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In the present work, we explore a nonlinear Dirac equation motivated as the continuum limit of a binary
waveguide array model. We approach the problem both from a near-continuum perspective as well as from a
highly discrete one. Starting from the former, we see that the continuum Dirac solitons can be continued for all
values of the discretization (coupling) parameter, down to the uncoupled (so-called anti-continuum) limit where
they result in a 9-site configuration. We also consider configurations with 1- or 2-sites at the anti-continuum
limit and continue them to large couplings, finding that they also persist. For all the obtained solutions, we
examine not only the existence, but also the spectral stability through a linearization analysis and finally consider
prototypical examples of the dynamics for a selected number of cases for which the solutions are found to be
unstable.

I. INTRODUCTION

Optical waveguide arrays [1, 2] constitute one of the settings that have led to numerous recent experimental and theoretical
developments as regards the analysis of wave phenomena in Hamiltonian lattices. Both in this and in the related context of pho-
torefractive crystals, features such as discrete diffraction [3] and its management [4], Talbot revivals [5], PT -symmetry and its
breaking [6], as well as discrete solitons [3, 7] and vortices [8, 9] were not only theoretically predicted but also experimentally
observed. Variants of the theme of optical waveguide arrays have involved multi-component models bearing multiple polar-
izations [10, 11], waveguides featuring quadratic (so-called χ2) nonlinearities [12, 13], and the examination of dark-solitonic
states [14, 15]. Another theme where extensive related studies have been conducted is the atomic physics realm of Bose-Einstein
condensates (BECs) in optical lattices [16, 17].

Recently, research on binary waveguide arrays has been gaining momentum [18–22]. Part of the reason for this is that
under suitable limiting conditions, this system can lead to Dirac-like nonlinear equations that are of increasing prominence and
wide relevance in diverse physical contexts. These include, among others, bosonic evolution in honeycomb lattices [23, 24]
and a growing class of atomically thin two-dimensional (2D) Dirac materials [25] such as graphene, silicene, germanene and
transition metal dichalcogenides [26]. They also arise when studying light propagation in honeycomb photorefractive lattices
(the so-called photonic graphene) [27–29]. These Dirac settings have been argued to present fundamental differences, e.g., with
respect to their more well known, non-relativistic limits of the nonlinear Schrödinger equation, such as the absence of collapse
for an extended interval of frequencies in two spatial dimensions; see, e.g., the recent work of [30] and the discussion therein.

Our aim in the present work is to revisit the context of binary waveguide arrays, motivated by the realistic models studied
in [18, 19] for two-dimensional geometries. In an earlier work, we considered the phenomenology of a 1D discrete nonlinear
Dirac equation [31]. However, this was done for a discretization of the less straightforwardly applicable (from a physical per-
spective) Soler model. Here, we turn our attention to the more realistic setting of the waveguide arrays with onsite nonlinearity,
aiming to explore existence, spectral stability and dynamics of nonlinear modes. We do this in a complementary way between
the (highly) discrete and the continuum limits. On the one hand, we explore the configurations at strong coupling (the continuum
soliton) and subsequently reduce the coupling going towards the discrete limit. Here, we eventually find that a configuration
bearing nine sites turns out to be the limiting highly discrete analogue of the continuum solitary wave. On the other hand,
we also start our search for model solutions from the highly discrete limit of vanishing coupling (the so called anti-continuum
limit of [32]) with one- or two-site configurations and continue them into the strong coupling regime. Utilizing a spectral sta-
bility analysis, we identify the regimes of lattice coupling as well as of solution frequency for which the relevant waveforms
are dynamically stable. When instability is identified, some prototypical examples of the configuration’s unstable evolution are
given.
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Our exposition will be structured as follows: in Sec. II we provide an overview of the theoretical properties of both the discrete
and the continuous model. In Sec. III, we numerically explore the existence, stability and dynamical features of the models,
while in Sec. IV we summarize our findings and present our conclusions as well as some interesting directions for future work.

