21 are the average of each parameter in each solution, for every

generation, using a random crossover rate and evolving the scale factor. The re-

sults are quite different from evolving both parameters (see figure 4.20(b)), as

148 CHAPTER 4. MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION FOR ...

(a) Evolving F , random CR

Figure 4.21: Average values of the scale factor F and crossover rate CR parame-
ters, for each generation, evolving the scale factor and a random crossover rate.

the crossover rate, although still higher that the scale factor, stabilizes around the

0.4 value. As for the scale factor, has a similar evolution, raising in the beginning

of the process to allow the exploration of the search space, and then lowering

to about 0.15, the lowest value of all self-adaptive algorithm tested, for a good

exploitation of the search space.

The results after 10 executions of the same multi-objective TSP with a maxi-

mum of 500 generations for all self-adaptive algorithms are shown in table 4.6.

According to the hypervolume metric, again all self-adaptive algorithms return

better values that using fixed parameters, but now is this latter idea of evolving

the scale factor along with a random crossover rate that gives the best overall re-

sult, with also the lowest standard deviation, meaning that the values are all very

close, and this can be confirmed in the boxplot in figure 4.22, where are shown

the more consistent results, and also that the worst results for this approach is

only slightly worse than the best of the jDE algorithm.

Studying the differences between the different algorithms using the estimated

attainment function, in figure 4.23, are the difference between using fixed param-

eters and all self-adaptive algorithms, and in it we can see that using fixed pa-

148

4.6. SELF-ADAPTIVE PARAMETERS 149

Cardinality of Hypervolume
Pareto Front µ σ

Fixed parameters 206 2.6182E+10 1.2086E+8
jDE 232 2.6656E+10 2.4565E+8
Evolving parameters 172 2.6478E+10 2.2827E+8
Evolving F , random CR 218 2.7071E+10 1.1387E+8

Table 4.6: Statistical measures for 10 executions of a multi-objective TSP, with
a maximum of 500 generations, using fixed parameters (F = 0.9, CR = 0.7), the
jDE algorithm and the two evolving parameters approaches.

Figure 4.22: Hypervolume’s boxplot for 10 executions of a multi-objective TSP,
with a maximum of 500 generations, using fixed parameters (F = 0.9, CR = 0.7),
the jDE algorithm and the evolving parameters idea.

150 CHAPTER 4. MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION FOR ...

rameters results in better values in the extremes, especially when compared to the

jDE algorithm, but all self-adaptive algorithms shows better results in the trade-off

area. Also, the fixed parameters algorithm has the mean values of the estimated

attainment function very close the the worse case scenario, when compared to all

self-adaptive algorithms.

In figure 4.24 are the differences between the jDE algorithm and our two evolv-

ing parameters ideas. In it we can see that the jDE algorithm gives better results

in the trade-off area when compared with the first proposal, although the latter

has better results in the extremes. However, when comparing jDE to our second

proposal, the results are quite different, has our approach provides better results

throughout the entire Pareto front, with the advantage of not needing any extra

parameters.

4.7 The MODECO algorithm

In the previous sections, all different approaches were compared against the base

algorithm, using the Pareto dominance replacement operator with fixed param-

eters, using the best values found for the single-objective problem, from section

3.3.4 in the previous chapter. To find the best possible algorithm, the different

options were combined when possible, using the best variations from the different

options, giving a total of eighteen possible options, enumerated in table 4.7.

When using the concave hull as replacement operator, in algorithms modeco10

to modeco17, we use always α = 135º, as seen in section 4.4, and when using

three sub-populations, we join all solutions in a single population using δ = 0.1,

as seen in section 4.5. When using fixed parameters, we use always F = 0.9 and

CR = 0.7, as those values were the best ones for the single-objective problem.

In table 4.8 are the results after 10 executions of the same multi-objective TSP

with a maximum of 500 generations for all different options of our multi-objective

differential evolution combinatorial optimization algorithm, with the top three

150

4.7. THE MODECO ALGORITHM 151

Figure 4.23: Differences in the estimated attainment function using fixed parame-
ters (F = 0.9, CR = 0.7), the jDE algorithm and the evolving parameters idea.

152 CHAPTER 4. MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION FOR ...

Figure 4.24: Differences in the estimated attainment function between the jDE
algorithm and the evolving parameters approaches.

152

4.7. THE MODECO ALGORITHM 153

Algorithm Replacement Populations Parameters

modeco1 Pareto dominance One Fixed
modeco2 Pareto dominance One jDE
modeco3 Pareto dominance One Evolving F , random CR
modeco4 Pareto dominance Three sub-populations Fixed
modeco5 Pareto dominance Three sub-populations jDE
modeco6 Pareto dominance Three sub-populations Evolving F , random CR
modeco7 Pareto dominance Evolve archive Fixed
modeco8 Pareto dominance Evolve archive jDE
modeco9 Pareto dominance Evolve archive Evolving F , random CR

modeco10 Concave hull One Fixed
modeco11 Concave hull One jDE
modeco12 Concave hull One Evolving F , random CR
modeco13 Concave hull Three sub-populations Fixed
modeco14 Concave hull Three sub-populations jDE
modeco15 Concave hull Three sub-populations Evolving F , random CR
modeco16 Concave hull Evolve archive Fixed
modeco17 Concave hull Evolve archive jDE
modeco18 Concave hull Evolve archive Evolving F , random CR

Table 4.7: Different variations of the algorithm to be tested.

results in bold. As we can see, the best results are all given using the Pareto

dominance to replace the populations, and our self-adaptive algorithm, with the

algorithm that creates three sub-populations (modeco6) being the one that has

best average hypervolume value and also the higher cardinality of solutions on

the Pareto front. The second best both in the hypervolume and in the cardinality

is the one that evolves the archive population (modeco9), and the third one in the

hypervolume metric is the single population version (modeco3).

