
Fault Tolerance as an aspect using JReplica

José Luis Herrero1, Fernando Sánchez1, Miguel Toro2

1 Computer Science Department
University of Extremadura.Spain

{jherrero, fernando}@unex.es
2 Computer Science Department

University of Sevilla.Spain
mtoro@lsi.us.es

Abstract

Reliability and availability are very important trends
in the development process of distributed systems. In order
to improve these features, object replication mechanisms
have been introduced. Programming replication policies
for a given application is not an easy task, and this is the
reason why transparency for the programmer has been one
of the most important properties offered by all replication
models. However, this transparency for the programmer is
not always desirable. In this paper we present a replication
model, JReplica, based on Aspect Oriented Programming
(AOP). JReplica allows the separated specification of the
replication code from the functional behaviour of objects,
providing not only a high degree of transparency, as done
by previous models, but also the possibility for
programmers to introduce new behaviour to specify
different fault tolerance requirements. Moreover, the
replication aspect has been introduced at design time, and
in this way, UML has been extended in order to consider
replication issues separately when designing fault tolerance
systems.

1: Introduction

This work tries to introduce replication in object
orientation by means of a new aspect. For this purpose, a
new language called JReplica has been developed. This
language captures the relevant aspects of replication, and

 This work has been developed with the support of CICYT

under contract TIC99-1083-C02-02

encapsulates them into a component or group of related
components favouring the reusability and dynamic
adaptability of replication policies. This language also
favours the use and reuse of replication policies
independently from the middleware used to communicate
objects (currently several implementations of CORBA and
RMI).

The work is not limited to the definition of this new
language. AOP ideas have been translated to the design
level. In this way, the semantic of UML has been extended
in order to represent replication properties. From a given
design, the same for whatever middleware, a visual tool is
able to generate code.

The rest of the paper is as follows: section 2 explains
the different approaches to introduce replication in object
orientation. Our proposal is introduced in section 3. Section
4 shows related works. Finally, future works are outlined in
section 5.

2: Fault tolerance approaches

There are several different approaches to introduce
fault tolerance in object oriented systems. They can be
categorised in the following way:

1. Integration approach: In this approach, replication is
integrated inside the model. Replication is coded inside

the ORB so each ORB must be modified in order to
provide fault tolerance. Electra [1], Orbix+Isis [2] are
two models that are based on this approach (figure 1).

Client S S’

Replication

ORB
Com

 Figure 1. Integration approach

2. Interception approach: In this model, every message
is intercepted and redirected to a replication toolkit.
This new tool is in charge of providing fault tolerance.
The ORB must be modified introducing the
interception mechanism. Eternal [3] is an example of
this approach (figure 2).

Replication

Interception

Client S S’

ORB
Com

Figure 2. Interception Approach

3. Service approach: A new replication service is added
to the ORB. This service provides mechanisms for
object replication. OGS [4] and the new Corba Fault
Tolerance specification [5] are based on this approach
(figure 3).

Client S S’

Replication

ORB
Com

Figure 3. Service Approach

All these models introduce new elements to provide
fault tolerance through replication. Transparency is the
most important property achieved. In this way,
programmers do not have to take care about replication, and
they do not need to define any protocol to develop fault
tolerance applications because replication is obtained
automatically by the model. However, all these models
have two main drawbacks in the following sense:

• Close: A totally transparent system doesn’t allow
programmers to change replication mechanisms.
Replication properties can not be established, such as
the replication granularity, or the moment when
replication protocols must be executed. These
properties are defined automatically by the model and
they are the same for every system. In this way,
programmers can not take advantage from system
requirements.

• ORB dependent: Replication depends on the ORB
implementation. Any replication policy must be coded
into an individual ORB, and it can not be reused in a
different ORB. There’s no way to port the same
replication policy to other ORBs.

Although transparency is a good property to be
achieved, it is not always necessary, moreover, sometimes
it is not desirable. Sometimes the nature of the problem
may require establishing the replication properties and
behaviour by the programmer. Even more, if requirements
guide the replication behaviour, the system could take
advantage of them, and system performance could be
increased. If the replication model is totally transparent,
there is no way to define fault tolerance applications
according with system requirements.

