
Software diversity: state of the art and perspectives

Ina Schaefer · Rick Rabiser · Dave Clarke ·
Lorenzo Bettini · David Benavides · Goetz Botterweck ·
Animesh Pathak · Salvador Trujillo · Karina Villela

Abstract Diversity is prevalent in modern software systems
to facilitate adapting the software to customer requirements
or the execution environment. Diversity has an impact on
all phases of the software development process. Appropri-
ate means and organizational structures are required to deal
with the additional complexity introduced by software vari-
ability. This introductory article to the special section “Soft-
ware Diversity—Modeling, Analysis and Evolution” pro-
vides an overview of the current state of the art in diverse
systems development and discusses challenges and potential
solutions. The article covers requirements analysis, design,
implementation, verification and validation, maintenance

I. Schaefer (B)
TU Braunschweig, Braunschweig, Germany
e-mail: i.schaefer@tu-braunschweig.de

R. Rabiser
Christian Doppler Laboratory for Automated
Software Engineering, JKU Linz, Linz, Austria
e-mail: rick.rabiser@jku.at

D. Clarke
Katholieke Universiteit Leuven, Leuven, Belgium
e-mail: dave.clarke@cs.kuleuven.be

L. Bettini
Dipartimento di Informatica,
Università di Torino, Turin, Italy
e-mail: bettini@di.unito.it

D. Benavides
Dpto. de Lenguajes y Sistemas Informaticos,
University of Seville, Seville, Spain
e-mail: benavides@us.es

G. Botterweck
Lero, The Irish Software Engineering Research Centre,
University of Limerick, Limerick, Ireland
e-mail: goetz.botterweck@lero.ie

and evolution as well as organizational aspects. It also pro-
vides an overview of the articles which are part of this spe-
cial section and addresses particular issues of diverse systems
development.

Keywords Software diversity · Variability · Software
product lines

1 Introduction

In today’s software systems, typically different system vari-
ants are developed simultaneously to address a wide range
of application contexts or customer requirements. This varia-
tion is referred to as software diversity. Diversity impacts all
phases of software development which leads to an increase
of complexity, because variability has to be anticipated and
managed in requirements analysis, design, implementation,
and validation. Furthermore, it has to be considered during
maintenance and evolution and requires appropriate organi-
zational structures for its development.

In the early phases of software development, the diver-
sity of a system to be developed has to be planned ahead
starting from variable user requirements for a family of

A. Pathak
INRIA Paris-Rocquencourt, Paris, France
e-mail: Animesh.Pathak@inria.fr

S. Trujillo
IKERLAN, Mondragón, Spain
e-mail: STrujillo@ikerlan.es

K. Villela
Fraunhofer Institute for Experimental Software Engineering,
Kaiserslautern, Germany
e-mail: karina.villela@iese.fraunhofer.de

decisions made by architects and developers to address dif-
ferent user requirements. Experience shows that knowledge
about variability is mostly tacit in nature (and often docu-
mented “only in the heads of the developers”) and affects not
only code, but also other kinds of development artifacts like
documentation, test cases, configuration settings, etc.

Variability knowledge is typically made explicit by descri
bing it in models. The process of documenting and defining
the variability of a system, with the goal to make the tacit
knowledge in the heads of different stakeholders available,
is known as variability modeling [57]. Variability models
define the commonalities and variability of a system’s arti-
facts with organization-specific and domain-specific prop-
erties and dependencies. They capture the possible variants
together with constraints and dependencies. Variability mod-
els can cover a system’s problem space (stakeholder needs
and desired features) and its solution space (architecture and
components of the technical solution).

Problem space variability (also known as product line
variability [164]) is relevant to the domain and needs to be
understood by domain experts utilizing the model, e.g., for
configuring products. Variability models therefore define the
available set of choices and the relationships among these.

Solution space variability (also referred to as software var-
iability [164]) means the variability of diverse reusable arti-
facts, such as architectural elements, components, test cases,
or documents. Managing variations at different levels of
abstraction and for diverse development artifacts is a daunt-
ing task, especially when the systems supporting various
products are very large, as is common in industrial settings
[31]. Mappings between the problem space and the solu-
tion space are important when configuring and assembling
a product based on customers’ requirements. Establishing
traceability between the two spaces is also a prerequisite for
automation [65].

Numerous approaches have been proposed for variabil-
ity modeling, mainly in the domain of software product
lines (SPL) [54,181]. Some surveys on particular variabil-
ity modeling/management approaches exist, most notably
on feature-oriented variability modeling [30,51,200] and
on decision-oriented variability modeling [198]. Some more
general surveys discuss a particular selection of approaches,
e.g., [48,202].

In this section, we focus on problem space variability mod-
eling approaches and, in particular, discuss feature-oriented
and decision-oriented variability modeling as the two most
prominent approaches. Solution space variability will be cov-
ered in the next section.

2.1 Feature-oriented variability modeling

Feature modeling is currently the most widely used approach
for modeling variability. In general, a feature model captures

systems. These requirements have to be adequately repre-
sented to facilitate tracing them in subsequent development
steps. Suitable modeling and specification techniques are
required to specify system diversity during system design.
These specification techniques can be (i) syntax-oriented,
describing the admissible variability space with explicit lin-
guistic constructs and defining it bottom-up from concretely
specified building blocks, or (ii) semantics-oriented, specify-
ing the variability space top-down by starting from a library
of available components and restricting the admissible com-
positions by successively adding behavioral constraints. A
particular concern is the representation of variability in the
software architecture since architectural design is the essen-
tial means for structuring software systems, decomposing
functionalities, and enabling distributed development. Dur-
ing the implementation phase, programming language con-
structs are necessary which support the realization of diverse
systems and enable reusing common code fragments for dif-
ferent system variants.

Diversity increases system complexity and leads to a
greater risk for system failures. Efficient validation and veri-
fication methods are, thus, essential to guarantee qualities of
diverse systems, such as security, consistency, correctness or
performance. Like all modern software systems, diverse sys-
tems have to be adapted to address changing requirements
over time. Hence, approaches supporting the evolution of
diverse systems are required that allow evolving a set of
diverse systems to new system versions meeting evolving
user, market or technology needs.

The special section “Software Diversity—Modeling, Anal-
ysis and Evolution” provides an in-depth overview of exist-
ing techniques and tools for the modeling, implementation,
analysis, and evolution of diverse systems. This introductory
article reviews the state of the art in diverse systems model-
ing at the requirements, design and implementation level.
It provides an overview of quality assurance approaches
for diverse systems and discusses support for the evolution
of diverse systems. Additionally, it reviews organizational
and economical aspects concerning diverse systems devel-
opment. Finally, the articles contained in this special sec-
tion—each of which covers one particular aspect in diverse
systems development—are introduced and put into the gen-
eral context. This introductory article is partly based on a
previous state-of-the-art survey [190].

2 Variability modeling of diverse systems

Managing variability involves understanding the required
and desired variability of diverse systems and depends
strongly on the software development practices in a partic-
ular environment. Variability can either be an emergent or a
planned property of software systems resulting from diverse

Fig. 1 Simplified feature
model example inspired by the
mobile phone industry taken
from [30]

stakeholder visible characteristics and aspects of a system,
such as functional features of individual products (that might
be built based on the variability model) as well as software
quality attributes of both the system and the individual prod-
ucts to provide an overview of a system’s capabilities. Start-
ing from feature-oriented domain analysis (FODA [120]),
the feature-oriented view of product lines has already gone
far beyond variability modeling and system documentation.
Today numerous variants of feature-based variability model-
ing tools and techniques are available (see [30] for an exten-
sive list). Several authors have also proposed different formal
interpretations of feature models, e.g., [24,199]. Most feature
models can be translated into one large formula. Each valid
assignment of the formula then corresponds to a legal con-
figuration. Hence, the feature model (and the corresponding
formula) “globally” describes the set of all legal configu-
rations. The task of configuring a feature model is directly
related to the problem of satisfying the formula. We can dis-
tinguish feature models based on the type of logic that is
required to represent their semantics. For instance, Boolean
feature models can be represented with propositional logic.

A feature model represents the information of all possible
products of a diverse system (e.g., a SPL) in terms of fea-
tures and relationships among them [30]. A feature model is
represented as a hierarchically arranged set of features com-
posed by (i) relationships between a parent (or compound)
feature and its child features (or sub-features); (ii) cross-tree
(or cross-hierarchy) constraints that are typically inclusion or
exclusion statements such as, “if feature F is included, then
features A and B must be included too”, or that “A and B are
mutually incompatible”. In the general case these constraints
can be arbitrary logical clauses, e.g., feature m implies [fea-
ture n or (feature p and feature q)].

Figure 1 depicts a simplified feature model [30] inspired
by the mobile phone industry. The example illustrates fea-
tures used to specify and build software for mobile phones.
The software loaded in the phone is determined by the fea-
tures that it supports. According to the model, all phones must
include support for calls and display information in either a
basic, color, or high-resolution screen. Furthermore, the soft-

ware for mobile phones may optionally include support for
GPS and multimedia devices such as camera, MP3 player or
both of them.

Feature models are used in different scenarios of software
production ranging from model-driven development [214],
feature-oriented programming (FOP) [24], software facto-
ries [91], to generative programming [59]. There are differ-
ent feature model languages. We refer the reader to [200] for
a detailed survey on the different feature model languages.

2.2 Decision-oriented variability modeling

Decision modeling approaches [198] are a rather large family
of approaches that exists nearly as long as feature-oriented
modeling. Similar to the role which the FODA report [120]
plays in the context of feature-based variability management
most—if not all—existing decision modeling approaches
have been influenced by the Synthesis method [45]. Deci-
sions were defined as “actions which can be taken by appli-
cation engineers to resolve the variations for a work product
of a system in the domain” [45]. Many other researchers have
also actively been publishing their research results in this area
(see [198] for an overview).

Decisions are often represented as questions with a defined
set of possible answers. Products are derived from a deci-
sion model by setting values to the decisions, e.g., through
answering questions and following the sequence defined by
the decisions’ dependencies. One can say, from a historic
point of view, that while the main purpose of feature mod-
els is domain analysis, the main focus of decision models is
supporting derivation and configuration of products [57,187,
188]. The set of values possible for a decision is defined by
its data type, e.g., Boolean (answer to question can be yes
or no), enumeration/set (users can select from a set of possi-
ble answers), number (users can set a number as an answer),
or string (users can set a text as an answer). Answering a
question (and thereby selecting one or more possible values)
sets a value on a decision. All decision modeling approaches
allow creating dependencies among decisions. In the simplest
approaches decisions can only lead to setting other decisions

Table 1 Simplified decision
model in a tabular
representation for the mobile
phone example from Fig. 1

ID Question Range Cardinality Constraints

GPS Do you want GPS? Yes/no 1 GPS.yes excludes Screen.Basic

ScreenType Which type of
screen do you
want?

Basic| color |
high resolution

1:1 Screen.Basic excludes GPS.yes

SupportedMedia Which media
shall be
supported?

Camera, Mp3 0.2 SupportedMedia.Camera
=> ScreenType.High
resolution

[21]. Other approaches allow rather complex combinations
of formulas and conditions as a basis for determining the
restrictions in making decisions [65] or explicitly support
set-based descriptions [196].

Table 1 depicts a decision model for the previously pre-
sented mobile phone example in a tabular notation. Different
from the feature model depicted in Fig. 1, mandatory features
are not modeled at all.

The different decision modeling approaches address the
relationship of decisions to the reusable artifacts in a system
in different ways. Decisions are either referenced from the
artifacts [45,196] or they reference artifacts themselves [21].

3 Diversity in system design

Approaches to manage diversity at the design level handle
solution space variability (or software variability [164]).
Their main purpose is to represent the variability at the
level of the product artifacts, such as architectural models,
behavioral models, or test suites. In this section, we review
syntax-oriented concepts to represent variability in the solu-
tion space. In particular, we focus on architectural variability
modeling which is perceived as essential for modeling com-
plex diverse systems. As an alternative to the variability mod-
eling approaches presented here, the paper by Jörges et al.
[117] presents a constraint-based approach to represent prod-
uct line variability where all possible variants satisfying the
constraints are synthesized from a given set of artifacts.