To see the differences between these three version of the algorithm, figure 4.25

present the differences between them using the estimated attainment function. In

it, we can see that although modeco6 reached the best average hypervolume value,

when compared with both modeco9 (a) and modeco3 (b) we can see that those

results are due to its good results mainly in the extremes, as both the other two

show better results in the trade-off area. This is probably due to the three sub-

populations used in modeco6, where two of then are “specialized” populations,

searching solutions only in the extremes. When comparing modeco3 with mod-

154 CHAPTER 4. MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION FOR ...

Algorithm
Cardinality of Hypervolume

Pareto Front µ σ

modeco1 206 2,6182E+10 1,2086E+08
modeco2 232 2,6656E+10 2,4565E+08
modeco3 218 2,7071E+10 1,1387E+08
modeco4 215 2,6367E+10 1,4138E+08
modeco5 232 2,6696E+10 1,7004E+08
modeco6 243 2,7099E+10 1,7624E+08
modeco7 215 2,6288E+10 1,2247E+08
modeco8 232 2,6739E+10 1,0589E+08
modeco9 237 2,7081E+10 1,4858E+08

modeco10 199 2,6015E+10 1,1418E+08
modeco11 219 2,6486E+10 1,1702E+08
modeco12 203 2,6449E+10 1,9950E+08
modeco13 202 2,6062E+10 1,1217E+08
modeco14 211 2,6890E+10 2,6168E+08
modeco15 210 2,6517E+10 1,8277E+08
modeco16 205 2,6111E+10 1,0655E+08
modeco17 215 2,6856E+10 2,0464E+08
modeco18 214 2,6550E+10 2,2706E+08

Table 4.8: Statistical measures for 10 executions of a multi-objective TSP, with
a maximum of 500 generations, for the different options of the multi-objective
differential evolution for combinatorial optimization.

154

4.7. THE MODECO ALGORITHM 155

eco9 (c) we cannot see a clear winner, as both of then are better than the other

in a portion of the trade-off area, however modeco9 seems to have a slight advan-

tage as it has it looks to have better values over a wider area, and also has a better

hypervolume and cardinality than the modeco3 version.

In figure 4.26 we can see the boxplot of the hypervolume metric for all ver-

sions tested, and here we can see that there are clear differences between the

different version of the algorithm. First of, we can see that the fixed parameters

versions have always the worst results, regardless of the other variations. There

are two possible reasons for this: either this is a proof of the advantage of an ex-

ploration/exploitation configuration, as the algorithm shows a large scale factor

in the beginning of the evolution to allow the exploration of the search space and

then decreases the value for the exploitation phase (see section 4.6); or a simpler

reason could be that the parameters are not the best for this problem, as we used

the best parameters chosen for the single-objective algorithm, but no attempt was

made to calibrate the parameters for this problem.

Our self-adaptive algorithm, which, as seen previously in table 4.8, give the

best results when using the Pareto dominance replacement operator (modeco3,

modeco6, modeco9), but those good results are not replicated when using the

concave hull (α = 135º) as the replacement operator (modeco12, modeco15, mod-

eco18). This is probably due to the way the parameters evolve in this operator, as

they don’t show a similar evolution as in the Pareto dominance operator. Figure

4.27 shows the evolution of the parameters using the modeco9, figure 4.27(a),

and the modeco18, figure 4.27(b), algorithms, and although the crossover shows

similar values, albeit slightly higher in modeco18, the scale factor don’t show the

same exploration/exploitation variation, at least not in the same number of gener-

ations. As the scale factor never reaches a low value, the exploitation phase never

really happens, and as such the results are worse. Maybe with a higher number

of generations, the results could be better, as the scale factor shows a descen-

dent evolution, but a very slow one, not comparable at all with the one in figure

156 CHAPTER 4. MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION FOR ...

Figure 4.25: Differences in the estimated attainment function between the best
three algorithms.

156

4.7. THE MODECO ALGORITHM 157

Figure 4.26: Hypervolume’s boxplot for 10 executions of a multi-objective TSP,
with a maximum of 500 generations for the different versions of the algorithm.

4.27(a).

The jDE algorithm, in figure 4.26, shows mid range values using the Pareto

dominance replacement operator, but shows very acceptable results using the con-

cave hull replacement with anything but a single population, in fact, modeco14,

and modeco17, i.e., the concave hull replacement with the jDE algorithm, using

either three sub-populations or evolving the archive, give the fourth and fifth bet-

ter hypervolumes, respectively, although with a much higher standard deviation,

meaning the results are not as consistent as the three best algorithms. When com-

paring the difference between the two using the estimated attainment function,

in figure 4.28, we can see that the results are similar to first graphic in figure

4.25, i.e., those differences are consistent between using three sub-populations

and evolving the archive, with the latter giving better results in the trade-off area.

From the previous analysis, we conclude that the best results are given by using

the Pareto domination replacement operator, evolving also the archive population

and using our self-adaptive algorithm, i.e., the modeco9 variation, and algorithm

4.9 shows a high-level description of the process.

158 CHAPTER 4. MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION FOR ...

(a) (b)

Figure 4.27: Average values of the scale factor F and crossover rate CR parame-
ters, for each generation, using modeco9 and modeco18 algorithms.

Figure 4.28: Differences in the estimated attainment function between modeco14
and modeco17.

158

4.7. THE MODECO ALGORITHM 159

Algorithm 4.9 High-level multi-objective optimization differential evolution for
combinatorial optimization (MODECO) algorithm.

1: population← initialization()
2: archive← non-dominated solutions in population
3: while not end criteria do
4: // mutation for population
5: for all Xi in population do
6: select three random solutions, Xr1, Xr2, Xr3

7: VF,i ← max (0, min (1, XF,r1 + rand() · (XF,r2 −XF,r3)))
8: vi ← xr1 \ VF,i ⊗ (xr2 M xr3)
9: repair vi

10: Vi ← (vi, VF,i, XCR,i)
11: insert Vi in mutant population
12: end for
13: // crossover for population
14: for all Xi, Vi in population, mutant population do
15: UCR,i ← rand()
16: ui ← calculate the trial solution using UCR,i as the crossover rate
17: Ui ← (ui, VF,i, UCR,i)
18: insert Ui in trial population
19: end for
20: use the NSGA-II replacement operator to replace the current population us-

ing the trial population
21: // mutation for archive population
22: for all Ai in archive do
23: select three random solutions, Ar1, Ar2, Ar3
24: AVF,i ← max (0, min (1, AF,r1 + rand() · (AF,r2 − AF,r3)))
25: avi ← ar1 \ AVF,i ⊗ (ar2 M ar3)
26: repair avi
27: AVi ← (avi, AVF,i, ACR,i)
28: insert AVi in mutant archive
29: end for
30: // crossover for archive population
31: for all Ai, AVi in archive, mutant archive do
32: AUCR,i ← rand()
33: aui ← calculate the trial solution using AUCR,i as the crossover rate

34: AUi ← (aui, AVF,i, AUCR,i)
35: insert AUi in trial archive population
36: end for
37: archive← non-dominated solutions in {current archive ∪ trial archive ∪ trial

population}
38: end while

160 CHAPTER 4. MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION FOR ...

4.8 Results

The MODECO algorithm given in the previous section was implemented in Python,

using the DEAP [27] and the SCOOP [37] libraries, as was the case for the single-

objective algorithm. The SCOOP library allows for the actual calculations to be

forked to a different core in the processor in the current machine, or to a different

computer in the network if the setup includes this configuration, and as the results

returns, another calculation is send to that “free” core/processor, until all compu-

tations are done, applying this way a parallel computation using a very simple

implementation. In the MODECO algorithm, this is only used in the mutation, in-

cluding the repair mechanism, and the crossover operators, as the other operators

are not worth it, as their computation is fast enough without it.