3: Proposal

The model here proposed is based on the paradigm of
Aspect Oriented Programming (AOP). Our research group
has gained experience with AOP during the last few years
working with the synchronization, coordination and
distribution aspects [6, 7]. Here we go one step further
introducing the replication aspect as a new non-functional
property of the object. With this, separation transparency is
granted because replication policies can be reused among
applications with no changes. In addition, programmers can
get control over the replication policy using the specific
replication language provided: JReplica.

3.1: Framework

The proposed model keeps aspects separated from the
functional code of the object. A reflexive architecture is
used in order to introduce two different levels of execution:

• Functional Level: Object functionality is defined at
this level. Two new entities (in, out) have been
attached to each object in order to communicate objects
with its aspects.

• Aspect Level: Aspects are defined at this level. Each
object can be associated with one or more aspects.

The model is show in the figure 4.

OutIn

Aspect 1
Aspect 2

Input
Messages

Output
messages

Object

Figure 4. The aspect model

Each object is composed of three different entities:

• In: This entity intercepts all the input messages and
redirects them to the aspect level.

• Functional Object: This is the place where the basic
behaviour of the object is implemented.

• Out: This entity intercepts all the output messages and
transforms them into the right middleware (CORBA or
JavaRMI).

3.2: Replication Aspect

According to figure 4, this work tries to focus on the
replication aspect (figure 5). Passive replication is the
replication technique that has been considered. Although
there are other different replication techniques such as
active replication, passive replication allows replicating
deterministic and non-deterministic objects, while active
can not.

OutIn

Replication
Aspect

Input
Messages

Output
messages

Object

Figure 5. The Replication Aspect

Under this previous consideration, the replication
aspect must perform the following tasks:

• Decide when to activate the replication
mechanisms: It’s very important to define when to
send replication messages because they will affect the
performance of the whole system. If these messages
are sent very often, the system will collapse. While if
not, copies can be inconsistent for a long time. There
are two different ways to establish this activation:

• Direct: replication is activated just after a method
of the object has been executed.

• Indirect: replication is activated depending on the
value of some conditions that must be checked
periodically.

• State Update: When the replication mechanisms are
activated, the replication aspect captures the state of
the object and sends it to every copy. In order not to
break object encapsulation, get and set methods are
called to obtain and modify the state.

• Fault Checking: In order to test faults, a pin protocol
is developed. This protocol ensures that if a fault
happens, each copy will be notified.

• Recovery: When a fault is found, another protocol will
select one of the replicas to take the control.

Figure 6 shows a representation of a fault tolerance
system using this aspect model.

Object

Copy 1

Copy 2

State

State
Get State

Set State

Set State

Replication
Aspect

Replication
Aspect

Replication
Aspect

Figure 6. Aspect system example

The main advantages of this model are the followings:

• Those benefits derived from the use of AOP, mainly
modularity, reusability of code and adaptability of
applications.

• ORB Independence: Replication algorithms are
independent from de ORB. In a previous work [7]
different distribution protocols were defined as a
separated aspect providing a dynamic, adaptable and
transparent object distribution. Now, as the replication
module is defined outside the ORB, the combination of
distribution and replication aspects offer the possibility
of reusing the same replication policy in different
ORBs.

• Open: Thought replication algorithms are hidden and
separated from object behaviour, replication properties
and behaviour can be defined. Reflective mechanisms
can communicate the object level with the replication

level. This communication provides the way to
introduce new replication actions.

3.3: JReplica: Java Fault Tolerance Language

JReplica is a language with the only purpose of
defining replication policies. Its syntax is based on Java. It
introduces new primitives, which are shown in figure 7.
This Java extension introduces two main elements:

1. Replication Policy: A new entity called Disguise
Replication defines the replication aspect. This entity
is divided into the following parts:

• Attributes: the information that defines the
replication policy.

• State: the set of replication states.

• Operations: methods that can manipulate the
replication state.