II. THEORETICAL SETUP

Following the setup of [18, 19], the two-dimensional (continuum) Dirac model of relevance to the binary waveguide problem
is of the form:

i∂tψ1 = −(i∂x + ∂y)ψ2 + (m− g|ψ1|2)ψ1,

i∂tψ2 = −(i∂x − ∂y)ψ1 − (m+ g|ψ2|2)ψ2, (1)

where (ψ1, ψ2) denotes the spinor field (mode amplitude), whilem represents the mass associated with the propagation mismatch
between the two different types of waveguides. The cubic nonlinearity stems from the Kerr effect and breaks the Lorentz
symmetry (contrary, e.g., to what is the case with the Soler model; cf. [30, 31]). We consider this model both at the discrete and
at the continuum level.

A. Continuous model

The analysis of the continuum model of Eq. (1) can be performed in radial coordinates, following a procedure similar to the
one proposed in [30]. This results in the form:

i∂tψ1 = −e−iθ

(
i∂r +

∂θ
r

)
ψ2 + (m− g|ψ1|2)ψ1,

i∂tψ2 = −eiθ
(
i∂r −

∂θ
r

)
ψ1 − (m+ g|ψ2|2)ψ2. (2)

The form of this equation suggests that we look for stationary solutions as ψ(r⃗, t) = exp(−iωt)ϕ(r⃗) with

ϕ(r⃗) =

[
u(r)eiSθ

i v(r)ei(S+1)θ

]
, (3)

where u(r) and v(r) are real-valued. The value S ∈ Z can be cast as the vorticity of the first spinor component (the second
component in this formulation has vorticity S + 1). The equation fulfilled by stationary profiles then only depends on r, casting
the problem into a 1D one:

(
∂r +

S + 1

r

)
v + (m− ω − gu2)u = 0,

−
(
∂r −

S

r

)
u− (m+ ω + gv2)v = 0, (4)

with r > 0. As we discuss in the next section, stationary solutions are sought by numerical means.
In order to capture the linear stability of the stationary solutions, we introduce the following ansatz into (2):

ψ(r⃗, t) =

 {
u(r) + δ

[
a1(r)e

iqθeλt + b∗1(r)e
−iqθeλ

∗t
]}

eiSθ

i
{
v(r) + δ

[
a2(r)e

iqθeλt + b∗2(r)e
−iqθeλ

∗t
]}

ei(S+1)θ

 e−iωt, (5)

and subsequently solve the ensuing [to O(δ)] eigenvalue problem: λ(a1, a2, b1, b2)T = Mq(a1, a2, b1, b2)
T with Mq being

Mq = i

 L1 L2

−L∗
2 −L∗

1

− iq

r

 σ1 0

0 σ1

 , (6)
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and

L1 =

 ω −m+ 2gu2 −
(
∂r +

S+1
r

)
(
∂r − S

r

)
ω +m+ 2gv2

 , L2 =

 gu2 0

0 gv2

 , σ1 =

 0 I

I 0

 . (7)

The key observation which facilitates a computation of the spectrum is that the explicit form of Eq. (6) for Mq contains r and
∂r, but not θ. This allows us to compute the full 2D stability spectrum M as the union of spectra of the one-dimensional spectral
problems:

σ (M) =
∪
q∈Z

σ (Mq) . (8)

In what follows, for concreteness we will set m = g = 1 (as this choice can be made by renormalizing the time and the wave
function). Now, the only free parameter that will be considered in the continuum limit is the frequency ω.