Although our decision on the modeco9 variation, modeco3 and modeco6 were

also implemented to compare the results across a wide range of problems.

The code was tested using several instances of the TSPLIB library, with differ-

ent sizes, and using always a population five times the number of nodes in the

problem. As a stopping criteria, was defined the maximum number of generations

to be 500, and the code was executed 10 times for each instance.

Table 4.9 shows the cardinality of the Pareto front and the average and stan-

dard deviation for the hypervolume metric, and we can see that the modeco6

version, i.e, using three sub-populations, produces the best results for almost all

instances, with modeco9 giving the best results on the other instances. In figure

4.29 are the boxplots of the hypervolume, where the results can be confirmed

graphically, and where can be observed that the results of the modeco3 algorithm

are almost always the worst ones.

However, when observing the differences between the algorithms using the

estimated attainment function, in figures 4.30 to 4.41, we can see where do the

results came from, i.e., if the good values are due to good trade-off solutions, or

to good solutions in the extremes, which are not that interesting for the decision

160

4.8. RESULTS 161

m
od

ec
o3

m
od

ec
o6

m
od

ec
o9

#
PF

H
yp

er
vo

lu
m

e
#

PF
H

yp
er

vo
lu

m
e

#
PF

H
yp

er
vo

lu
m

e

µ
σ

µ
σ

µ
σ

kr
oA

B
50

16
7

6,
25

62
E+

09
3,

06
49

E+
07

17
9

6,
28

06
E+

09
3,

28
26

E+
07

17
1

6,
25

87
E+

09
3,

01
03

E+
07

kr
oA

B
10

0
21

8
2,

70
71

E+
10

1,
13

87
E+

08
24

3
2,

70
99

E+
10

1,
76

24
E+

08
23

7
2,

70
81

E+
10

1,
48

58
E+

08
kr

oA
C

10
0

22
8

2,
67

53
E+

10
1,

78
90

E+
08

24
9

2,
68

57
E+

10
2,

31
87

E+
08

23
6

2,
68

49
E+

10
2,

59
32

E+
08

kr
oA

D
10

0
21

3
2,

70
59

E+
10

1,
75

83
E+

08
23

6
2,

72
05

E+
10

1,
67

06
E+

08
21

7
2,

72
46

E+
10

1,
40

42
E+

08
kr

oA
E1

00
21

3
2,

71
86

E+
10

1,
42

32
E+

08
22

2
2,

73
89

E+
10

1,
53

79
E+

08
21

3
2,

71
82

E+
10

1,
31

25
E+

08
kr

oB
C

10
0

21
5

2,
71

12
E+

10
1,

85
24

E+
08

23
6

2,
72

49
E+

10
1,

09
67

E+
08

23
9

2,
72

51
E+

10
1,

41
88

E+
08

kr
oB

D
10

0
21

9
2,

68
95

E+
10

2,
19

03
E+

08
24

1
2,

70
56

E+
10

1,
85

88
E+

08
24

1
2,

69
12

E+
10

8,
48

73
E+

07
kr

oB
E1

00
22

9
2,

65
96

E+
10

1,
74

26
E+

08
23

8
2,

66
21

E+
10

2,
33

91
E+

08
23

1
2,

65
97

E+
10

1,
41

84
E+

08
kr

oC
D

10
0

20
6

2,
75

39
E+

10
1,

31
89

E+
08

21
6

2,
76

76
E+

10
1,

33
01

E+
08

20
8

2,
76

36
E+

10
1,

30
82

E+
08

kr
oC

E1
00

22
4

2,
68

29
E+

10
1,

13
08

E+
08

23
2

2,
71

34
E+

10
9,

47
00

E+
07

23
5

2,
69

27
E+

10
1,

02
81

E+
08

kr
oD

E1
00

23
0

2,
64

95
E+

10
1,

99
98

E+
08

24
4

2,
66

09
E+

10
1,

78
52

E+
08

23
3

2,
67

21
E+

10
1,

32
26

E+
08

kr
oA

B
15

0
31

6
4,

89
63

E+
10

5,
51

93
E+

08
33

0
4,

92
22

E+
10

3,
96

63
E+

08
32

4
4,

89
84

E+
10

4,
83

33
E+

08

Ta
bl

e
4.

9:
St

at
is

ti
ca

l
re

su
lt

s
fo

r
di

ff
er

en
t

in
st

an
ce

s
of

m
ul

ti
-o

bj
ec

ti
ve

tr
av

el
in

g
sa

le
sm

an
pr

ob
le

m
s,

us
in

g
th

re
e

di
ff

er
en

t
ve

rs
io

n
of

M
O

D
EC

O
.

162 CHAPTER 4. MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION FOR ...

Figure 4.29: Boxplots of the hypervolume for 10 executions of different instances
of multi-objective traveling salesman problems, using a maximum of 500 genera-
tions, for three different version of MODECO.

162

4.8. RESULTS 163

maker. Observing those figures, we can see that in the kroBE100 instance, figure

4.37, the modeco3 algorithm appears to give the best trade-off solutions, even

though is has the worse hypervolume metric, albeit very close to the modeco9

version. In the kroAE100 (figure 4.34), kroBD100 (figure 4.36), kroCE100 (figure

4.39) and kroAB150 (figure 4.41) instances, the better solutions are reached using

the modeco6 algorithm, and not only in the trade-off area, but across the entire

Pareto front. In all other instances, the best trade-off solutions are reached using

the modeco9 algorithm, even if it is not the algorithm that gives the best value for

the hypervolume.

This apparently conflicting conclusions are natural when analyzing and com-

paring multi-objective algorithms, as different quality indicators measure different

aspects, and although one algorithm may give better results when compared using

a certain indicator, using another can produce a contrary conclusion, and that is

the reason that when saying that one algorithm is better than another, is necessary

to say which quality indicator has been used to reach that conclusion.

When weighing all indicators across the different instances, we maintain the

previous decision that the best overall algorithm is the modeco9 variation, partic-

ularly because the modeco6 variation, although reaching a better hypervolume,

it usually does so by obtaining better solutions in the extremes, and those solu-

tions are probably not that interesting for the decision maker. On the contrary, the

modeco9 variation, although not reaching always the best hypervolume, it does

so some times, and even when it doesn’t, the hypervolume results are due to good

trade-off solutions.

164 CHAPTER 4. MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION FOR ...

Figure 4.30: Differences in the estimated attainment function between the best
three algorithms for the kroAB50 instance.