• Guard: a condition that must be true before
replication. If this condition is false, replication
won’t be executed.

• Before Replication: the set of actions that must be
executed just before replication.

• After Replication: the set of actions that must be
executed just after the replication is executed.

• Error: the set of actions that must be executed when
a replication error appears.

2. Composition: A class can be composed with different
aspects. In our case, this means that every object will
extend its functionality with replication mechanisms.

3.4: Representing Replication at Design Level

Replication policies now can be defined with the
JReplica language. This language helps programmers to
define easily replication properties in object oriented
systems. But we consider that replication must be

introduced at earlier stages of object life cycle, more
concretely at design level. In this way, UML [8] is used as
the modelling language due to it being a standard. As UML
does not provide mechanisms to represent replication, its
semantic has been extended in order to express replication
properties and behaviour.

Class <name>
{
}

........................
x=new C1
Compose x with R;
y=new Replica of x;
........................

Diguise Replication <name>
{
 Attributes:
 Operations:
 State:
 Guard:
 Before Replication:
 After Replication:
 Error:
}

Figure 7. JReplica replication primitives

UML semantic can be extended with the introduction
of new stereotypes. At this point, we have considered that
replication policies can be designed separately and
independently, in the same way as has been explained at the
implementation level. As such, the aspect concept is
introduced in UML to express the AOP philosophy. The
replication aspect is represented with a new stereotype,
called <Replication>. This new stereotype is shown in
figure 8. The replication stereotype represents a particular
replication policy. Information is represented as follows:

• Stereotype Attributes: Represent the information that
defines the replication policy.

• Stereotype Methods: Define the set of methods that
can manipulate the replication state.

< Replication >
Name

Attributes

Methods

Class

Attributes

Methods

<Replicated>

Figure 8. UML extension

As it can be shown, there are other elements that can
not be represented in this stereotype. The dynamic
behaviour of replication can not be represented in a normal
class diagram. Statechart diagrams represent dynamic
behaviour. So the solution goes by attaching a statechart
diagram to this replication stereotype. In this way,
replication static properties and dynamic behaviour can be
designed. The dynamic behaviour of replication policies
can be represented in a statechart diagram as it is shown in
figure 9.

State 1 Replication
[Replication Guard]

Entry : Actions before replication

Exit : Actions after replication

Figure 9. Statechart Representation

The elements that are represented in this statechart
diagram are:

• State: Each replication state is represented by an state.
There is a special state called Replication that
represents the moment when replication is to be
executed.

• Guard: Guards are represented in the transition of
each state.

• Before Replication: The set of actions that is executed
just before the replication begins is represented in the
entry actions of the Replication state.

• After Replication: The set of actions that are executed
just after the replication ends are represented in the exit
actions of the Replication state.

• Error: Replication errors are represented as a new
state.

A tool is being developed in order to generate JReplica
code starting from this extension of UML. In this way
Replication aspect has been introduced from design to
implementation level. This tool is based on other one we
have developed for the synchronisation aspect [9].

4: Related works

There are several models that provide replication
mechanism to achieve fault tolerance. In [10], a new
interception mechanism called Aroma is introduced in the
Java RMI architecture. Other models are based on the
introduction of separated entities that implement replication
protocols. The Cadmium Model [11] defines a couple of
new entities called Stub and Scion, which are attached to a
client and a server respectively and offer replication
mechanisms. In [12] a new replication entity and a
consistency manager are introduced, both separated from
the object. In AspectIX [13] a single object is divided into
fragments, all of which have a different purpose. One of
these fragments offers replication facilities. The GARF [14]
model defines two different entities in order to introduce
replication, they are called encapsulator and mailer. A two
level reflective architecture was defined for Java in [15];
object functionality is defined in the first level, while
replication protocols are established in the second one. All
these models only take into account the implementation
level, they are focused on replication protocols and the
definition of a framework that provides fault tolerance,
ignoring the design phase.