B. Discrete model

The discrete version of Eq. (1) will be based on a discretization similar to that considered, e.g., in [19] (cf. the discussion
around Eq. (2) therein). From a numerical approximation perspective, this is tantamount to a centered difference discretization
of the first derivative in Eq. (1) and leads to:

i∂tVn,m = −C[i∇xUn,m +∇yUn,m] + (m− g|Vn,m|2)Vn,m,
i∂tUn,m = −C[i∇xVn,m −∇yVn,m]− (m+ g|Un,m|2)Un,m, (9)

with Un,m and Vn,m (−N/2 + 1 ≤ (n,m) ≤ N/2) being the components of the spinor (amplitude modes) Ψn,m ≡
(Un,m, Vn,m), and ∇xΨn,m ≡ (Ψn+1,m−Ψn−1,m)+ν(Ψn+2,m−Ψn−2,m), ∇yΨn,m ≡ (Ψn,m+1−Ψn,m−1)+ν(Ψn,m+2−
Ψn,m−2) being the x and y components of the discrete gradient and ν a parameter that accounts for next-nearest-neighbour
coupling; ν = 0 corresponds to the case of solely nearest-neighbour coupling when C ̸= 0. The connection to the corresponding
continuum limit can be assigned by selecting C = 1/(2h) with h being the lattice spacing (discretization parameter).

The dynamical system of Eq. (9) presents a number of conserved quantities, such as the charge (squared ℓ2 norm):

Q =
∑
n

∑
m

ρn,m, ρn,m = |Un,m|2 + |Vn,m|2, (10)

with ρn,m being the charge density, and the Hamiltonian:

H = −1

2

∑
n

[
CV ∗

n,m(i∇xUn,m +∇yUn,m) + CU∗
n,m(i∇xVn,m −∇yVn,m)− g

k + 1
(|Un,m|4 + |Vn,m|4) +m(|Un,m|2 − |Vn,m|2)

]
.

(11)
Equations (9) can be derived from the Hamiltonian (11) by means of Hamilton’s equations:

iU̇n,m =
δH

δU∗
n,m

, iV̇n,m =
δH

δV ∗
n,m

. (12)

Our main focus hereafter will be on stationary solutions and their stability as well as their dynamics. Such solutions can be
found by using Un,m(t) = exp(−iωt)un,m, Vn,m(t) = exp(−iωt)vn,m, when they possess frequency ω and satisfy the coupled
algebraic equations:

(ω −m+ g|vn,m|2)vn,m + C[i∇xun,m +∇yun,m] = 0,

(ω +m+ g|un,m|2)un,m + C[i∇xvn,m −∇yvn,m] = 0. (13)

Once stationary solutions of the algebraic system of Eqs. (13) are calculated (by, e.g., fixed point methods as discussed below),
their linear stability is considered by means of a linearized stability analysis. More specifically, considering small perturbations
[of order O(δ), with 0 < δ ≪ 1] of the stationary solutions, we substitute the ansatz
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Un,m(t) = e−iωt
[
un,m + δ(an,me

λt + c∗n,me
λ∗t)

]
, Vn,m(t) = e−iωt

[
vn,m + δ(bn,me

λt + d∗n,me
λ∗t)

]
(14)

into Eqs. (9), and then solve the ensuing [to O(δ)] eigenvalue problem: λ(an,m, bn,m, cn,m, dn,m)T =
M(an,m, bn,m, cn,m, dn,m)T with M being

M = i

 L1 L2

−L∗
2 −L∗

1

 (15)

and

L1 =

 ω −m+ 2g|u|2 C(i∇x +∇y)

C(i∇x −∇y) ω +m+ 2g|v|2

 , L2 =

 u2 0

0 v2

 . (16)

The potential existence of an eigenvalue with non-vanishing real part suggests the existence of a dynamical instability. If all
the eigenvalues are imaginary, then the solution is spectrally (neutrally) stable.

As in the continuum limit, we will set m = g = 1 and vary ω as well as C as our relevant parameters in order to characterize
the behavior of the solution and the variation of its stability properties.