164

4.8. RESULTS 165

Figure 4.31: Differences in the estimated attainment function between the best
three algorithms for the kroAB100 instance.

166 CHAPTER 4. MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION FOR ...

Figure 4.32: Differences in the estimated attainment function between the best
three algorithms for the kroAC100 instance.

166

4.8. RESULTS 167

Figure 4.33: Differences in the estimated attainment function between the best
three algorithms for the kroAD100 instance.

168 CHAPTER 4. MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION FOR ...

Figure 4.34: Differences in the estimated attainment function between the best
three algorithms for the kroAE100 instance.

168

4.8. RESULTS 169

Figure 4.35: Differences in the estimated attainment function between the best
three algorithms for the kroBC100 instance.

170 CHAPTER 4. MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION FOR ...

Figure 4.36: Differences in the estimated attainment function between the best
three algorithms for the kroBD100 instance.

170

4.8. RESULTS 171

Figure 4.37: Differences in the estimated attainment function between the best
three algorithms for the kroBE100 instance.

172 CHAPTER 4. MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION FOR ...

Figure 4.38: Differences in the estimated attainment function between the best
three algorithms for the kroCD100 instance.

172

4.8. RESULTS 173

Figure 4.39: Differences in the estimated attainment function between the best
three algorithms for the kroCE100 instance.

174 CHAPTER 4. MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION FOR ...

Figure 4.40: Differences in the estimated attainment function between the best
three algorithms for the kroDE100 instance.

174

4.8. RESULTS 175

Figure 4.41: Differences in the estimated attainment function between the best
three algorithms for the kroAB150 instance.

176 CHAPTER 4. MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION FOR ...

176

Chapter 5

Conclusions and future work

The main focus of this thesis is the introduction of a new approach to be used in

the differential evolution algorithm when applying it to combinatorial optimiza-

tion problems, as this evolutionary algorithm were not developed for this type of

problems.

The previous approaches to circumvent the problem of using the differential

evolution algorithm in combinatorial optimization problems were discussed, and

was shown that most of them have the problem of not using the differential evo-

lution in the combinatorial process, but rather translate the problem to the dif-

ferential evolution domain and only then solve the continuous problem. As this

as the disadvantage of not letting the algorithm take advantage of the intricacies

of combinatorial oprimization problems, our idea was to change the differential

evolution algorithm, or rather, its operators, to function in the discrete problem.

We introduced the idea of using the concept of sets as the representation for the

solutions, allowing this way the usage of set-base operations instead of arithmetic

ones in the genetic operators of the algorithm.

We discussed different formulations for the mutation operator, the crucial op-

erator in the differential evolution algorithm, explaining the pros and cons of each

of them, before setting with the one that, in our opinion, presents the best charac-

teristics to be used in this type of problems. As the set operations, basically, insert

177

178 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

and remove elements from a set, this means that using these operations would

change the cardinality of the solutions, during the execution of the algorithm. As

this, usually, is not the way for a solution to behave in an evolutionary algorithm,

we had to introduce a repair mechanism in the process, to keep the cardinality of

the solutions from generation to generation. However, one main consideration in

the decision for the best formulation for the mutation operator, was to keep this

version the “truest” to the original as possible, meaning that the repair would be

used as little as possible, and our final formulation has this characteristic, of, al-

though needing to repair the solutions, its interference in the process is minimum.

We also conclude about the best values for the differential evolution parameters to

be used for this type of problems, as these values are problem dependent, they are

clearly depended of the type of problem, i.e., if different real-domain problems can

behave differently using different parameters, clearly, problems from a different

domain cannot be expected to simply follow the parameters guidelines given for

the real-domain problems, and expect to obtain the best possible results.

The algorithm was used for different instances of the most know and studied

single-objective combinatorial optimization problem: the traveling salesman prob-

lem. The results show that when compared with some of the previous approaches,

our set-based mutation shows quite good results, using a fraction of the number

of generations used by the other approaches.

After proving the methodology for the single-objective problem, we started

focusing on adapting the algorithm to multi-objective problems, as this type of

problems constitute the all day, every day type of problems we encounter in real

live, from buying groceries to choosing an holiday destination, almost every (if

not all) decision in life is made using some multi-criteria decision, so is more than

natural that multi-objective algorithms are developed to help our decisions.

Unlike the single-objective optimization problems, the result of the multi-

objective ones are not one best solution, but the Pareto set of solutions, with the

best trade-off solutions, considering all the objectives in the problem. As such, the

178

179

algorithm needs to find this solutions, save them, and in each generation decide

which of those solutions are to maintain because they are still good solutions, and

which are to discard, as better ones supersede them. We discuss the adaptation

needed to be made to the algorithm for multi-objective optimization problems, as

adding another population to save the Pareto set of solutions, adapting the repair

mechanism and replacing the population from one generation to the next.

Adapting the repair mechanism has resulted in a inherent and underlying struc-

ture of “single-objective-minded” solutions, with a dynamically changing number

of solutions for each objective, that when mixed together in the genetic operators

tend to produce good multi-objective solutions.

Other ideas were added to the algorithm, as using more than one population

in the evolutionary process and self-adapting parameters, and these ideas proved

their value, as they improve the Pareto set of solutions obtained. A final multi-

objective differential evolution for combinatorial optimization algorithm was sug-

gested, and its results compared against other variations of the algorithm, using

different quality indicators for evaluating different characteristics of the results.

The results shown that our chosen algorithm, although not giving the best overall

results, give the best results where it matter the most, i.e., in the trade-off area of

the Pareto front, where, expectantly, are the solution the decision maker will have

a closer look to make its final decision.

Although the obtained results have been good, further research is needed, par-

ticularly a deeper analysis of our self-adaptive algorithm regarding the different

results obtained using the two replacement operators tested, the Pareto dominance

and the concave hull. The discrepancy of the results were not expected, and an

analysis of the underlying reasons for it is necessary.

Another aspect is expanding the usage of our algorithm, both the single and

the multi-objective one, for other types of practical combinatorial optimization

problems. We proved the validity of the algorithm for this type of problems, but

applying it to other problems is necessary, for instance, multi-modal shortest path

180 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

problems, which is a practical problem in modern day society.

A third aspect is using our self-adaptive algorithm in single-objective opti-

mization problems, and comparing it against other established self-adaptive al-

gorithms. The results in the multi-objective case were good, but using problems

where the actual optimal solution is known should prove invaluable to compare

and benchmark our self-adaptive mechanism to the mainstream ones.

180

Bibliography

[1] H.A. Abbass, R. Sarker, and C. Newton. PDE: a Pareto-frontier differential
evolution approach for multi-objective optimization problems. In Proceedings
of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546),
volume 2, pages 971–978. IEEE, 2001.