A new pattern [16] has been defined in order to
provide support for the representation of replicated objects.
Moreover, a new language that helps programmers to build
fault tolerance systems has been defined in [17, 18]. This
proposal is based on the concept of separation of concerns
and extends AspecJ language [19] with replication
primitives. It is possible to define the attributes that need
replication and what to do when a replication error happens.
But there is no way to express new replication actions or
when replication must be executed. Although these models
help programmers to implement fault tolerance systems, it
is necessary to introduce mechanisms that help software
engineers to design this kind of requirements.

5: Future works

Future works will consider extensions to JReplica in
order to express more complex replication mechanisms.
The current version showed us the suitability of the model.

References

[1] S.Maffeis. Run-Time support for object-oriented distributed
programming. Phd Thesis, University of Zurich, 1995.

[2] IONA and Isis. An Introduction to Orbix+Isis. IONA
Technologies Ltd. and Isis Distributed Systems, Inc., 1994.

[3] L.E.Moser, P.M. Meliar-Smith and P. Narasimhan. Consistent
object replication in the Eternal system. Theory and Practice of
Object Systems, 81-92, 1998.

[4] Pascal Felber. The CORBA Object Group Sevice. A Service
approach to object groups in CORBA. Phd Thesis 1998.
University of Lausanne.

[5] OMG TC document ptc/2000-03-04. Fault Tolerant CORBA.
Draf Adopted Specification. 2000.

[6] J.M. Murillo, J. Hernández, F. Sánchez, L.A. Álvarez.
Coordinated Roles: Promoting Reusability of Coordinated Active
Objects Using Events Notification Protocols. In Coordination
Languages and Models. Springer-Verlag, LNCS 1594, April,
1999.

[7] F. Sánchez, J.Hernández, J.M.Murillo, J.L.Herrero,
R.Rodríguez. Adaptability of Object Distribution Protocols Using
the Disguises Model Approach. 2nd Intl. Symposium, Distributed
Objects & Applications (DOA 2000).

[8] Object Management Group. Unified Modeling Language,
version 1.3.

[9] J.L.Herrero. Introducing separation of concerns at design
time. PhDOOS Workshop, European Conference on Object-
Oriented Programming (ECOOP’2000).

[10] N. Narasimhan, L.E. Moser and P. M. Melliar-Smith.
Transparent Consistent Replication of Java RMI Objects.2nd Intl.
Symposium, Distributed Objects & Applications (DOA 2000).

[11] Aline Baggio. Adaptable and Mobile-Aware Distributed
Objects. PhD Thesis, Université Pierre et Marie Curie and INRIA,
Paris, France, June 1999.

[12] Georges Brun-Cottan and Mesaac Makpangou.
Adaptable Replicated Objects in Distributed Environments.
BROADCAST TR No. 100. Appeared in the proceedings of the
2nd BROADCAST Open Workshop, Grenoble, July 1995.

[13] Martin Geier, Martin Steckermeier, Ulrich Becker,
Franz J. Hauck, Erich Meier, Uwe Rastofer. Support for mobility
nd replication in the AspectIX architecture. Object-Oriented
Technology, ECOOP'98 Workshop Reader, LNCS 1543, Springer,
1998; pp. 325-326.

[14] B. Garbinato, R. Guerraoui, and K. R. Mazouni.
Implementation of the GARF replicated object platform.
Distributed Systems Engineering Journal, 2:14-27, 1995.

[15] Jürgen Kleinöder, Michael Golm. Transparent and Adaptable
Object Replication Using a Reflective Java. Tech. Report TR-I4-
96-07, Universität Erlangen-Nürnberg: IMMD IV, Sept. 1996.

[16] Teresa Gonçalves and António Rito Silva. Passive Replicator:
A Design Pattern for Object Replication. Second European
Conference on Pattern Languages of Programs. July 1997.

[17] Johan Fabry. Replication as an Aspect - The Naming
Problem. ECOOP Workshops 1998: 424-425.

[18] Johan Fabry. A Framework for replication of objects using
Aspect-Oriented Programming. Phd Thesis 1998. University of
Brussel.

[19] C.V. Lopes. D: A Language Framework for Distributed
Programming. Phd Thesis 1997. University of Northeastern.