3.1 Solution space variability

Two main approaches [223] to modeling solution space var-
iability of SPL exist:

– annotative approaches or superimposed variants [58] rep-
resenting negative variability—all variants of the product
line are included within the same model.

– compositional approaches representing positive variabil-
ity—features are modeled as formal entities, possibly as
refinements to a core architecture.

the differences among product variants. The key prob-
lem with superimposed variants, however, is that they lack
modularity and are, thus, susceptible to scalability problems.
Compositional approaches rely on breaking the SPL into
appropriate modules. The key disadvantage of the compo-
sitional approaches is their expressiveness: they do not deal
with the removal and non-monotonic modification of behav-
ior when features are selected. In order to allow a modular,
but yet flexible and expressive notion of variability, there also
exist transformational approaches. In these works, variabil-
ity is represented by transforming a base model to obtain a
product variant.

Annotative approaches Annotative variability modeling
approaches consider one model representing all products
of the product line. This model is sometimes also called
150 %-model. Variant annotations, e.g., using UML stereo-
types [90] or presence conditions [58], define which parts of
the model have to be removed to derive a concrete product
model. Dependencies are often defined using the UML con-
straint language Object Constraint Language (OCL). Simi-
larly, decision maps in KobrA [21] define which parts of the
product artifacts have to be modified for certain products.

For behavioral models captured by variants of standard
modeling formalisms, such as LTS, CCS, automata, Petri
Nets and so forth, variability is generally represented by
labels on transitions in the models. The labels express vari-
ability in different ways, from coarse-grained to fine-grained:

– must or may Must-transitions express behavior com-
mon to all variants, and may-transitions express behavior
which may not always be present [77,140,141].

– a feature name [53], indicating the presence of the tran-
sition whenever of the given feature is selected.

– an application condition [58,193], which is a predicate
over features and, thus, corresponds to a set of sets of
features (or equivalently a set of feature configurations
[143]), defining precisely which feature configurations
the transition belongs to.

Modal transition systems (MTS) [142] are labelled tran-
sition systems with must- and may-transitions. The former

Superimposed variants are a monolithic representation
of a system. They allow a fine-grained representation of

Fig. 2 Variability of a use case
diagram for mobile phones
specified by an OVM [181]

transitions represent the commonality and the latter the
variability of a SPL within the same model at a coarse level of
abstraction. Fischbein et al. [77] propose using MTS instead
of ordinary labelled transition systems for modeling SPL
since MTS are more suited for the refinement of models
of SPL and provide a suitable definition of conformance.
Larsen et al. [140,141], who co-invented MTS, and col-
laborators independently applied MTS (specified via modal
I/O automata) to modeling SPL. Variability is not modeled
directly as in feature models, but implicitly via so-called
variability models, which are actually behavioral models
of the environment. In one approach, configuration of a
SPL amounts to finding a suitable refinement of the var-
iability model [140]. In the other approach, configuration
is achieved via composition with selected variability mod-
els, where the variability models can in addition ignore
transitions not relevant for the given variant. The results
of this line of research culminated in Nyman’s PhD thesis
[175].

In a series of papers [18,19,74,75], the MTS approach is
combined with deontic logic to specify SPL. The superim-
posed behavior of the product line is specified by an MTS
as before, and an extended version of the classical Hen-
nessy–Milner logic is developed for reasoning about MTSs
[18,19]. This logic employs a deontic interpretation for rea-
soning about permitted and obliged behavior, which is used
to express both feature model and behavioral constraints in
the same framework.

Classen et al. [53] model a product line as a single labelled
transition system in a formalism known as feature transition
systems (FTS). In this model, transitions are labelled with the
single feature they correspond to. Transitions are ordered to

deal with the situation when two or more features are selected
and some transition should override another. PL-CSS [92] is
an extension of CCS with a variant operator to represent a
family of processes. The variant operation expresses a choice
based on which variant is selected. For a given run, a consis-
tent choice is made each time the choice operator is encoun-
tered.

Feature Petri Nets [169] label Petri net transitions with
application conditions, which are propositional formulae
over features corresponding to the set of feature combina-
tions for which the transition is valid. Application conditions
provide a convenient syntactic approach for avoiding a blow-
out in the labels used. Dynamic Feature Petri Nets are also
considered. In this model feature configurations can change
at run-time.

The orthogonal variability model introduced by Pohl et al.
[181] captures the variability of product line artifacts in a
variability model that is separated from the artifact model.
Orthogonal variability models consist of variation points
(description of existing differences), variants (different pos-
sibilities to satisfy a variation point), variability dependen-
cies (possible choices, i.e., alternative, optional, mandatory),
and constraint dependencies (constraints on variant selec-
tion, i.e., requires and excludes). Explicit links are drawn
between variants and elements in concrete system models
(e.g., UML class or use case diagrams). If a variant is not
selected, the associated model elements are removed. Hence,
the OVM approach is an instance of annotative variabil-
ity modeling. Figure 2 shows how the variability of a use
case diagram of the mobile phone example from the previ-
ous section can be specified using OVMs where the triangles
labeled VP denote variation points and the rectangles labeled

The constraint-based approach described in [116] employs a
configurable model transformation to obtain a specific prod-
uct model from a hierarchical model representing a system
family.

Delta modeling [49,193] is a modular approach to rep-
resent system variability via transformations. A diverse set
of systems is represented by a designated core model and a
set of model deltas explicitly specifying changes to the core
model to obtain other system variants. In order to generate
a particular product model for a given feature configuration,
the model deltas that have to be applied for this feature con-
figuration are selected and applied one-by-one to the core
model. The result is a product model realizing the particular
feature configuration.

3.2 Architectural variability

A particular focus on the development of diverse systems is
the representation of variability in the software architecture,
since the architecture is perceived as a central element in the
development process. For modeling architectural variability,
all three types of variability modeling are used. For instance,
in [152], the variability modeling language (VML) special-
izes the ideas of OVM for architectural models constituting
an annotative approach. Also for UML component diagrams,
UML stereotypes [90,227] or presence conditions [58] can
be used to model variable parts of the architecture.

Compositional approaches for capturing architectural
variability usually capture variations of the architecture by
selecting particular component variants. Plastic partial com-
ponents [178] model component variability inside the com-
ponents by extending partially defined components with
variation points and associated variants. Variants can be
cross-cutting or non-cross-cutting architectural concerns that
are composed with the common component architecture by
weaving mechanisms that have to be specified by the com-
ponent designer. However, in this approach variants cannot
contain variable components.

The Koala component model [221] is a first approach
aiming at hierarchical variability modeling combining the
variability representation with the hierarchical component
structure. In Koala, the variability of a component is
described by the variability of its sub-components. The selec-
tion among different sub-component variants is realized by
switches that are used as designated components. Via explicit
diversity interfaces, information about selected variants is
communicated between sub-components and super-compo-
nents to configure the switches to select a specific sub-com-
ponent variant. Diversity interfaces and switches in Koala can
be understood as concrete language constructs targeted at the
implementation level to express variation points and associ-
ated variants. Hierarchical variability modeling for SPL [96]

V denote associated variants that are related to specific use
cases.

Compositional approaches Compositional approaches asso-
ciate model fragments with product features that are com-
posed for a particular feature configuration. In [102,171,
223], variant models are constructed by aspect-oriented com-
position. Similarly, Jörges et al. [117] employ hierarchical
modeling as an aspect-oriented mechanism for specifying
variability. Noda and Kishi [171] combine class diagrams
and state charts into one aspect. Aspects are then com-
posed to generate specific model variants. Heidenreich and
Wende [102] distinguish between collaborative features that
are added to specific points in a base model and aspectual
features that have to be applied multiple times to the base
model.

StateCharts have been used as a modular design frame-
work for highly entangled software components [185]; tech-
niques have been developed for merging such specifications
[170]. Also in [67], model fragments are merged to provide
the variability model of a product line.

Harhurin and Hartmann [99] employ a service-oriented
approach [156] for specifying SPL and reasoning about
feature interactions, focusing on consistency of the specifi-
cation, formalized in terms of Broy’s foundational frame-
work [40].

Feature-oriented model-driven development (FOMDD)
[214] combines FOP with the principles of model-driven
engineering. Model fragments that are associated with single
product features are encapsulated into feature modules. In a
feature module, modeling elements can be added or refined.
For a particular feature configuration, the respective feature
modules are composed by adding and refining elements fol-
lowing the principles of stepwise refinement [27]. Apel et al.
[12] apply model superposition to compose model fragments
which is similar to FOMDD [214] without the explicit refine-
ment statements. Model superimposition considers models
with a hierarchical structure that is preserved when models
are composed. FeatureAlloy [15], an extension of the mod-
eling language Alloy, supports collaboration-based design,
step-wise refinement and feature composition, and, thus,
represents a formal modeling language analogous to the
programming languages used in feature-oriented develop-
ment.

Transformations Apart from positive and negative variabil-
ity representations, model transformations are used for cap-
turing system diversity. The common variability language
(CVL) [100], for instance, represents the variability of a base
model by rules describing how modeling elements of the base
model have to be substituted to obtain a particular product
model. In [113], graph transformation rules capture the vari-
ability of a single kernel model comprising all commonality.

generalizes the ideas of the Koala component model to a
design level. It abstracts from the concrete language con-
structs used in Koala. Instead, it provides a general meta-
model that integrates component variability and component
hierarchy to foster component-based development of diverse
systems during architectural design.

On the architectural level, several transformational
approaches for variability modeling provide a modular, but
still expressive mechanism. In [160], a resemblance operator
is provided that allows creating a component that is a variant
of an existing component by adding, deleting, renaming, or
replacing component elements. The old and the new compo-
nent can be used together to build further components. Hend-
rickson and van der Hoek [106] use change sets containing
additions and removals of components and component con-
nections that are applied to a base line architecture. Relation-
ships between change sets specify which change sets may be
applied together. However, the order in which change sets
are applied cannot be explicitly specified. Conflicts between
change sets have to be resolved by excluding the conflicting
combination using a relationship and providing a new change
set covering the combination. This may lead to a combinato-
rial explosion of change sets to represent all possible variants.

�-MontiArc [94,95] applies the ideas of delta modeling to
architecture description languages. A family of software sys-
tem architectures is represented by a designated core archi-
tecture comprising hierarchically structured components
that communicate via connected ports. Architectural deltas
modify the core architecture to realize the architecture of
other system variants. A delta can add or remove components,
ports, and connections and modify components by changing
their internal structure. In order to obtain the architecture of a
particular system variant, a subset of the architectural deltas
is selected and the specified modifications are applied to the
core architecture. In �-MontiArc, the subset of deltas that
are necessary for a particular system variant have to be pro-
vided explicitly. An ordering between the different deltas can
be defined capturing essential dependencies between deltas
to ensure that the generated architectures are well-defined.
�-MontiArc provides a modular and expressive language to
represent variant-rich distributed architectures, such as func-
tion nets in the embedded systems domain or service-oriented
architectures in cloud computing environments.

3.3 Mapping problem and solution space

When modeling variability, features, or decisions are just
(problem space) abstractions of the variability realized in real
development artifacts. Understanding how features or deci-
sions (or other problem space constructs) map to artifacts in
the solution space is, thus, essential for the design of diverse
systems. In practice, a wide range of mapping techniques are
used. They typically relate decisions or features to variation

points (locations in artifacts where variability occurs). Sch-
mid and John [196] provide a set of artifact-notation-inde-
pendent primitives for expressing variability in artifacts, such
as optionality, alternative, set selection, and value reference.
Some approaches associate artifacts with inclusion or appli-
cation conditions (e.g., [49,58,65,101,193]), and some asso-
ciate features or decisions with the artifacts to be included
(e.g., [21]). Other variability modeling approaches define
a separate artifact model, which exposes artifact abstrac-
tions to the decision or feature model (e.g., DOPLER [65]
and pure::variants [186]). FOSD [10] research has looked
into different approaches of representing variability in arti-
facts, including conditions as annotations on product ele-
ments or artifact composition. Particularly flexible is the
loose programming approach [139], a concrete realization of
constraint-based variability modeling and constraint-driven
product synthesis.

4 Diversity in implementation

For diversity on the implementation level, we can distinguish
the same three approaches to support variability and code
reuse that we have seen on the modeling and design level.