[2] Mostafa Z. Ali, Noor H. Awad, and Ponnuthurai N. Suganthan. Multi-
population differential evolution with balanced ensemble of mutation strate-
gies for large-scale global optimization. Applied Soft Computing, 33:304–327,
aug 2015.

[3] Javier Apolloni, Guillermo Leguizamón, José García-Nieto, and Enrique
Alba. Island Based Distributed Differential Evolution: An Experimental
Study on Hybrid Testbeds. In Hybrid Intelligent Systems, 2008. HIS ’08. Eighth
International Conference on, pages 696–701. IEEE, 2008.

[4] Masoud Asadzadeh, Bryan A. Tolson, and Donald H. Burn. A new selec-
tion metric for multiobjective hydrologic model calibration. Water Resources
Research, 50(9):7082–7099, sep 2014.

[5] Norbert Ascheuer, Martin Grötschel, and Atef Abdel-Aziz Abdel-Hamid. Or-
der picking in an automatic warehouse: Solving online asymmetric TSPs.
Mathematical Methods of Operations Research (ZOR), 49(3):501–515, jul
1999.

[6] Giorgio Ausiello, Alberto Marchetti-Spaccamela, Pierluigi Crescenzi, Gior-
gio Gambosi, Marco Protasi, and Viggo Kann. Complexity and approxima-
tion: combinatorial optimization problems and their approximability proper-
ties. Springer Berlin Heidelberg, 1999.

[7] Christopher Bailey, Timothy McLain, and Randal Beard. Fuel saving strate-
gies for separated spacecraft interferometry. In Journal of the Astronautical
Sciences, volume 49, pages 469–488, Reston, Virigina, aug 2000. American
Institute of Aeronautics and Astronautics.

[8] James C. Bean. Genetic Algorithms and Random Keys for Sequencing and
Optimization. ORSA Journal on Computing, 6(2):154–160, 1994.

[9] Robert G Bland and David F Shallcross. Large travelling salesman problems
arising from experiments in X-ray crystallography: A preliminary report on
computation. Operations Research Letters, 8(3):125–128, jun 1989.

181

182 BIBLIOGRAPHY

[10] Janez Brest, Sao Greiner, Borko Boskovic, Marjan Mernik, and Viljem Zumer.
Self-Adapting Control Parameters in Differential Evolution: A Comparative
Study on Numerical Benchmark Problems. IEEE Transactions on Evolutionary
Computation, 10(6):646–657, dec 2006.

[11] Shelvin Chand and Markus Wagner. Evolutionary many-objective optimiza-
tion: A quick-start guide. Surveys in Operations Research and Management
Science, 20(2):35–42, 2015.

[12] Nicos Christofides. Worst-Case Analysis of a New Heuristic for the Travel-
ling Salesman Problem. Technical Report 388, Graduate School of Industrial
Administration, CMU, 1976.

[13] Vašek Chvátal, William Cook, George B. Dantzig, Delbert R. Fulkerson, and
Selmer M. Johnson. Solution of a Large-Scale Traveling-Salesman Problem.
In 50 Years of Integer Programming 1958-2008, pages 7–28. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2010.

[14] Carlos A. Coello Coello and Margarita Reyes Sierra. A Study of the Par-
allelization of a Coevolutionary Multi-objective Evolutionary Algorithm. In
Raúl Monroy, Gustavo Arroyo-Figueroa, Luis Enrique Sucar, and Humberto
Sossa, editors, MICAI 2004: Advances in Artificial Intelligence, volume 2972,
pages 688–697. Springer, Berlin, Heidelberg, 2004.

[15] G. A. Croes. A Method for Solving Traveling-Salesman Problems. Operations
Research, 6(6):791–812, dec 1958.

[16] Laizhong Cui, Genghui Li, Qiuzhen Lin, Jianyong Chen, and Nan Lu. Adap-
tive differential evolution algorithm with novel mutation strategies in mul-
tiple sub-populations. Computers & Operations Research, 67:155–173, mar
2016.

[17] Swagatam Das, Sankha Subhra Mullick, and P. N. Suganthan. Recent ad-
vances in differential evolution - An updated survey. Swarm and Evolutionary
Computation, 27:1–30, 2016.

[18] Swagatam Das and Ponnuthurai Nagaratnam Suganthan. Differential evo-
lution: A survey of the state-of-the-art. IEEE Transactions on Evolutionary
Computation, 15(1):4–31, 2011.

[19] Lawrence Davis. Applying Adaptive Algorithms to Epistatic Domains. In
Proceedings of the 9th International Joint Conference on Artificial Intelligence
- Volume 1, volume 1, pages 162–164. Morgan Kaufmann Publishers Inc.,
1985.

[20] Ivanoe De Falco, Antonio Della Cioppa, Domenico Maisto, Umberto Scafuri,
and Ernesto Tarantino. Satellite image registration by distributed differential
evolution. In Mario Giacobini, editor, Applications of Evolutionary Computing,
volume 4448 of Lecture Notes in Computer Science, pages 251–260. Springer
Berlin / Heidelberg, 2007.

182

BIBLIOGRAPHY 183

[21] Ivanoe De Falco, Domenico Maisto, Umberto Scafuri, Ernesto Tarantino, and
Antonio Della Cioppa. Distributed differential evolution for the registration
of remotely sensed images. In Proceedings - 15th EUROMICRO International
Conference on Parallel, Distributed and Network-Based Processing, 1PDP 2007,
pages 358–362, 2007.

[22] K Deb. Multi-objective optimization using evolutionary algorithms. John Wiley
& Sons, 2001.

[23] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. Meyarivan. A fast
and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on
Evolutionary Computation, 6(2):182–197, apr 2002.

[24] Feng Xue, A.C. Sanderson, and R.J. Graves. Pareto-based multi-objective
differential evolution. In The 2003 Congress on Evolutionary Computation,
2003. CEC ’03., volume 2, pages 862–869. IEEE, 2003.

[25] Carlos M. Fonseca, Viviane G. da Fonseca, and Luís Paquete. Exploring the
Performance of Stochastic Multiobjective Optimisers with the Second-Order
Attainment Function. In Carlos A. Coello Coello, Arturo Hernández Aguirre,
and Eckart Zitzler, editors, Evolutionary Multi-Criterion Optimization. EMO
2005, volume 3410, LNCS, pages 250–264. Springer, Berlin, Heidelberg,
2005.

[26] Carlos M. Fonseca and Peter J Fleming. Genetic Algorithms for Multiobjective
Optimization: Formulation, Discussion and Generalization. In Proceedings of
the Fifth Inter2national Conference on Genetic Algorithms, pages 416–423.
Morgan Kaufmann, 1993.