First, annotative approaches mark the source code of
the whole product line with respect to product features and
remove marked code depending on the feature configuration.
Prominent instances of annotative variability on the code
level are conditional compilation, frames [23], and Colored
Featherweight Java [122].

Second, compositional approaches assemble product
implementations from code fragments associated with the
product features. Most of these approaches rely on advanced
program modularization techniques developed in the object-
oriented programming paradigm, such as mixins [38], traits
[34], or aspects [127]. In this section, we survey these
and other object-oriented extensions that enhance the stan-
dard object-oriented class-based inheritance mechanisms
to deal with diversity of software (we refer the reader to
[69,165,209] for an insightful review of the limitations of
class-based object-oriented languages).

Third, as an extension of the compositional imple-
mentation approaches, delta-oriented programming [194]
instantiates the ideas of delta modeling [49,193] to the
implementation level, constituting a transformational imple-
mentation technique that we discuss at the end of this section.

Mixins [38] were proposed as a solution to limitations
and problems of class-based single and multiple inheritance.
A mixin (a class definition parametrized over the super-
class) can be viewed as a function that takes a class as a
parameter and derives a new subclass from it. The same
mixin can be applied to many classes (this operation is
known as mixin application), obtaining a family of subclass-

involved in crosscutting concerns had already been addressed
to different degrees in other approaches as well. For instance,
layering of class definitions was proposed in Smalltalk, pri-
marily for testing different implementation variations of a
system [89]. Subjective objects [204] were introduced to an
object-based language, where method dispatch is influenced
by the object (subject) from which a message originates, and
can potentially affect several different receiver objects in dif-
ferent delegation chains.

Mixin layers [203] were introduced to group mixins into
layers that can then be applied to a class hierarchy in con-
cert. This gives rise to a notion of feature-oriented pro-
gramming [27] which allows implementing diverse systems
by complementing class-based inheritance by class refine-
ment. A feature module contains class definitions and class
refinements. A class refinement can modify an existing class
by adding new fields/methods by wrapping code around
existing methods or by changing the superclass. Mixin lay-
ers and feature-oriented programming not only share con-
cepts and ideas with aspect-oriented programming, but also
show some differences. Most prominently, feature-oriented
programming provides support for heterogeneous crosscut-
ting concerns, while aspect-oriented programming provides
support for homogeneous crosscutting concerns. The dis-
tinction between heterogeneous and homogeneous crosscut-
ting concerns was introduced in [56], and the implications
of that difference, together with a suggestion of a unified
approach, is discussed in [11]. Context-oriented program-
ming [110] was introduced as a way to provide dynamic com-
position of heterogeneous crosscutting concerns, employing
a dynamically scoped discipline for layer activation and
deactivation.

Delta-oriented programming [194] is an extension of fea-
ture-oriented programming that aims at providing a flexible
modular approach for implementing SPLs. It relies on the
notion of program deltas [192,193] that was first introduced
in [151] to describe the modifications of object-oriented pro-
grams. The implementation of a product line in delta-oriented
programming is organized into a core module and a set of
delta modules. Delta modules specify changes of the core
module to implement products. A delta module can add
classes, remove classes, or modify classes by changing the
class structure. Delta modules have application conditions
attached to define for which feature configuration the spec-
ified modifications are to be carried out. Thus, in order to
generate the product implementation for a feature configu-
ration, the modifications of the respective delta modules are
applied to the core module.

5 Quality assurance for diverse systems

Diversity in systems necessarily entails an additional degree
of complexity, which makes ensuring system quality more

es with the same set of methods added and/or redefined.
Since a subclass can be implemented before its superclass
has been implemented, mixins remove most of the dependen-
cies of the subclass on the superclass. Mixins have become
a focus of active research in many communities and con-
texts: software engineering [76,203], programming language
design [8,38,82,220], module systems [7,111], and distrib-
uted mobile code applications [32]. While mixins solve many
problems encountered with multiple inheritance, their “line-
arization” strategy may still pose obstacles to code reuse.

Differently from class-based languages, object-based lan-
guages use object composition and delegation as mechanism
for reuse code (see, e.g., [9,47,78,215]). Every object has a
list of parent objects: when an object cannot answer a mes-
sage it forwards it to its parents until there is an object that can
process the message. However, run-time type errors (“mes-
sage-not-understood”) can arise when no delegates are able
to process the forwarded message [222] and also combining
delegation with a static type discipline poses some problems
[130]. In [33], a language is presented for incomplete objects
(instances of abstract classes), providing object composition,
dynamic method redefinition, and delegation. All these oper-
ations are type safe, and possible ambiguities due to method
name clashing are checked statically. The object-based par-
adigm seems to be more appropriate to write components
that can be reused and customized in a dynamic way, at run-
time. However, behaviors that are chosen at run-time always
introduce an overhead, which is not ideal in situations where
the diversity of software can and must be decided statically
(e.g., as in many SPL).

In [34], a novel approach to the development of SPL is
presented that provides flexible code reuse with static guar-
antees. The main idea is to overcome the limitations of class-
based inheritance with regard to code reuse by replacing it
with trait composition. A trait [69] is a set of methods, inde-
pendent from any class hierarchy. In [34], class-based inher-
itance (which limits the possibilities for composing products
from building blocks in an arbitrary way) is ruled out and
classes are built only by composition of traits, interfaces, and
records. Thus, the concepts of types, state, and behavior are
separated into different and orthogonal linguistic concepts
(interfaces, records and traits, respectively) which become
the reusable building blocks that can be assembled into clas-
ses to be reused in several products of a product line.

All the aforementioned approaches have limitations with
regard to expressing features that involve multiple different
classes or objects. The notion of a crosscutting concern has
been introduced to address that. This notion has been popular-
ized in the field of aspect-oriented programming [127], as a
way to compose advices into methods, where single pieces of
advice can potentially end up in multiple different methods of
different classes; pointcuts are used as a declarative means to
identify the places where to introduce such advice. The issues

difficult. Variability is the root of increased complexity, as
not all properties of a system are preserved across all variants.
Thus, any analysis needs to take such variability into account.
Scalable techniques exploiting modularity, compositionality,
incrementality, and reuse of formal artifacts are desirable.

Key challenges for the quality assurance of diverse sys-
tems include

– scalability of the techniques involved;
– lifting, where possible, analyses to the level of the entire

system family, avoiding to have to generate all instances
of the system in order to perform the checks [184]; and

– developing expressive and convenient languages for
expressing properties modulo variability.

Kishi and Noda [129,172] remark that reuse techniques
should be applied to verification artifacts and that they should
be organized in the same way that other core assets of a prod-
uct line are.

5.1 Feature model analysis

Feature model analysis [25] aims, among other things, to
find inconsistencies in feature models, such as whether a
feature model has any satisfying configurations. A compre-
hensive survey of feature model analysis appeared recently
[30], covering topics such as whether a feature model has
any instances and whether a (partial) selection of features
conforms to the feature model. Recent work has focused on
the modularity and views of feature models [1,50,112], evo-
lution of feature models [6,61,87,88,201,213] and linking
feature models with other artifacts, such as software archi-
tectures [189], models [58] and code [60].

5.2 Type systems and static analysis

The goal of type checking the code base of a diverse system
family is to ensure that all configurations are type safe, up
to the degree of type safety provided by the base language,
without having to actually generate each configuration. Other
static analysis techniques check for other deficiencies, with-
out ensuring complete type safety.

For programming languages with constructs designed spe-
cifically for building diverse systems such as SPL, the chal-
lenge of developing type systems and other static analyses
has only recently been taken up. Thaker et al. [211] describe
an informally specified approach to the safe composition of
SPL that guarantees that no reference to an undefined class,
method or variable will occur in the resulting products. The
approach is presented modulo variability given in the feature
model and deals especially with the resulting combinator-
ics. Lightweight Feature Java (LFJ) [63] provides a formal
model of this approach.

An alternative approach is Featherweight Feature Java
(FFJ) [14], although for this system type checking occurs
only on the generated product. More recent work [13] refines
the work on FFJ, expressing the code refinements into mod-
ules rather than as low-level annotations, and type checking
works at the level of product lines. Colored Featherweight
Java [122], which employs a notion of coloring of code anal-
ogous to but more advanced than #ifdefs, lifts type check-
ing from individual products to the level of the product line
and guarantees that all generated products are type safe.

Recent work addresses non-monotonic refinement mech-
anisms that can remove or rename classes and methods.
Kuhlemann et al. [135] approach the problem using a SAT
solver for an appropriate encoding of the problem, whereas
Schaefer et al. [191] generate detailed dependency con-
straints for checking delta-oriented SPL.

A number of static analysis techniques have been devel-
oped for the design models or code of SPL. Heidenreich
[103] describes techniques for ensuring the correspondence
between solution space models and problem space models
which is realized in the FeatureMapper tool. In this tool,
models are checked for well-formedness against their meta-
model. Similarly, Czarnecki and Pietroszek [58] provide
techniques for ensuring that no ill-structured instance of a
feature-based model template will be generated from a cor-
rect configuration.

Language independent frameworks [16,123] operate at
the product line level for reference checking—checking
which dependencies are present and satisfied—and for
checking syntactic correctness.

Abstract delta modeling [49] is an abstract framework for
describing conflicts between code refinements and conflict
resolution in the setting of delta-oriented programming. The
DECIMAL tool [177] performs a large variety of consis-
tency checks on SPL requirements specifications, in partic-
ular, when a new feature is added to an existing system.

5.3 Feature interaction analysis

Feature interaction is a long studied topic in the area of
telecommunications systems, the goal of which is to deter-
mine whether combinations of features cause unwanted or
unexpected behavior. Often, features are developed in iso-
lation and, when multiple features are added into the same
product, interactions may occur. Generally, these are mod-
ifications of feature behavior compared with when features
operate in isolation. Two surveys covering the topic up to
2002 exist [43,125]. Some of the major research challenges
include cheaply predicting when feature interactions may
possibly occur, detecting precisely which feature interac-
tions do occur, and resolving those [43]. Formal approaches
to feature interaction rely on a specification of features in
some logic and feature interaction amounts to an incon-

appropriate encoding. Their approach verifies that every valid
feature configuration fulfills the specified properties.

In [117], model checking is used for verifying the con-
sistent specification of variability, e.g., by demanding the
absence of any underspecified (i.e., incomplete) variation
points, which work in a fully hierarchical fashion along the
lines of [205].

5.5 Deductive verification

Deductive verification of a SPL consists of proving that it sat-
isfies certain functional requirements using a program logic,
such as Hoare logic [17] or dynamic logic [98]. Perhaps
the earliest work on the verification of a diverse system is
Fisler and Robert’s [81] application of the ACL2 theorem
prover [124] to a feature-oriented telecommunications soft-
ware system. Fisler and Robert highlight the key verification
challenge, namely that a SPL can have a number of products
exponential in the number of features. The approach veri-
fies features in isolation, as open systems, and employs a
lightweight analysis to determine which properties remain
valid when features are composed into products—this is
the standard feature interaction issue. They also recognize
that features are often implemented as cross-cutting mod-
ules employing invasive composition [20]; thus modules are
less cohesive and violate standard assumptions required for
modular verification.

Batory and Börger [26] propose the composition of proofs
for conservative system extensions. The verification tech-
nique combines abstract state machines and the AHEAD
methodology and depends on the traceability of extended
program elements, associated theorems, and proof structures,
implying the need for proof management systems in the ulti-
mate tool chain.

Poppleton [183] propose a correctness-by-construction
approach for product lines, wherein features are represented
as Event-B models which undergo successive refinement
from specification to implementation. Refinement proofs
ensure that properties of each feature are preserved. Also
the constraint-based variability modeling framework of [117,
195], where product variants are synthesized automatically
from abstract specifications, creates products that are correct
by construction.

Delta-oriented slicing [41] was introduced to reduce the
deductive verification effort across a SPL, combining tech-
niques such as proof slicing [224] and proof reuse [29]. The
technique conservatively infers which specifications remain
valid for a newly generated product and which have to be
re-proven.