[27] Félix-Antoine Fortin, François-Michel De Rainville, Marc-André Gardner,
Marc Parizeau, and Christian Gagné. {DEAP}: Evolutionary Algorithms
Made Easy. Journal of Machine Learning Research, 13:2171–2175, jul 2012.

[28] Michael R Garey and David S Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. Series of Books in the Mathematical Sci-
ences. W.H. Freeman, 1979.

[29] Ioannis Giagkiozis, Robin C. Purshouse, and Peter J. Fleming. An overview of
population-based algorithms for multi-objective optimisation. International
Journal of Systems Science, 46(9):1572–1599, 2015.

[30] Martin Grötschel, M. Jünger, and Gerhard Reinelt. Optimal control of plot-
ting and drilling machines: a case study. Mathematical Methods of Operations
Research (ZOR), 35(1):61–84, 1991.

[31] Viviane Grunert da Fonseca, Carlos M. Fonseca, and Andreia O. Hall. Infer-
ential Performance Assessment of Stochastic Optimisers and the Attainment
Function. In Eckart Zitzler, Lothar Thiele, Kalyanmoy Deb, Carlos Artemio
Coello Coello, and David Corne, editors, Evolutionary Multi-Criterion Opti-
mization. EMO 2001, volume 1993, LNCS, pages 213–225. Springer Berlin
Heidelberg, 2001.

184 BIBLIOGRAPHY

[32] Pedro Guerreiro, Mário Jesus, and Alberto Márquez. A new set-based muta-
tion operator for Differential Evolution. In Martín Cera Lopez, Pedro García
Vázquez, Rocío Moreno Casablanca, and Juan Carlos Valenzuela Tripodoro,
editors, Avances en Matemática Discreta en Andalucía, volume 3, pages 175–
182, 2013.

[33] Pedro Guerreiro, Mário Jesus, and Alberto Márquez. A comparison of
set-based mutation operators for Differential Evolution. In Avances en
Matemática Discreta en Andalucía, volume 4, pages 141–148, 2015.

[34] Michael Pilegaard Hansen. Metaheuristics for Multiple Objective Combina-
torial Optimization. 1998.

[35] Michael Pilegaard Hansen and Andrzej Jaszkiewicz. Evaluating the Quality
of Approximations to the Non-Dominated Set. Technical Report IMM-REP-
1998-7, Technical University of Denmark, 1998.

[36] Keld Helsgaun. An effective implementation of the Lin-Kernighan traveling
salesman heuristic. European Journal of Operational Research, 126(1):106–
130, oct 2000.

[37] Yannick Hold-Geoffroy, Olivier Gagnon, and Marc Parizeau. Once you
SCOOP, no need to fork. In Proceedings of the 2014 Annual Conference on
Extreme Science and Engineering Discovery Environment - XSEDE ’14, pages
1–8, 2014.

[38] John Holland. Adaptation in natural and artificial systems. University of
Michigan Press, Ann Arbor, 1975.

[39] Hisao Ishibuchi, Hiroyuki Masuda, Yuki Tanigaki, and Yusuke Nojima. Mod-
ified Distance Calculation in Generational Distance and Inverted Genera-
tional Distance. In António Gaspar-Cunha, Carlos Henggeler Antunes, and
Carlos A. Coello Coello, editors, Evolutionary Multi-Criterion Optimization.
EMO 2015, volume 9019, LNCS, pages 110–125. Springer, Cham, 2015.

[40] Andrzej Jaszkiewicz. Multiple Objective Metaheuristic Algorithms for Combi-
natorial Optimization. Phd thesis, Poznan University of Technology, 2001.

[41] Kenneth V. Price. An introduction to differential evolution. In David Corne,
Marco. Dorigo, Fred Glover, Dipankar Dasgupta, Pablo Moscato, Riccardo
Poli, and Kenneth V. Price, editors, New ideas in optimization, pages 79–108.
McGraw-Hill, 1999.

[42] Joshua Knowles, Lothar Thiele, and Eckart Zitzler. A Tutorial on the Perfor-
mance Assessment of Stochastic Multiobjective Optimizers. Technical Report
TIK-214, Computer Engineering and Networks Laboratory (TIK), 2006.

[43] S. Kukkonen and J. Lampinen. GDE3: The third Evolution Step of General-
ized Differential Evolution. In 2005 IEEE Congress on Evolutionary Computa-
tion, volume 1, pages 443–450. IEEE, 2005.

184

BIBLIOGRAPHY 185

[44] Saku Kukkonen and Jouni Lampinen. An Extension of Generalized Differen-
tial Evolution for Multi-objective Optimization with Constraints. In Xin Yao,
Edmund K. Burke, José A. Lozano, Jim Smith, Juan Julián Merelo-Guervós,
John A. Bullinaria, Jonathan E. Rowe, Peter Tino, Ata Kabán, and Hans-Paul
Schwefel, editors, Parallel Problem Solving from Nature - PPSN VIII. PPSN
2004, pages 752–761. Springer, Berlin, Heidelberg, 2004.

[45] Jouni Lampinen and Rainer Storn. Differential Evolution. In New Optimiza-
tion Techniques in Engineering, pages 123–166. Springer Berlin Heidelberg,
2004.

[46] Jouni A Lampinen and Ivan Zelinka. Mixed Integer-Discrete-Continuous Op-
timization, by Differential Evolution, Part 1: the optimization method. In
Proceedings of MENDEL’99, 5th International Mendel Conference on Soft Com-
puting, pages 71–76, Brno, Czech Republic, 1999. University of Technology,
Faculty of Mechanical Engineering, Institute of Automation and Computer
Science.

[47] Gilbert Laporte. The traveling salesman problem: An overview of exact
and approximate algorithms. European Journal of Operational Research,
59(2):231–247, jun 1992.

[48] Daniel Lichtblau. Discrete Optimization using Mathematica. In 2002 World
Multiconference on Systemics, Cybernetics, and Informatics, pages 1–6, 2002.

[49] Daniel Lichtblau. Relative Position Indexing Approach. In Godfrey C. On-
wubolu and Donald Davendra, editors, Differential Evolution: A Handbook
for Global Permutation-Based Combinatorial Optimization, pages 81–120.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[50] S. Lin and B. W. Kernighan. An Effective Heuristic Algorithm for the
Traveling-Salesman Problem. Operations Research, 21(2):498–516, apr
1973.

[51] Tao Liu and Michiharu Maeda. Set-Based Differential Evolution for Travel-
ing Salesman Problem. In 2013 6th International Conference on Intelligent
Networks and Intelligent Systems, pages 107–110, 2013.