A few works (in particular [42,80]) identify a number of
shortcomings with existing approaches and challenges to be
addressed in the future before scalable verification of diverse
systems becomes a reality:

sistency or unsatisfiability test, a deadlock, non-determin-
ism, or the failure of some other safety or liveness property
[115,206]. Model checking approaches often consider single
features specified in isolation and check those pairwise for
interactions [15,44,179]. One particularly interesting recent
approach relies on so-called conflict-tolerant features [68].
This approach provides a methodology and formal frame-
work for avoiding conflicts due to feature interaction and for
ensuring that the composition mechanism selects the appro-
priate features via a priority-based scheme.

5.4 Model checking

Most approaches applying model checking to product lines
extend existing analysis techniques to deal with optional
behavior. Compositional model checking of SPL involves
representing the behavior of features, e.g., as an LTS or
state machine. For each property of a feature, constraints
on interface states that composed features must satisfy can
be generated [35,147]. CTL can be used as a property spec-
ification language and three-valued model checking is used
to ensure open verification [149]. Different programming
language composition mechanisms, such as collaboration-
based designs [79,146] and cross-cutting (aka aspects) fea-
tures [131,148] have also been experimented with.

Thang [212] addresses the feature interaction problem
using open incremental model checking considering models,
where overriding incremental updates to models is possible.
Liu et al. [150] propose an incremental, compositional model
checking technique for the composition of features that com-
putes and manages variation point obligations, and enables
the reuse of verification artifacts when a new product is com-
posed, where possible, only requiring re-verification when
the obligations are not met. Guelev et al. [93] present criteria
for checking when adding new features violates important
properties of a system, which are computationally simpler
than rechecking the system with the new feature added.

Model checking has also been applied to superimposed
variants formalisms. Properties of Classen et al.’s FTS [53]
are specified and checked using LTL. Safety properties that
hold for the entire model are guaranteed to hold for all gen-
erated properties, and violations of a property result in a
counterexample trace along with the products that violate
the property. A version of the modal-μ calculus is used to
reason about PL-CSS expressions [92]. The semantics of the
formula presented is particularly interesting: rather than sim-
ply stating whether a formula is true or false, the semantics
gives the set of variants for which the formula is true.

Lauenroth et al. [143] apply CTL model checking to a ver-
sion of I/O automata where variability information (given by
an OVM model [181]) is associated with transitions. Transi-
tions are contingent on a set of feature configurations, though
without loss of generality a single label can be used with an

– Verification conditions explode (exponentially) due to
variability. They should not be expressed as case dis-
tinctions in specifications, but must be addressed with
compositional techniques and proof reuse.

– Formalizations of richer notions of composition are
required to capture the wide variety of software com-
position techniques.

– The specification of behavioral constraints needs to be
rich enough to enable modular verification.

– Techniques are required for determining when adding
code fragments introduces (un)desirable properties into
a system and, thus, invalidate existing proofs.

5.6 Testing and run-time verification

Another approach to quality assurance is testing [159]. A sur-
vey of testing in SPL engineering is presented in [136]. The
key goal of this research is to make test suites more effective
and less costly. Muccini and van der Hoek [167] provide a
set of challenges and opportunities for the problem of test-
ing SPL architectures. In general, testing can be made more
effective by reducing the combinatorics, by either reusing
test cases for different feature configurations, by detecting
when certain tests subsume other tests, or by determining
which features or feature combinations a certain test is not
applicable to.

Pohl and Metzger [182] provide a general overview of the
area and several principals for approaching product line test-
ing. Cohen et al. [55] provide formal techniques for assessing
the coverage and adequacy of test suites. Kang et al. [121]
provide a basis for a formal framework for product line test
development linking product line concepts to testing con-
cepts to provide a systematic way for deriving product line
tests.

Specification-based testing approaches of SPL have also
been proposed, exploiting, for example, reuse of test cases
[119], and incremental refinement of test suites to match the
selected feature configuration [216]. An alternative approach
reduces the number of tests by determining which features
are not relevant for a particular test case, so the number of
configurations to which that test case applies is reduced [128].
Oster et al. [176] employ combinatorial testing which tests a
subset of all possible products in the product line.

6 Evolution of diverse systems

When developing large software-intensive systems, engi-
neers often get to a point where criteria like maintainabil-
ity, traceability, and consistency get increasingly important
for effective development, while they are increasingly hard
to keep at a certain level. This problem is directly related
to the increasing complexity of an evolving system [144].

Diverse systems are typically very complex systems that are
used for many years and are inevitably subject to continu-
ous evolution. Methodologies and guidelines are needed that
assist software engineers in making well-founded choices
with respect to different types of evolution (such as those
defined in [62]). Various researchers summarize research
challenges arising from software evolution, e.g., van Deursen
et al. [217] and Mens et al. [163].

Depending on the type of system and the modeling lan-
guage used for its representation different strategies for evo-
lution have to be applied. For instance, Mens and D’Hondt
[162] aim to support software evolution of UML-based mod-
els. For other types of modeling languages, there is currently
little support for their evolution and many research challenges
remain [217]. Several authors address the evolution of par-
ticular types of models and focus on special challenges in
this context. Examples are the evolution of reactive systems
[168], software architectures [86] and workflow descriptions
[46,138], e.g., based on domain-specific languages [83,118]
and domain-specific modeling [39,126,155].

When evolving software, in particular when doing so with
model-based techniques, one has to consider the consistency
of the models. One potential approach to this challenge is to
strive to preserve consistency among models, as suggested,
e.g., by Engels et al. [73]. Such consistency-preserving tech-
niques, however, only work under certain restrictive assump-
tions, which can become unrealistic in practice. When deal-
ing with multiple views, multiple stakeholders, and very
large, diverse systems, one quickly reaches a situation where
the presence of inconsistencies has to be accepted and dealt
with [174]. The one-thing approach [153], which supports
an extreme style of model-driven design [134,154], and has
been realized within the jABC modeling framework [207],
has been specifically designed for this purpose.

When dealing with evolution in a modeling context, evo-
lution is not limited to the models themselves. In this sense
van Deursen et al. [217] argue that besides the evolution of
models (regular evolution), other artifacts and aspects that are
affected by evolution are languages and metamodels (meta-
model evolution) as well as the infrastructure, code gen-
erators, and frameworks (platform evolution). Moreover, it
might be necessary to add additional languages (abstraction
evolution).

Finding the right granularity for evolution is an art, but
essential to make evolution of diverse systems manageable.
A popular approach is to support evolution on the level of
architectural elements with components as the units of evo-
lution [221]: components are treated as black boxes and their
internal structure is thus not a concern for evolution.

When modeling variability among diverse systems and
managing the evolution of these systems, techniques for han-
dling and expressing differences between models are helpful,
e.g., model comparison [71,72], delta models [70,72], and

well as the need to evaluate assets from the perspective of
their quality attributes to determine whether reuse will result
in an economic gain or loss.

Ahmed and Capretz [2] define a research model with seven
key business factors (strategic planning, order of entry to
the market, brand name strategy, market orientation, rela-
tionships management, business vision, and innovation) as
independent variables and the SPL business performance as
a dependent variable. The authors conclude that carrying out
and managing the business of SPL require comprehensive
knowledge of and expertise in these key business factors, in
addition to the desired level of excellence in software engi-
neering.

A different approach to deal with the upfront investment
required for the transition to SPL engineering is presented
by Krueger [133] and exemplified in [108]. The idea is to
carefully assess how to reuse as much as possible of an orga-
nization’s existing assets, processes, infrastructure, and orga-
nizational structures, and then find an incremental transition
approach such that a small upfront investment creates imme-
diate and incremental return on investment.

According to Krsek et al. [132], Krueger’s ideas are use-
ful, but are hard to apply in large financial institutions where
commonalities across business unit boundaries need to be
exploited. In this context, SPL engineering requires a formal
approach simply because of the number and size of divi-
sions within the organization. Krsek et al. emphasize that
recovery and benefit allocation mechanisms between busi-
ness units can present further challenges in corporate orga-
nizations. Investment can be either funded centrally by the
Chief Executive Officer or Chief Information Officer, and not
explicitly recovered, or by a specific business unit or a con-
sortium of business units. Their proposal for the latter case
is the adoption of a per-use charging model.

7.2 Organizational infrastructure

The organizational dimension of diverse system develop-
ment deals with the way the organization is able to man-
age complex relationships between the developed artifacts
and the respective employee responsibilities [218]. From
the cooperation with several software development organiza-
tions applying SPL principles, Bosch [37] identified a num-
ber of alternatives to the traditional organizational model
consisting of a domain engineering unit and several appli-
cation engineering units: (1) domain engineering projects
and application engineering projects, (2) domain engineer-
ing projects, whose project teams consist of members from
most business units, such that afterwards each business unit
can extend functionality and make the newer version of the
shared assets available, (3) specialized domain engineering
units that develop and evolve the reusable assets for a subset
of the SPL products. According to the author, several factors

change operators [107,145]. Despite its importance, compa-
rably few publications discuss product line evolution, e.g.,
[36,62,158,208]. Managing evolution, however, is success-
critical, especially in model-based product line approaches
to ensure consistency after changes to meta-models, models,
and actual development artifacts. Some approaches provide
explicit support for particular aspects of product line evolu-
tion [64,66,104,117,137,157,161,195].

7 Managing diverse system development

The development of diverse systems can occur in different
ways, ranging from a series of single system developments to
SPL Engineering [181]. According to Hetrick et al. [108], the
characteristic that distinguishes SPL from previous efforts is
predictive versus opportunistic software reuse. Rather than
putting general software components into a library in hope
that opportunities for reuse will arise, SPL only call for soft-
ware artifacts to be created when reuse is predicted in one or
more products in a well-defined product line.

However, moving from a traditional engineering approach
to SPL engineering requires many technical, financial,
organizational, process, and market considerations to be
addressed [5]. There is no “one-fits-all” approach, and knowl-
edge and experience play an important role when trying to
adopt the approach. This section presents an overview of
economical, organizational, and process aspects of diverse
system development.

7.1 Economical aspects

There is a clear need for demonstrating the business perfor-
mance of product lines, because on the one hand they have
the potential to substantially increase productivity, but on
the other hand they are commonly associated with long-term
strategic planning, initial investment, and long-term payback.

Several economic models and analysis approaches have
been proposed to estimate the expected benefits of adopting
SPL engineering and the required investment. According to
Ali et al. [5], they differ in the aspects of SPL economics that
are taken into consideration, the depth of analysis, and the
applied techniques. The authors compare 12 SPL economic
models with the goal of helping practitioners decide which
model or set of models best serves their needs. The study con-
cludes that modeling SPL economics is a challenging task
and there is a clear need for many more empirical studies.
The main difficulties concerning the latter are the confiden-
tiality of financial data and lack of support from executives.
As an alternative, some researchers use simulation models
[85]. Among the directions for future research, Ali et al. [5]
mention the need for market-oriented economic models, the
identification of cost drivers on finer levels of granularity,as

influence the choice of the organizational model: the size of
the product line and the engineering staff, geographical distri-
bution, project management maturity, organizational culture,
and the nature of the system family.

Krueger [133] advocates the automatic composition and
configuration of different products from the core assets to
eliminate, among other problems, the organizational delin-
eation between domain engineering teams and application
engineering teams and the consequent “us-versus-them cul-
ture”.

Ahmed et al. [4] compiled six key organizational fac-
tors (organizational structure, culture, conflict manage-
ment, change management, commitment, and learning) from
the literature and carried out a survey with the purpose
of understanding the influence of these factors in the
institutionalization of SPL engineering within an organiza-
tion. The empirical results strongly support the hypothesis
that all those organizational factors, but conflict management
are positively associated with the performance of SPL engi-
neering in an organization.

Ganesan et al. [84] use source code history logs to
understand the current development style of the existing
products (fixed or dynamic team structure), as well as to iden-
tify product experts and commonalities among developers.
The authors base their approach on the assumption that the
adoption of SPL engineering starts with the assessment of
the current status, which includes organizational stability,
maturity, staff turnover, domain expertise, and project man-
agement maturity.

7.3 Processes

Clements and Northrop [54] organize SPL development
in three essential macro-activities: core asset development,
product development, and management. Core asset develop-
ment and product development from the core assets can occur
in either order: new products are built from core assets, or
core assets are extracted from existing products.

In addition, Pohl et al. [181] present a framework with
two key SPL engineering processes (domain engineering and
application engineering), while Bayer et al. [28] defined a
methodology to develop SPL that has been refined, populated
(in terms of new methods) and applied in several projects
[114,197]. The methodology is organized in deployment
phases, technical components, and support components.

Several strategies for introducing SPL engineering have
been reported, e.g., [108,132,197,226]. Yoshimura et al.
[226] present a migration process composed of the following
activities: estimate economic benefits, redefine the develop-
ment process, restructure the organization, assess the merge
potential, perform merging, and maintain the SPL. Krsek
et al. [132] propose a set of relevant processes: define fund-
ing, structure the organization, define the product line, man-

age risks, develop acquisition strategy, and others. Hetrick
et al. [108] report a incremental transition composed of four
sequential stages: transition of the infrastructure and core
assets, transition of the team organization, transition of the
development processes, and transition of the validation and
quality assurance.

Some authors have worked on the integration of SPL
engineering and agile development [22,97,166,173]. Hans-
sen and Fægri [97] performed a qualitative case study in
which they identified three interacting customer-centric soft-
ware processes: strategic, tactical, and operational. The stra-
tegic process has a SPL engineering style and implements
long-term strategic plans. The tactical process has the agile
development style and seeks to polish, improve, or other-
wise simplify to moderate adjustments to the product. The
operational process aims at sustaining a good level of satis-
faction with the software in its day-to-day use. Mohan et al.
[166] performed a secondary data analysis of a case study
and identified a set of successful practices in the process
that integrates SPL engineering and agile methods, such as
selective refactoring and the development of a flexible archi-
tecture.

Ahmed and Capretz [3] propose a maturity model for SPL
engineering, by building upon the SPL maturity evaluation
framework proposed by van der Linden et al. [219]. This
framework prescribes four dimensions (business, archi-
tecture, process, and organization), and respective assess-
ment models. In [3], the five levels of maturity for the
SPL engineering process are characterized and an assess-
ment approach based on a fuzzy inference system is pro-
posed.

8 Summary and overview of special section

In this introductory article, we have reviewed the state of the
art in the development of diverse software systems. As we
have shown, software diversity impacts all phases of soft-
ware development, from requirements analysis, over sys-
tem design and implementation, up to quality assurance
and system analysis. Furthermore, we have looked at prod-
uct line evolution and the particular aspects of managing
diverse software systems from an organizational and eco-
nomic perspective. In this special section, we have collected
a number of articles focussing on particular aspects in the
development of diverse software systems, providing detailed
insights into some areas covered in this introductory arti-
cle.

The article “Visualization of variability and configuration
options” [180] by Pleuss and Botterweck considers the prob-
lem space variability expressed by feature models which was
reviewed in Sect. 2.1. The authors present an interactive visu-
alization of feature models to support the configuration of

In their article “Facilitating the evolution of products in
product line engineering by capturing and replaying config-
uration decisions” [105], Heider et al. focus on product line
evolution and, in particular, on evolving the products derived
from a product line. The continuous evolution of both the
reusable artifacts and derived products in product lines is
a major challenge in practice as we described in Sect. 6.
Heider et al. explore how different types of product line
changes influence the derived products and present a tool-
supported approach, which facilitates evolution by capturing
and replaying configuration decisions.

Acknowledgments This research is partly funded by the EternalS
Coordination Action (FP7-247758) (http://www.eternals.eu), the EU
project HATS (FP7-231620) (http://www.hats-project.eu). Ina’s work
has been supported by the Deutsche For schungsgemeinschaft (DFG)
under the grant SCHA1635/1-1 and SCHA1635/2-1. Rick’s work has
partly been supported by the Christian Doppler Forschungs gesell-
schaft, Austria and Siemens VAI Metals Technologies. Lorenzo’s work
has partly been supported by the MIUR project DISCO (PRIN 2008).
David’s work has partly been supported by the European Commis-
sion (FEDER), Spanish Government under the CICYT project SETI
(TIN2009-07366); and projects THEOS (TIC-5906) and ISABEL
(P07-TIC-2533) funded by the Andalusian Local Government. Goe-
tz’ work was supported, in part, by Science Foundation Ireland Grant
10/CE/I1855 to Lero-The Irish Software Engineering Research Centre
(http://www.lero.ie). Animesh’s work is done as part of the European
FP7 ICT FET CONNECT project (http://connect-forever.eu/).

References

1. Acher, M., Collet, P., Lahire, P., France, R.: Composing feature
models. In: SLE. LNCS, vol. 5969, pp. 62–81. Springer, Berlin
(2009)

2. Ahmed, F., Capretz, L.: Managing the business of software prod-
uct line: an empirical investigation of key business factors. Inf.
Softw. Technol. 49(2), 194–208 (2007)

3. Ahmed, F., Capretz, L., Samarabandu, J.: Fuzzy inference
system for software product family process evaluation. Inf.
Sci. 178(3), 2780–2793 (2008)

4. Ahmed, F., Capretz, L., Sheikh, S.: Institutionalization of soft-
ware product line: an empirical investigation of key organizational
factors. J. Syst. Softw. 80(6), 836–849 (2007)

5. Ali, M., Babar, M.A., Schmid, K.: A comparative survey of eco-
nomic models for software product lines. In: SEAA, pp. 275–278
(2009)

6. Alves, V., Gheyi, R., Massoni, T., Kulesza, U., Borba, P.,
Lucena, C.: Refactoring product lines. In: GPCE, pp. 201–210.
ACM, New York (2006)

7. Ancona, D., Zucca, E.: A theory of mixin modules: algebraic laws
and reduction semantics. Math. Struct. Comput. Sci. 12(6), 701–
737 (2001)

8. Ancona, D., Lagorio, G., Zucca, E.: Jam—designing a Java exten-
sion with mixins. ACM TOPLAS 25(5), 641–712 (2003)

9. Anderson, C., Barbanera, F., Dezani-Ciancaglini, M., Drossopou-
lou, S.: Can addresses be types? (a case study: objects with del-
egation). In: WOOD. ENTCS, vol. 82, no. 8, pp. 1–22. Elsevier,
Amsterdam (2003)

10. Apel, S., Kästner, C.: An overview of feature-oriented software
development. J. Object Technol. 8(5), 49–84 (2009)

product variants by feature selection. Additionally, they pro-
vide automatic validation of the selected configurations based
on a reasoning engine.

In their article “A constraint-based variability modeling
framework” [117], Jörges et al. present constraint-based var-
iability modeling as a conceptual alternative to structure-ori-
ented variability modeling concepts which we considered
in Sect. 2. The authors illustrate constraint-based variabil-
ity modeling using two approaches: first, constraint-guarded
variability modeling where manually selected configura-
tion options are validated by constraint checking, and sec-
ond, constraint-driven variability modeling, where the actual
product variants are obtained by automatic synthesis tech-
niques to satisfy the given constraints.

The article “Revealing and repairing configuration incon-
sistencies in large-scale software systems” [210] by Tar-
tler et al. focusses on the consistency between problem and
solution space variability which we considered in Sect. 3.3.
The presented approach derives the variability from Li-
nux configuration models and from the implementation
of the Linux kernel and represents both in propositional
logic to check that configurable and implemented variability
match.

The article “A code tagging approach to software prod-
uct line development” [109] by Heymans et al. considers
the implementation of SPL which is covered in Sect. 4. The
authors propose a code tagging approach to insert variability
into the implementation of existing software systems without
changing the existing programming paradigms or develop-
ment processes. Additionally, the tagging approach allows
tracing code-level variability to the feature model which can
be used for product configuration.

The article “The ABS tool suite: modeling, executing
and analysing distributed adaptable object-oriented systems”
[225] by Wong et al. mainly concerns the design and imple-
mentation of diverse software systems which is reviewed
in Sects. 3 and 4. The authors provide an overview of the
abstract behavioral specification (ABS) language and tool
suite, which is a comprehensive platform for developing
highly adaptive, distributed, and concurrent software sys-
tems. Using the ABS, system variability is consistently trace-
able from the requirements level to the object behavior. The
analysis capabilities of the associated tool suite range from
simulation facilities for debugging to a designated resource
analysis.

In their article “Model checking software product lines
with SNIP” [52], Classen et al. focus on the analysis of SPL
which was covered in Sect. 5. The authors present the SNIP
model checker that takes as input the variability specifica-
tion of the feature model and the behavioral descriptions of
the artifacts used to build the product variants. SNIP then
allows efficiently analyzing all possible product variants by
exploiting their similarities.

http://www.eternals.eu
http://www.hats-project.eu
http://www.lero.ie
http://connect-forever.eu/

11. Apel, S., Leich, T., Saake, G.: Aspectual mixin layers: aspects and
features in concert. In: ICSE. ACM Press, New York, pp. 122–131
(2006)

12. Apel, S., Janda, F., Trujillo, S., Kästner, C.: Model superimpo-
sition in software product lines. In: International Conference on
Model Transformation (ICMT) (2009)

13. Apel, S., Kästner, C., Größlinger, A., Lengauer, C.: Type safety
for feature-oriented product lines. Autom. Softw. Eng. 17(3), 251–
300 (2010)

14. Apel, S., Kästner, C., Lengauer, C.: Feature Featherweight Java:
a calculus for feature-oriented programming and stepwise refine-
ment. In: GPCE, pp. 101–112 (2008)

15. Apel, S., Scholz, W., Lengauer, C., Kästner, C.: Detecting depen-
dences and interactions in feature-oriented design. In: ISSRE, pp.
161–170 (2010)

16. Apel, S., Scholz, W., Lengauer, C., Kästner, C.: Language-inde-
pendent reference checking in software product lines. In: FOSD,
pp. 65–71. ACM, New York (2010)

17. Apt, K.R., de Boer, F.S., Olderog, E.R.: Verification of Sequential
and Concurrent Programs. Texts in Computer Science, 3rd edn.
Springer, Berlin (2009)

18. Asirelli, P., ter Beek, M.H., Fantechi, A., Gnesi, S.: A logical
framework to deal with variability. In: IFM. LNCS, vol. 6396, pp.
43–58. Springer, Berlin (2010)

19. Asirelli, P., ter Beek, M.H., Gnesi, S., Fantechi, A.: A deontic
logical framework for modelling product families. In: VaMoS,
pp. 37–44 (2010)

20. Aßmann, U.: Invasive Software Composition. Springer, Ber-
lin (2003)

21. Atkinson, C., Bayer, J., Bunse, C., Kamsties, E., Laitenberger,
O., Laqua, R., Muthig, D., Paech, B., Wüst, J., Zettel, J.: Com-
ponent-Based Product Line Engineering with UML. Addison-
Wesley, Reading (2002)

22. Babar, M., Ihme, T., Pikkarainen, M.: An industrial case of exploit-
ing product line architectures in agile software development. In:
SPLC, pp. 171–177 (2006)

23. Bassett, P.G.: Framing Software Reuse: Lessons from the Real
World. Prentice-Hall, Englewood Cliffs (1997)

24. Batory, D.: Feature models, grammars, and propositional formu-
las. In: SPLC. LNCS, vol. 3714, pp. 7–20. Springer, Berlin (2005)

25. Batory, D., Benavides, D., Ruiz-Cortes, A.: Automated analysis
of feature models: challenges ahead. Commun. ACM 49(12), 45–
47 (2006)

26. Batory, D., Börger, E.: Modularizing theorems for soft-
ware product lines: the Jbook case study. J. Univ. Comput.
Sci. 14(12), 2059–2082 (2008)

27. Batory, D.S., Sarvela, J.N., Rauschmayer, A.: Scaling step-wise
refinement. IEEE TSE 30(6), 355–371 (2004)

28. Bayer, J., Flege, O., Knauber, P., Laqua, R., Muthig, D., Schmid,
K., Widen,T., DeBaud, J.M.: PuLSE: a methodology to develop
software product lines. In: Proceedings of the 1999 Symposium
on Software Reusability, pp. 122–131 (1999)

29. Beckert, B., Klebanov, V.: Proof reuse for deductive program ver-
ification. In: SEFM, pp. 77–86. IEEE Computer Society, New
York (2004)

30. Benavides, D., Segura, S., Ruiz-Cortes, A.: Automated analysis
of feature models 20 years later. Inf. Syst. 35(6), 615–636 (2010)

31. Berg, K., Bishop, J., Muthig, D.: Tracing software product line
variability: from problem to solution space. In: SAICSIT, pp. 182–
191 (2005)