[52] Tao Liu and Michiharu Maeda. An algorithm of set-based differential evolu-
tion for traveling salesman problem. In 2014 Joint 7th International Confer-
ence on Soft Computing and Intelligent Systems, SCIS 2014 and 15th Interna-
tional Symposium on Advanced Intelligent Systems, ISIS 2014, pages 81–86.
IEEE, 2014.

[53] Yu Liu, Wei Neng Chen, Zhi Hui Zhan, Ying Lin, Yue Jiao Gong, and Jun
Zhang. A set-based discrete differential evolution algorithm. In Proceedings
- 2013 IEEE International Conference on Systems, Man, and Cybernetics, SMC
2013, pages 1347–1352. IEEE, 2013.

186 BIBLIOGRAPHY

[54] Manuel López-Ibáñez, Luís Paquete, and Thomas Stützle. Exploratory Anal-
ysis of Stochastic Local Search Algorithms in Biobjective Optimization. In
Thomas Bartz-Beielstein, Marco Chiarandini, Luís Paquete, and Mike Preuss,
editors, Experimental Methods for the Analysis of Optimization Algorithms,
pages 209–222. Springer Berlin Heidelberg, 2010.

[55] Andre L. Maravilha, Jaime A. Ramirez, and Felipe Campelo. A New Al-
gorithm Based on Differential Evolution for Combinatorial Optimization.
In 2013 BRICS Congress on Computational Intelligence and 11th Brazilian
Congress on Computational Intelligence, pages 60–66. IEEE, sep 2013.

[56] André L. Maravilha, Jaime A. Ramírez, and Felipe Campelo. Combinatorial
optimization with differential evolution. In Proceedings of the 2014 conference
companion on Genetic and evolutionary computation companion (GECCO ’14),
pages 69–70. ACM Press, 2014.

[57] Rajesh Matai, Surya Singh, and Murari Lal. Traveling Salesman Problem: an
Overview of Applications, Formulations, and Solution Approaches. In Donald
Davendra, editor, Traveling Salesman Problem, Theory and Applications, pages
1–24. InTech, nov 2010.

[58] Efrén Mezura-Montes, Margarita Reyes-Sierra, and Carlos A. Coello Coello.
Multi-objective Optimization Using Differential Evolution: A Survey of the
State-of-the-Art. In Uday K. Chakraborty, editor, Advances in Differential Evo-
lution, pages 173–196. Springer Berlin / Heidelberg, 2008.

[59] Zbigniew Michalewicz and David B Fogel. How to Solve It: Modern Heuristics.
Springer Berlin Heidelberg, Berlin, Heidelberg, second edi edition, 2004.

[60] M. Davoodi Monfared, A. Mohades, and J. Rezaei. Convex hull rank-
ing algorithm for multi-objective evolutionary algorithms. Scientia Iranica,
18(6):1435–1442, 2011.

[61] Gordon E. Moore. Cramming more components onto integrated circuits.
Electronics, 38(8):114–117, 1965.

[62] Yuichi Nagata and Shigenobu Kobayashi. Edge Assembly Crossover: A high-
power Genetic Algorithm for the Traveling Salesman Problem. In Proceedings
of the 7th International Conference in Genetic Algorithms, pages 450–457,
1997.

[63] Andreas C. Nearchou. Meta-heuristics from nature for the loop layout design
problem. International Journal of Production Economics, 101(2):312–328,
2006.

[64] Andreas C. Nearchou and Sotiris L. Omirou. Differential evolution for se-
quencing and scheduling optimization. Journal of Heuristics, 12(6):395–411,
dec 2006.

[65] Temel Öncan, I. Kuban Altinel, and Gilbert Laporte. A comparative analysis
of several asymmetric traveling salesman problem formulations. Computers
& Operations Research, 36(3):637–654, 2009.

186

BIBLIOGRAPHY 187

[66] Godfrey Onwubolu. Optimization using Differential Evolution Algorithm.
Technical Report TR-2001-05, IAS, 2001.

[67] Godfrey Onwubolu and Donald Davendra. Scheduling flow shops using
differential evolution algorithm. European Journal of Operational Research,
171(2):674–692, 2006.

[68] Godfrey C. Onwubolu and B. V. Babu. New Optimization Techniques in En-
gineering, volume 141 of Studies in Fuzziness and Soft Computing. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2004.

[69] Godfrey C Onwubolu and Donald Davendra, editors. Differential Evolution: A
Handbook for Global Permutation-Based Combinatorial Optimization, volume
175 of Studies in Computational Intelligence. CRC Press, feb 2009.

[70] A.J. Orman and H.P. Williams. A Survey of Different Integer Programming
Formulations of the Travelling Salesman Problem. In Optimisation, Econo-
metric and Financial Analysis, pages 91–104. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2007.

[71] Ricardo S. Prado, Rodrigo C. P. Silva, Frederico G. Guimarães, and Oriane M.
Neto. Using differential evolution for combinatorial optimization: A general
approach. In Systems Man and Cybernetics (SMC), 2010 IEEE International
Conference on, pages 11–18. IEEE, 2010.

[72] Kenneth Price, Rainer Storn, and Jouni A Lampinen. Differential Evolu-
tion: A Practical Approach to Global Optimization. Natural Computing Series.
Springer, 2005.

[73] A. K. Qin, V. L. Huang, and P. N. Suganthan. Differential evolution algorithm
with strategy adaptation for global numerical optimization. IEEE Transac-
tions on Evolutionary Computation, 13(2):398–417, 2009.

[74] A. K. Qin and P. N. Suganthan. Self-adaptive Differential Evolution Algo-
rithm for Numerical Optimization. In 2005 IEEE Congress on Evolutionary
Computation, volume 2, pages 1785–1791. IEEE, 2005.

[75] Qingfu Zhang and Hui Li. MOEA/D: A Multiobjective Evolutionary Algorithm
Based on Decomposition. IEEE Transactions on Evolutionary Computation,
11(6):712–731, dec 2007.

[76] Gerhard Reinelt. TSPLIB - A Traveling Salesman Problem Library. ORSA
Journal on Computing, 3(4):376–384, nov 1991.

[77] Nery Riquelme, Christian Von Lücken, and Benjamin Baran. Performance
metrics in multi-objective optimization. In 2015 Latin American Computing
Conference (CLEI), pages 1–11. IEEE, oct 2015.

[78] Tea Robič and Bogdan Filipič. DEMO: Differential Evolution for Multiob-
jective Optimization. In Carlos A. Coello Coello, Arturo Hernández Aguirre,
and Eckart Zitzler, editors, Evolutionary Multi-Criterion Optimization, volume

188 BIBLIOGRAPHY

3410 of Lecture Notes in Computer Science, pages 520–533. Springer Berlin
Heidelberg, 2005.