32. Bettini, L., Bono, V., Venneri, B.: MoMi: a calculus for mobile
mixins. Acta Inform. 42(2–3), 143–190 (2005)

33. Bettini, L., Bono, V., Venneri, B.: Delegation by object composi-
tion. Sci. Comput. Program. 76(11), 992–1014 (2011)

34. Bettini, L., Damiani, F., Schaefer, I.: Implementing software prod-
uct lines using traits. In: SAC, OOPS Track, pp. 2096–2102. ACM,
New York (2010)

35. Blundell, C., Fisler, K., Krishnamurthi, S., Hentenryck, P.V.:
Parameterized interfaces for open system verification of product
lines. In: ASE, pp. 258–267 (2004)

36. Bosch, J.: Design and Use of Software Architectures, Adopting
and Evolving a Product Line Approach. Addison-Wesley, Read-
ing (2000)

37. Bosch, J.: Software product lines: organizational alternatives. In:
ICSE, pp. 91–100 (2001)

38. Bracha, G., Cook, W.: Mixin-based inheritance. In: OOP-
SLA/ECOOP. ACM SIGPLAN Notices, vol. 25, no. 10, pp. 303–
311. ACM Press, New York (1990)

39. Braun, V., Margaria, T., Steffen, B., Yoo, H., Rychly, T.: Safe
service customization. In: Intelligent Network Workshop, 1997.
IN ’97, vol. 2, p. 4. IEEE, New York (1997)

40. Broy, M.: Service-oriented systems engineering: modeling ser-
vices and layered architectures. In: FORTE. LNCS, vol. 2767,
pp. 48–61 (2003)

41. Bruns, D., Klebanov, V., Schaefer, I.: Verification of software
product lines with delta-oriented slicing. In: FoVeOOS. LNCS,
vol. 6528. Springer, Berlin (2010)

42. Bubel, R., Din, C., Hänle, R.: Verification of variable software:
an experience report. In: FoVeOOS. LNCS, vol. 6528. Springer,
Berlin (2010)

43. Calder, M., Kolberg, M., Magill, E.H., Reiff-Marganiec, S.: Fea-
ture interaction: a critical review and considered forecast. Comput.
Netw. 41(1), 115–141 (2003)

44. Calder, M., Miller, A.: Feature interaction detection by pairwise
analysis of LTL properties— a case study. Formal Methods Syst.
Des. 28(3), 213–261 (2006)

45. Campbell, G.H. Jr., Faulk, S.R., Weiss, D.M.: Introduction to
synthesis. Tech. rep., INTRO SYNTHESIS PROCESS-90019-N,
Software Productivity Consortium, Herndon, VA, USA (1990)

46. Casati, F., Ceri, S., Pernici, B., Pozzi, G.: Workflow evolu-
tion. Data Knowl. Eng. 24(3), 211–238 (1998)

47. Chambers, C.: Object-oriented multi-methods in Cecil. In:
ECOOP. LNCS, vol. 615, pp. 33–56. Springer, Berlin (1992)

48. Chen, L., Babar, M.A.: A systematic review of evaluation of var-
iability management approaches in software product lines. Inf.
Softw. Technol. 53(4), 344–362 (2011)

49. Clarke, D., Helvensteijn, M., Schaefer, I.: Abstract delta model-
ing. In: GPCE. ACM, New York (2010)

50. Clarke, D., Proença, J.: Towards a theory of views for feature
models. In: FMSPLE. Technical Report, University of Lancaster,
UK (2010)

51. Classen, A., Heymans, P., Schobbens, P.Y.: What’s in a feature:
a requirements engineering perspective. In: FASE. LNCS, vol.
4961/200, pp. 16–30. Springer, Berlin (2008)

52. Classen, A., Cordy, M., Heymans, P., Legay, A., Schobbens, P.Y.:
Model checking software product lines with SNIP. STTT (2012,
in this issue)

53. Classen, A., Heymans, P., Schobbens, P.Y., Legay, A., Raskin,
J.F.: Model checking lots of systems: efficient verification of tem-
poral properties in software product lines. In: ICSE. IEEE, New
York (2010)

54. Clements, P., Northrop, L.: Software Product Lines: Practices
and Patterns. SEI Series in Software Engineering. Addison-Wes-
ley, Reading (2001)

55. Cohen, M.B., Dwyer, M.B., Shi, J.: Coverage and adequacy in
software product line testing. In: ROSATEA, pp. 53–63 (2006)

56. Colyer, A., Clement, A.: Large-scale AOSD for middleware. In:
AOSD, pp. 56–65. ACM Press, New York (2004)

57. Czarnecki, K.: Variability modeling: state of the art and future
directions. In: VaMoS, p. 11. ICB-Research Report No. 37, Uni-
versity of Duisburg Essen (2010)

58. Czarnecki, K., Antkiewicz, M.: Mapping features to models: a
template approach based on superimposed variants. In: GPCE,
pp. 422–437. Springer, Berlin (2005)

59. Czarnecki, K., Eisenecker, U.: Generative Programming: Meth-
ods, Techniques, and Applications. Addison-Wesley, Read-
ing (2000)

60. Czarnecki, K., Pietroszek, K.: Verifying feature-based model tem-
plates against well-formedness OCL constraints. In: GPCE, pp.
211–220 (2006)

61. Czarnecki, K., Wasowski, A.: Feature diagrams and logics: there
and back again. In: SPLC, pp. 23–34 (2007)

62. Deelstra, S., Sinnema, M., Bosch, J.: Product derivation in soft-
ware product families: a case study. J. Syst. Softw. 74(2), 173–
194 (2005)

63. Delaware, B., Cook, W.R., Batory, D.S.: Fitting the pieces
together: a machine-checked model of safe composition. In:
ESEC/SIGSOFT FSE, pp. 243–252 (2009)

64. Deng, G., Gray, J., Schmidt, D., Lin, Y., Gokhale, A., Lenz, G.:
Evolution in model-driven software product-line architectures.
In: Designing Software-Intensive Systems, pp. 1280–1312. Idea
Group Inc, USA (2008)

65. Dhungana, D., Grünbacher, P., Rabiser, R.: The DOPLER meta-
tool for decision-oriented variability modeling: a multiple case
study. Autom. Softw. Eng. 18(1), 77–114 (2011)

66. Dhungana, D., Grünbacher, P., Rabiser, R., Neumayer, T.: Struc-
turing the modeling space and supporting evolution in soft-
ware product line engineering. J. Syst. Softw. 83(7), 1108–1122
(2010)

67. Dhungana, D., Neumayer, T., Grünbacher, P., Rabiser, R.: Sup-
porting evolution in model-based product line engineering. In:
SPLC (2008)

68. D’Souza, D., Gopinathan, M.: Conflict-tolerant features. In: CAV.
LNCS, vol. 5123, pp. 227–239. Springer, Berlin (2008)

69. Ducasse, S., Nierstrasz, O., Schärli, N., Wuyts, R., Black,
A.P.: Traits: a mechanism for fine-grained reuse. ACM Trans.
Program. Lang. Syst. 28(2), 331–388 (2006)

70. Eclipse-Foundation: Atlas model weaver. http://www.eclipse.org/
gmt/amw/

71. Eclipse-Foundation: EMF compare. http://www.eclipse.org/
modeling/emft/?project=compare

72. Eclipse-Foundation: Epsilon project. http://www.eclipse.org/
gmt/epsilon/

73. Engels, G., Heckel, R., Küster, J., Groenewegen, L.: Consis-
tency-preserving model evolution through transformations. In:
UML International Conference. LNCS, vol. 2460, pp. 212–226.
Springer, Berlin (2002)

74. Fantechi, A., Gnesi, S.: Formal modeling for product families
engineering. In: SPLC (2008)

75. Fantechi, A., Gnesi, S.: A behavioural model for product families.
In: ESEC/SIGSOFT FSE, pp. 521–524 (2007)

76. Findler, R., Flatt, M.: Modular object-oriented programming
with units and mixins. In: ICFP, pp. 94–104. ACM, New York
(1998)

77. Fischbein, D., Uchitel, S., Braberman, V.A.: A foundation for
behavioural conformance in software product line architectures.
In: ROSATEA, pp. 39–48 (2006)

78. Fisher, K., Mitchell, J.C.: A delegation-based object calculus with
subtyping. In: FCT. LNCS, vol. 965, pp. 42–61. Springer, Berlin
(1995)

79. Fisler, K., Krishnamurthi, S.: Modular verification of collabora-
tion-based software designs. In: ESEC/SIGSOFT FSE, pp. 152–
163 (2001)

80. Fisler, K., Krishnamurthi, S.: Decomposing verification around
end-user features. In: VSTTE. LNCS, vol. 4171, pp. 74–81.
Springer, Berlin (2005)

81. Fisler, K., Roberts, B.: A case study in using ACL2 for feature-ori-
ented verification. In: Fifth International Workshop on the ACL2
Theorem Prover and Its Applications (ACL2 ’04) (2004)

82. Flatt, M., Krishnamurthi, S., Felleisen, M.: Classes and mixins.
In: POPL, pp. 171–183. ACM Press, New York (1998)

83. Fowler, M., Parsons, R.: Domain-Specific Languages. Addi-
son-Wesley/ACM Press, Reading (2011). http://books.google.de/
books?id=ri1muolw_Ywc

84. Ganesan, D., Muthig, D., Knodel, J., Yoshimura, K.: Discovering
organizational aspects from the source code history log during
the product line planning phase—a case study. In: WCRE, pp.
211–220 (2006)

85. Ganesan, D., Muthig, D., Yoshimura, K.: Predicting return-on-
investment for product line generations. In: SPLC, pp. 13–24
(2006)

86. Garlan, D., Barnes, J., Schmerl, B., Celiku, O.: Evolution styles:
foundations and tool support for software architecture evolution.
In: WICSA/ECSA, pp. 131–140. IEEE, New York (2009)

87. Gheyi, R., Massoni, T., Borba, P.: A theory for feature models in
Alloy. In: Alloy Workshop, pp. 71–80 (2006)

88. Gheyi, R., Massoni, T., Borba, P.: Algebraic laws for feature mod-
els. J. UCS 14(21), 3573–3591 (2008)

89. Goldstein, I., Bobrow, D.: Extending object-oriented program-
ming in Smalltalk. In: Conference on LISP and Functional Pro-
gramming, pp. 75–81. ACM Press, New York (1980)

90. Gomaa, H.: Designing Software Product Lines with UML. Addi-
son-Wesley, Reading (2005)

91. Greenfield, J., Short, K.: Software Factories. Hungry Minds, New
York (2006)

92. Gruler, A., Leucker, M., Scheidemann, K.D.: Modeling and model
checking software product lines. In: FMOODS. LNCS, vol. 5051,
pp. 113–131. Springer, Berlin (2008)

93. Guelev, D.P., Ryan, M.D., Schobbens, P.Y.: Model-checking
the preservation of temporal properties upon feature integra-
tion. STTT 9(1), 53–62 (2007)

94. Haber, A., Kutz, T., Rendel, H., Rumpe, B., Schaefer, I.: Delta-
oriented architectural variability using MontiCore. In: Workshop
on Software Architecture Variability (SAVA) (2011)

95. Haber, A., Rendel, H., Rumpe, B., Schaefer, I.: Delta modeling
for software architectures. In: Workshop on Model-Based Devel-
opment of Embedded Systems (MBEES) (2011)

96. Haber, A., Rendel, H., Rumpe, B., Schaefer, I., van der Linden,
F.: Hierarchical variability modeling for software architectures.
In: SPLC (2011)

97. Hanssen, G., Fægri, T.: Process fusion: an industrial case study
on agile software product line engineering. J. Syst. Softw. 81(6)
(2008)

98. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cam-
bridge (2000)

99. Harhurin, A., Hartmann, J.: Towards consistent specifications of
product families. In: FM. LNCS, vol. 5014, pp. 390–405. Springer,
Berlin (2008)

100. Haugen, O., Moller-Pedersen, B., Oldevik, J., Olsen, G., Svend-
sen, A.: Adding standardized variability to domain specific lan-
guages. In: SPLC, pp. 139–148. IEEE, New York (2008)

101. Heidenreich, F., Kopcsek, J., Wende, C.: FeatureMapper: map-
ping features to models. In: ICSE, pp. 943–944. ACM, New York
(2008)

102. Heidenreich, F., Wende, C.: Bridging the gap between features and
models. In: Aspect-Oriented Product Line Engineering (2007)

103. Heidenreich, F.: Towards systematic ensuring well-formedness of
software product lines. In: Workshop on Feature-Oriented Soft-
ware Development, pp. 69–74. ACM, New York (2009)

http://www.eclipse.org/gmt/amw/
http://www.eclipse.org/gmt/amw/
http://www.eclipse.org/modeling/emft/?project=compare
http://www.eclipse.org/modeling/emft/?project=compare
http://www.eclipse.org/gmt/epsilon/
http://www.eclipse.org/gmt/epsilon/
http://books.google.de/books?id=ri1muolw_Ywc
http://books.google.de/books?id=ri1muolw_Ywc

104. Heider, W., Rabiser, R., Dhungana, D., Grünbacher, P.: Tracking
evolution in model-based product lines. In: MAPLE, pp. 59–63.
Software Engineering Institute, Carnegie Mellon (2009)

105. Heider, W., Rabiser, R., Grünbacher, P.: Facilitating the evolution
of products in product line engineering by capturing and replaying
configuration decisions. STTT (2012, in this issue)

106. Hendrickson, S.A., van der Hoek, A.: Modeling product line
architectures through change sets and relationships. In: ICSE
(2007)

107. Herrmannsdoerfer, M., Benz, S., Juergens, E.: COPE—automat-
ing coupled evolution of metamodels and models. In: ECOOP, pp.
52–76. Springer, Berlin (2009)

108. Hetrick, W., Krueger, C., Moore, J.: Incremental return on incre-
mental investment: Engenio’s transition to software product line
practice. In: OOPSLA, pp. 798–804 (2006)

109. Heymans, P., Boucher, Q., Classen, A., Bourdoux, A., Demon-
ceau, L.: A code tagging approach to software product line devel-
opment. STTT (2012, in this issue)

110. Hirschfeld, R., Costanza, P., Nierstrasz, O.: Context-oriented pro-
gramming. J. Object Technol. 7(3), 125–151 (2008)

111. Hirschowitz, T., Leroy, X.: Mixin modules in a call-by-value
setting. In: ESOP. LNCS, vol. 2305, pp. 6–20. Springer, Berlin
(2002)

112. Höfner, P., Khédri, R., Möller, B.: Algebraic view reconciliation.
In: SEFM, pp. 149–158. IEEE Computer Society (2008)

113. Jayaraman, P.K., Whittle, J., Elkhodary, A.M., Gomaa, H.:
Model composition in product lines and feature interaction detec-
tion using critical pair analysis. In: MoDELS, pp. 151–165
(2007)

114. John, I., Knodel, J., Schulz, T.: Applied software product line
engineering. In: Efficient scoping with CaVE: a case study, pp.
421–445. CRC Press, Boca Raton (2010)

115. Jonsson, B., Margaria, T., Naeser, G., Nyström, J., Steffen,
B.: Incremental requirement specification for evolving sys-
tems. Nord. J. Comput. 8, 65–87 (2001)

116. Jörges, S.: Genesys: a model-driven and service-oriented
approach to the construction and evolution of code generators.
PhD thesis, Technische Universitt Dortmund (2011)

117. Jörges, S., Lamprecht, A.L., Margaria, T., Schaefer, I., Steffen, B.:
A constraint-based variability modeling framework. STTT (2012,
in this issue)

118. Jörges, S., Margaria, T., Steffen, B.: Genesys: service-
oriented construction of property conform code genera-
tors. ISSE 4(4), 361–384 (2008)

119. Kahsai, T., Roggenbach, M., Schlingloff, B.H.: Specification-
based testing for software product lines. In: SEFM, pp. 149–158.
IEEE Computer Society, New York (2008)

120. Kang, K.C., Cohen, S., Hess, J., Nowak, W., Peterson, S.: Fea-
ture-oriented domain analysis (FODA) feasibility study. Tech.
Rep. CMU/SEI-90-TR-021, Carnegie Mellon University, Soft-
ware Engineering Institute (1990)

121. Kang, S., Lee, J., Kim, M., Lee, W.: Towards a formal framework
for product line test development. In: CIT, pp. 921–926. IEEE
Computer Society, New York (2007)

122. Kästner, C., Apel, S.: Type-checking software product lines—
a formal approach. In: ASE, pp. 258–267. IEEE, New York
(2008)

123. Kästner, C., Apel, S., Trujillo, S., Kuhlemann, M., Batory, D.S.:
Guaranteeing syntactic correctness for all product line vari-
ants: a language-independent approach. In: TOOLS, pp. 175–194
(2009)

124. Kaufmann, M., Moore, J.S., Manolios, P.: Computer-Aided Rea-
soning: An Approach. Kluwer, Norwell (2000)

125. Keck, D.O., Kühn, P.J.: The feature and service interaction prob-
lem in telecommunications systems: a survey. IEEE Trans. Softw.
Eng. 24(10), 779–796 (1998)

126. Kelly, S., Tolvanen, J.P.: Domain-Specific Modeling: Enabling
Full Code Generation. Wiley-IEEE Computer Society Press, New
York (2008)

127. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes,
C.V., Loingtier, J.M., Irwin, J.: Aspect-oriented programming. In:
ECOOP. LNCS, vol. 1241, pp. 220–242. Springer, Berlin (1997)

128. Kim, C., Batory, D., Khurshid, S.: Reducing combinatorics in
testing product lines. In: AOSD (2011)

129. Kishi, T., Noda, N.: Formal verification and software product
lines. Commun. ACM 49(12), 73–77 (2006)

130. Kniesel, G.: Type-safe delegation for run-time component adapta-
tion. In: ECOOP. LNCS, vol. 1628, pp. 351–366. Springer, Berlin
(1999)

131. Krishnamurthi, S., Fisler, K., Greenberg, M.: Verifying aspect
advice modularly. In: SIGSOFT FSE, pp. 137–146 (2004)

132. Krsek, M., van Zyl, J., Redpath, R., Clohesy, B.: Experiences of
large banks: Hurdles and enablers to the adoption of software
product line practices in large corporate organisations. In: SPLC,
pp. 161–169 (2008)

133. Krueger, C.: New methods in software product line practi-
cel. Commun. ACM 49(12), 37–40 (2006)

134. Kubczak, C., Jörges, S., Margaria, T., Steffen, B.: eXtreme model-
driven design with jABC. In: CTIT Proceedings of the Tools
and Consultancy Track of the Fifth European Conference on
Model-Driven Architecture Foundations and Applications (EC-
MDA-FA), vol. WP09-12, pp. 78–99 (2009)

135. Kuhlemann, M., Batory, D.S., Kästner, C.: Safe composition of
non-monotonic features. In: GPCE, pp. 177–186 (2009)

136. Lamancha, B.P., Usaola, M.P., Velthius, M.P.: Software prod-
uct line testing—a systematic review. In: ICSOFT, pp. 23–30
(2009)

137. Lamprecht, A.L., Margaria, T., Schaefer, I., Steffen, B.: Compar-
ing structure-oriented and behavior-oriented variability modeling
for workflows. In: Moschitti, A., Scandariato, R. (eds.) 1st Inter-
national Workshop on Eternal Systems (EternalS’11). Communi-
cations in Computer and Information Science (CCIS), vol. 225.
Springer, Berlin (2011)

138. Lamprecht, A., Margaria, T., Steffen, B.: Seven variations of an
alignment workflow—an illustration of agile process design and
management in Bio-jETI. In: Bioinformatics Research and Appli-
cations. LNBI, vol. 4983, pp. 445–456. Springer, Atlanta (2008)

139. Lamprecht, A.L., Naujokat, S., Margaria, T., Steffen, B.: Syn-
thesis-based loose programming. In: Proceedings of the 7th
International Conference on the Quality of Information and Com-
munications Technology (QUATIC) (2010)

140. Larsen, K.G., Nyman, U., Wasowski, A.: Modal I/O automata for
interface and product line theories. In: ESOP. LNCS, vol. 4421,
pp. 64–79. Springer, Berlin (2007)

141. Larsen, K.G., Nyman, U., Wasowski, A.: Modeling software prod-
uct lines using color-blind transition systems. STTT 9(5–6), 471–
487 (2005)

142. Larsen, K.G., Thomsen, B.: A modal process logic. In: LICS, pp.
203–210. IEEE Computer Society, New York (1988)

143. Lauenroth, K., Pohl, K., Toehning, S.: Model checking of domain
artifacts in product line engineering. In: ASE, pp. 269–280 (2009)

144. Lehman, M.: Programs, life cycles, and laws of software evolu-
tion. IEEE Inf. Process. Lett. 68(9), 1060–1076 (1980)

145. Lerner, B.: A model for compound type changes encoun-
tered in schema evolution. ACM Trans. Database Syst. 25(1),
83–127 (2000)

146. Li, H.C., Fisler, K., Krishnamurthi, S.: The influence of software
module systems on modular verification. In: SPIN. LNCS, vol.
2318, pp. 60–78. Springer, Berlin (2002)

147. Li, H.C., Krishnamurthi, S., Fisler, K.: Interfaces for modular fea-
ture verification. In: ASE, pp. 195–204 (2002)

148. Li, H.C., Krishnamurthi, S., Fisler, K.: Verifying cross-cut-
ting features as open systems. In: SIGSOFT FSE, pp. 89–98
(2002)

149. Li, H.C., Krishnamurthi, S., Fisler, K.: Modular verification of
open features using three-valued model checking. Autom. Softw.
Eng. 12(3), 349–382 (2005)

150. Liu, J., Basu, S., Lutz, R.R.: Compositional model checking of
software product lines using variation point obligations. Autom.
Softw. Eng. 18(1), 39–76 (2011)

151. Lopez-Herrejon, R., Batory, D., Cook, W.: Evaluating support for
features in advanced modularization technologies. In: ECOOP.
LNCS, vol. 3586, pp. 169–194. Springer, Berlin (2005)

152. Loughran, N., Sánchez, P., Garcia, A., Fuentes, L.: Language sup-
port for managing variability in architectural models. In: Software
Composition. LNCS, vol. 4954. Springer, Berlin (2008)

153. Margaria, T., Steffen, B.: Business process modelling in the
jABC: the one-thing-approach. In: Cardoso, J., van der Aalst, W.
(eds.) Handbook of Research on Business Process Modeling. IGI
Global, USA (2009)

154. Margaria, T., Steffen, B.: Continuous model-driven engineer-
ing. IEEE Comput. 42(10), 106–109 (2009)

155. Margaria, T., Steffen, B., Kubczak, C.: Evolution support in
heterogeneous service-oriented landscapes. J. Braz. Comput.
Soc. 16(1), 35–47 (2010)

156. Margaria, T., Steffen, B., Reitenspieß, M.: Service-oriented
design: the roots. In: ICSOC, pp. 450–464 (2005)

157. Mattsson, M., Bosch, J.: Frameworks as components: a classi-
fication of framework evolution. In: Nordic Workshop on Pro-
gramming Environment Research, Ronneby, Sweden, pp. 63–174
(1998)

158. McGregor, J.: The evolution of product line assets. Tech. rep.,
CMU/SEI-2003-TR-005 ESC-TR-2003-005 (2003)

159. McGregor, J.D.: Testing a software product line. In: PSSE. LNCS,
vol. 6153, pp. 104–140. Springer, Berlin (2007)

160. McVeigh, A., Kramer, J., Magee, J.: Using resemblance to sup-
port component reuse and evolution. In: SAVCBS, pp. 49–56
(2006)

161. Mende, T., Beckwermert, F., Koschke, R., Meier, G.: Supporting
the grow-and-prune model in software product lines evolution
using clone detection. In: CSMR, pp. 163–172. IEEE CS, New
York (2008)

162. Mens, T., D’Hondt, T.: Automating support for software evolution
in UML. Autom. Softw. Eng. 7(1), 39–59 (2000)

163. Mens, T., Wermelinger, M., Ducasse, S., Demeyer, S., Hirschfeld,
R., Jazayeri, M.: Challenges in software evolution. In: IWPSE, pp.
13–22. IEEE Computer Society, New York (2005)