[79] Ji Shan-Fan, Sheng Wu-Xiong, and Jing Zhuo-Wang. The Multi-objective
Differential Evolution Algorithm Based on Quick Convex Hull Algorithms. In
2009 Fifth International Conference on Natural Computation, pages 469–473.
IEEE, 2009.

[80] W. Stadler. A survey of multicriteria optimization or the vector maximum
problem, part I: 1776-1960. Journal of Optimization Theory and Applications,
29(1):1–52, sep 1979.

[81] Rainer Storn. On the usage of differential evolution for function optimiza-
tion. In Proceedings of North American Fuzzy Information Processing, pages
519–523. IEEE, 1996.

[82] Rainer Storn and Kenneth Price. Differential evolution - A simple and effi-
cient adaptive scheme for global optimization over continuous spaces. Tech-
nical Report TR-95-012, International Computer Science Institute, 1995.

[83] Rainer Storn and Kenneth Price. Differential Evolution – A Simple and Effi-
cient Heuristic for global Optimization over Continuous Spaces. Journal of
Global Optimization, 11(4):341–359, 1997.

[84] D.K. Tasoulis, N. G. Pavlidis, V.P. Plagianakos, and M.N. Vrahatis. Paral-
lel Differential Evolution. In Congress on Evolutionary Computation, 2004.
CEC2004, number 6, pages 2023–2029, 2004.

[85] David A. van Veldhuizen. Multiobjective Evolutionary Algorithms: Classifica-
tions, Analyses, and New Innovations. Phd thesis, Graduate School of Engi-
neering of the Air Force Institute of Technology, 1999.

[86] David A. van Veldhuizen and Gary B. Lamont. Multiobjective evolutionary
algorithm test suites. In Proceedings of the 1999 ACM symposium on Applied
computing - SAC ’99, pages 351–357, New York, New York, USA, 1999. ACM
Press.

[87] Christian von Lücken, Benjamín Barán, and Carlos Brizuela. A survey on
multi-objective evolutionary algorithms for many-objective problems. Com-
putational Optimization and Applications, 58(3):707–756, 2014.

[88] Matthieu Weber, Ferrante Neri, and Ville Tirronen. Distributed differential
evolution with explorative-exploitative population families. Genetic Program-
ming and Evolvable Machines, 10(4):343–371, 2009.

[89] Darrell Whitley, Doug Hains, and Adele Howe. A Hybrid Genetic Algorithm
for the Traveling Salesman Problem Using Generalized Partition Crossover.
In Robert Schaefer, Carlos Cotta, Joanna Koodziej, and Günter Rudolph, edi-
tors, Parallel Problem Solving from Nature - PPSN XI, pages 566–575. Springer
Berlin Heidelberg, 2010.

188

BIBLIOGRAPHY 189

[90] D.H. Wolpert and W.G. Macready. No free lunch theorems for optimization.
IEEE Transactions on Evolutionary Computation, 1(1):67–82, apr 1997.

[91] Saúl Zapotecas Martínez and Carlos A. Coello Coello. A novel diversifica-
tion strategy for multi-objective evolutionary algorithms. In Proceedings of
the 12th annual conference comp on Genetic and evolutionary computation -
GECCO ’10, pages 2031–2034, New York, New York, USA, 2010. ACM Press.

[92] Ivan Zelinka. Discrete Set Handling. In Godfrey C. Onwubolu and Donald
Davendra, editors, Differential Evolution: A Handbook for Global Permutation-
Based Combinatorial Optimization, chapter 7, pages 163–205. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2009.

[93] Aimin Zhou, Bo-Yang Qu, Hui Li, Shi-Zheng Zhao, Ponnuthurai Nagaratnam
Suganthan, and Qingfu Zhang. Multiobjective evolutionary algorithms: A
survey of the state of the art. Swarm and Evolutionary Computation, 1(1):32–
49, 2011.

[94] Eckart Zitzler, Joshua Knowles, and Lothar Thiele. Quality assessment of
pareto set approximations. In Jürgen Branke, Kalyanmoy Deb, Kaisa Mi-
ettinen, and Roman Słowiński, editors, Multiobjective Optimization, volume
5252 LNCS, chapter 14, pages 373–404. Springer Berlin Heidelberg, 2008.

[95] Eckart Zitzler and Simon Künzli. Indicator-Based Selection in Multiobjec-
tive Search. In Xin Yao, Edmund K. Burke, José A. Lozano, Jim Smith,
Juan Julián Merelo-Guervós, John A. Bullinaria, Jonathan E. Rowe, Peter
Tino, Ata Kabán, and Hans-Paul Schwefel, editors, Parallel Problem Solving
from Nature - PPSN VIII, pages 832–842. Springer Berlin Heidelberg, 2004.

[96] Eckart Zitzler, Marco Laumanns, and Lothar Thiele. SPEA2: Improving the
Strength Pareto Evolutionary Algorithm. Technical Report 103, 2001.

[97] Eckart Zitzler and Lothar Thiele. Multiobjective optimization using evolu-
tionary algorithms - A comparative case study. In Agoston E. Eiben, Thomas
Bäck, Marc Schoenauer, and Hans-Paul Schwefel, editors, Parallel Problem
Solving from Nature - PPSN V, pages 292–301. Springer Berlin Heidelberg,
1998.

[98] Eckart Zitzler and Lothar Thiele. Multiobjective evolutionary algorithms: a
comparative case study and the strength Pareto approach. IEEE Transactions
on Evolutionary Computation, 3(4):257–271, 1999.

[99] Eckart Zitzler, Lothar Thiele, Marco Laumanns, Carlos M. Fonseca, and
V. da Fonseca. Performance assessment of multiobjective optimizers:
an analysis and review. IEEE Transactions on Evolutionary Computation,
7(2):117–132, apr 2003.

	Introduction
	Preliminaries
	Differential evolution
	Initialization
	Mutation
	Crossover
	Replacement

	Multi-objective optimization
	Problem definition
	Pareto dominance
	Evolutionary multi-objective optimization
	Performance measures

	Combinatorial optimization
	Travelling salesman problem

	Differential evolution for combinatorial optimization
	Introduction
	Previous approaches
	Permutation matrix approach
	Adjacency matrix approach
	Relative position indexing
	Forward/backward transformation
	Sub-range encoding
	Discrete set handling
	Differential list of movements
	Set-based approaches

	Set-based operators
	Representation
	Mutation
	Crossover
	Parameter analysis
	Results

	Multi-objective differential evolution for combinatorial optimization
	Introduction
	Saving the non-dominated solutions
	Adapting the repair mechanism
	Replacing the population
	Using multiple populations
	Self-adaptive parameters
	The MODECO algorithm
	Results

	Conclusions and future work
	Bibliography