164. Metzger, A., Heymans, P., Pohl, K., Schobbens, P.Y., Saval,
G.: Disambiguating the documentation of variability in soft-
ware product lines: a separation of concerns, formalization and
automated analysis. In: RE, pp. 243–253. IEEE, New York
(2007)

165. Mikhajlov, L., Sekerinski, E.: A study of the fragile base class
problem. In: ECOOP. LNCS, vol. 1445, pp. 355–383. Springer,
Berlin (1998)

166. Mohan, K., Ramesh, B., Sugumaran, V.: Integrating soft-
ware product line engineering and agile development. IEEE
Softw. 27(3), 48–55 (2010)

167. Muccini, H., van der Hoek, A.: Towards testing product line
architectures. Electron. Notes Theor. Comput. Sci. 82(6), 109–
119 (2003)

168. Müller-Olm, M., Steffen, B., Cleaveland, R.: On the evolution
of reactive components: a process-algebraic approach. In: Pro-
ceedings of the Second International Conference on Fundamental
Approaches to Software Engineering. FASE ’99, pp. 161–175
(1999)

169. Muschevici, R., Clarke, D., Proença, J.: Feature Petri nets. In:
FMSPLE. Technical Report, University of Lancaster, UK (2010)

170. Nejati, S., Sabetzadeh, M., Chechik, M., Easterbrook, S.M., Zave,
P.: Matching and merging of statecharts specifications. In: ICSE,
pp. 54–64 (2007)

171. Noda, N., Kishi, T.: Aspect-oriented modeling for variability man-
agement. In: SPLC (2008)

172. Noda, N., Kishi, T.: Design verification tool for product line devel-
opment. In: SPLC, pp. 147–148 (2007)

173. Noor, M.A., Rabiser, R., Grünbacher, P.: Agile product line
planning: a collaborative approach and a case study. J. Syst.
Softw. 81(6), 868–882 (2008)

174. Nuseibeh, B., Easterbrook, S., Russo, A.: Making inconsistency
respectable in software development. J. Syst. Softw. 58(2), 171–
180 (2001)

175. Nyman, U.: Modal Transition systems as the basis for interface
theories and product lines. PhD thesis, Department of Computer
Science, Aalborg University (2008)

176. Oster, S., Markert, F., Ritter, P.: Automated incremental pairwise
testing of software product lines. In: SPLC, pp. 196–210. Springer,
Berlin (2010)

177. Padmanabhan, P., Lutz, R.R.: Tool-supported verification of prod-
uct line requirements. Autom. Softw. Eng. 12(4), 447–465 (2005)

178. Pérez, J., Díaz, J., Soria, C.C., Garbajosa, J.: Plastic partial com-
ponents: a solution to support variability in architectural compo-
nents. In: WICSA/ECSA (2009)

179. Plath, M., Ryan, M.D.: Plug-and-play features. In: FIW, pp. 150–
164 (1998)

180. Pleuss, A., Botterweck, G.: Visualization of variability and con-
figuration options. STTT (2012, in this issue)

181. Pohl, K., Böckle, G., van der Linden, F.: Software Prod-
uct Line Engineering: Foundations, Principles, and Tech-
niques. Springer, Berlin (2005)

182. Pohl, K., Metzger, A.: Software product line testing. Commun.
ACM 49(12), 78–81 (2006)

183. Poppleton, M.: Towards feature-oriented specification and devel-
opment with event-B. In: REFSQ, pp. 367–381 (2007)

184. Post, H., Sinz, C.: Configuration lifting: verification meets soft-
ware configuration. In: ASE, pp. 347–350 (2008)

185. Prehofer, C.: Plug-and-play composition of features and
feature interactions with statechart diagrams. Softw. Syst.
Model. 3(3), 221–234 (2004)

186. Pure systems GmbH: Variant management with pure::variants.
Technical whitepaper (2006)

187. Rabiser, R., Grünbacher, P., Dhungana, D.: Supporting product
derivation by adapting and augmenting variability models. In:
SPLC, pp. 141–150. IEEE, New York (2007)

188. Rabiser, R., O’Leary, P., Richardson, I.: Key activities for product
derivation in software product lines. J. Syst. Softw. 84(2), 285–
300 (2011)

189. Satyananda, T.K., Lee, D., Kang, S.: Formal verification of consis-
tency between feature model and software architecture in software
product line. In: ICSEA, p. 10 (2007)

190. Schaefer, I., Bettini, L., Botterweck, G., Clarke, D., Costanza, C.,
Pathak, A., Rabiser, R., Trujillo, S., Villela, K.: Survey on diver-
sity awareness and management. Tech. rep., Deliverable 2.1 of
the EternalS Coordination Action (FP7-247758) (2011)

191. Schaefer, I., Bettini, L., Damiani, F.: Compositional type-check-
ing for delta-oriented programming. In: AOSD. ACM Press, New
York (2011)

192. Schaefer, I., Worret, A., Poetzsch-Heffter, A.: A model-based
framework for automated product derivation. In: MAPLE (2009)

193. Schaefer, I.: Variability modelling for model-driven development
of software product lines. In: VaMoS, pp. 85–92 (2010)

194. Schaefer I., Bettini L., Bono V., Damiani F., Tanzarella N.:
Delta-oriented programming of software product lines. In: SPLC.
LNCS, vol. 6287, pp. 77–91. Springer, Berlin (2010)

195. Schaefer, I., Lamprecht, A.L., Margaria, T.: Constraint-oriented
variability modeling. In: Rash, J., Rouff, C. (eds.) 34th Annual
IEEE Software Engineering Workshop (SEW-34). IEEE CS Press,
New York (2011, to appear)

196. Schmid, K., John, I.: A customizable approach to full-life cycle
variability management. J. Sci. Comput. Program. Spec. Issue Var.
Manag. 53(3), 259–284 (2004)

197. Schmid, K., John, I., Kolb, R., Meier, G.: Introducing the PuLSE
approach to an embedded system population at Testo AG. In:
ICSE, pp. 544–552 (2005)

198. Schmid, K., Rabiser, R., Grünbacher, P.: A comparison of decision
modeling approaches in product lines. In: VaMoS, pp. 119–126.
ACM, New York (2011)

199. Schobbens, P., Trigaux, J., Heymans, P., Bontemps, Y.: Generic
semantics of feature diagrams. Comput. Netw. 51(2), 456–
479 (2006)

200. Schobbens, P.Y., Heymans, P., Trigaux, J.C., Bontemps, Y.: Fea-
ture diagrams: a survey and a formal semantics. In: RE, pp. 139–
148. IEEE, New York (2006)

201. Segura, S., Benavides, D., Cortés, A.R., Trinidad, P.: Auto-
mated merging of feature models using graph transformations. In:
GTTSE. LNCS, vol. 5235, pp. 489–505. Springer, Berlin (2007)

202. Sinnema, M., Deelstra, S.: Classifying variability modeling tech-
niques. Inf. Softw. Technol. 49(7), 717–739 (2006)

203. Smaragdakis, Y., Batory, D.: Mixin layers: an object-oriented
implementation technique for refinements and collaboration-
based designs. ACM TOSEM 11(2), 215–255 (2002)

204. Smith, R., Ungar, D.: A simple and unifying approach to subjec-
tive objects. ACM TOPLAS 2(3), 161–178 (1996)

205. Steffen, B., Margaria, T., Braun, V., Kalt, N.: Hierarchical service
definition. Annu. Rev. Commun. ACM 51, 847–856 (1997)

206. Steffen, B., Margaria, T., Braun, V.: Coarse-granular model check-
ing in practice. In: Proceedings of the 8th International SPIN
Workshop on Model Checking of Software. SPIN ’01, pp. 304–
311 (2001)

207. Steffen, B., Margaria, T., Nagel, R., Jörges, S., Kubczak, C.:
Model-driven development with the jABC. In: Hardware and Soft-
ware, Verification and Testing. Lecture Notes in Computer Sci-
ence, vol. 4383, pp. 92–108. Springer, Berlin (2007)

208. Svahnberg, M., Bosch, J.: Evolution in software product lines:
two cases. J. Softw. Maint. Res. Pract. 11(6), 391–422 (1999)

209. Taivalsaari, A.: On the notion of inheritance. ACM Comput.
Surv. 28(3), 438–479 (1996)

210. Tartler, R., Sincero, J., Dietrich, C., Schröder-Preikschat, W., Loh-
mann, D.: Revealing and repairing configuration inconsistencies
in large-scale software systems. STTT (2012, in this issue)

211. Thaker, S., Batory, D.S., Kitchin, D., Cook, W.R.: Safe composi-
tion of product lines. In: GPCE, pp. 95–104 (2007)

212. Thang, N.T.: Incremental verification of consistency in feature-
oriented software. PhD thesis, Japan Advanced Institute of Sci-
ence and Technology (2005)

213. Thüm, T., Batory, D.S., Kästner, C.: Reasoning about edits to fea-
ture models. In: ICSE, pp. 254–264 (2009)

214. Trujillo, S., Batory, D., Diaz, O.: Feature oriented model driven
development: a case study for portlets. In: ICSE, pp. 44–53. IEEE
CS, New York (2007)

215. Ungar, D., Smith, R.B.: Self: the power of simplicity. ACM SIG-
PLAN Not. 22(12), 227–242 (1987)

216. Uzuncaova, E., Khurshid, S., Batory, D.S.: Incremental test
generation for software product lines. IEEE Trans. Softw.
Eng. 36(3), 309–322 (2010)

217. van Deursen, A., Visser, E., Warmer, J.: Model-driven software
evolution: a research agenda. In: MoDSE, pp. 41–49. University
of Nantes (2007)

218. van der Linden, F.: Software product families in Europe: the Esaps
& Cafè projects. IEEE Softw. 19(4), 41–49 (2002)

219. van der Linden, F., Bosch, J., Kamsties, E., Känsälä, K., Obbink,
H.: Software product family evaluation. In: SPLC, pp. 110–129
(2004)

220. Van Limberghen, M., Mens, T.: Encapsulation and composition as
orthogonal operators on mixins: a solution to multiple inheritance
problems. Object Oriented Syst. 3(1), 1–30 (1996)

221. van Ommering, R., van der Linden, F., Kramer, J., Magee, J.: The
Koala component model for consumer electronics software. IEEE
Comput. 33(3), 78–85 (2000)

222. Viega, J., Tutt, B., Behrends, R.: Automated delegation is a viable
alternative to multiple inheritance in class based languages. Tech.
rep. CS-98-03, UVa Computer Science (1998)

223. Völter, M., Groher, I.: Product line implementation using aspect-
oriented and model-driven software development. In: SPLC, pp.
233–242 (2007)

224. Wehrheim, H.: Slicing techniques for verification re-use. Theor.
Comput. Sci. 343(3), 509–528 (2005)

225. Wong, P.Y.H., Albert, E., Muschevici, R., Proenca, J., Schäfer, J.,
Schlatte, R.: The ABS tool suite: modeling, executing and analys-
ing distributed adaptable object-oriented systems. STTT (2012, in
this issue)

226. Yoshimura, K., Ganesan, D., Muthig, D.: Defining a strategy to
introduce a software product line using existing embedded sys-
tems. In: EMSOFT, pp. 63–72 (2006)

227. Ziadi, T., Hélouët, L., Jézéquel, J.M.: Towards a UML profile for
software product lines. In: Workshop on Product Family Engi-
neering, pp. 129–139 (2003)

	Software diversity: state of the art and perspectives
	Abstract
	1 Introduction
	2 Variability modeling of diverse systems
	2.1 Feature-oriented variability modeling
	2.2 Decision-oriented variability modeling

	3 Diversity in system design
	3.1 Solution space variability
	3.2 Architectural variability
	3.3 Mapping problem and solution space

	4 Diversity in implementation
	5 Quality assurance for diverse systems
	5.1 Feature model analysis
	5.2 Type systems and static analysis
	5.3 Feature interaction analysis
	5.4 Model checking
	5.5 Deductive verification
	5.6 Testing and run-time verification

	6 Evolution of diverse systems
	7 Managing diverse system development
	7.1 Economical aspects
	7.2 Organizational infrastructure
	7.3 Processes

	8 Summary and overview of special section
	Acknowledgments
	References