III. NUMERICAL RESULTS

A. Continuous model

We start our exposition by showing the numerical results regarding fundamental solutions (S = 0 solitary waves, for which
we nevertheless note that their second component ψ2 bears a vortex of charge 1) and S = 1 vortices in the continuous setting.
Numerical analysis has been performed in a similar fashion as in Ref. [30], using spectral methods for dealing with spatial
derivatives. Figure 1 shows several examples of the profiles for S = 0 and S = 1 stationary solutions. To assess stability,
Fig. 2 shows the dependence on the frequency of the real and imaginary parts of the eigenvalues for S = 0 and S = 1 solitary
waves. We observe that, similar to the Soler model [30], the continuum S = 0 solitons are unstable below a critical frequency
(ω = 0.388) for this model. However, it is interesting to observe that contrary to the Soler model, only q = 0 instabilities are
present for the S = 0 case; these instabilities are of exponential nature and, consequently, can be predicted by the Vakhitov–
Kolokolov criterion, as the curve representing charge versus frequency presents a maximum at the bifurcation point (see bottom
panel of Figs. 2). In addition, solutions get more localized with decreasing frequency and tend to be localized at r = 0 as ω → 0.
It is important to also note that the continuous spectrum of this problem extends throughout the imaginary axis, except for the
interval (−m + |ω|,m − |ω|) [33]. Moreover, ω = 0, belonging to the point spectrum due to symmetries (such as translation
and phase invariance) is at the middle of the spectral gap.

We can see from the stability analysis of Fig. 2 that for the fundamental solution, there are wide intervals of stability/instability
for S = 0, while the S = 1 waveform is unstable for all values of ω; cf. with the similar results of [30]. This prompts us to
turn to the dynamical evolution of the instability. The study of the dynamics of the unstable solutions for S = 0 shows that they
feature collapse, as is depicted in Fig. 3. As a numerical diagnostic for the accuracy of the simulation, we have monitored the
relative norm error ε defined as

ε(t) =
|Q(t)−Q(0)|

Q(0)
, (17)

with Q(t) being the soliton’s charge. We have observed that the norm is preserved within a factor ∼ 10−7, despite an obvious
departure of the norm from its initial value as collapse occurs.

In [35] one can find a movie with the soliton evolution. In every movie, the top panels correspond to the density of each spinor
component and bottom ones to their phase.

B. Discrete model

We now turn to the existence, stability and dynamics of solitons in the discrete 2D nonlinear Dirac equation (NLDE) in
the form of Eq. (9). Given the generic instability of S = 1 states in the continuum, in our discrete studies, we will restrict
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FIG. 1: Radial profiles of the spinor components for (upper panels) S = 0 solitary waves and (lower panels) S = 1 vortices for different
values of ω.

considerations to states without vorticity in the first spinor component. The properties of these states are to be compared with
the S = 0 continuum counterparts. We start by the case when only nearest neighbour coupling (i.e. ν = 0) is considered. The
solutions are obtained by making use of fixed point methods based on the anti-continuous (AC) limit [32], that allows to solve
Eq. (13). One of the main difficulties in this case is to identify a suitable solution in the AC limit given that there are many
solutions at C = 0 that can be extended to the continuous C → ∞ limit. In fact, all the solutions we have analyzed can be traced
upon increasing the coupling strength C towards the continuum limit.

Among all the solutions in the AC limit, remarkably we find that the one that leads to the S = 0 solitary waves of the
continuum limit – discussed in the previous section – is the 9-site soliton, i.e. u0,0 = u0,±1 = u±1,0 = u±1,±1 =

√
1− ω.

The v field must be vanishing at C = 0, as can be seen from Eq. (13). The left panel of Fig. 4 shows the profile of a typical
such solution at finite coupling. Notice that in the left panels of Fig. 4, one can observe that, contrary to the soliton in the
continuum, the imaginary part of un,m is not null; however, ||Im(un,m)||∞ tends asymptotically to 0 when C → ∞. An
additional advantage of the AC limit is that the decoupled nature of the lattice enables us to analytically calculate the spectrum
at C = 0. This consists of 9 pairs of eigenvalues at 0, N2 − 9 pairs at λ = ±i(1 + ω) and N2 pairs at λ = ±i(1− ω). As in the
1D case, some of the eigenvalues become real when the coupling is switched on and the soliton is unstable for finite coupling.
In particular, 7 eigenvalue pairs detach from zero whereas 2 additional pairs remain at zero for every coupling. Of the seven
remaining pairs, two become imaginary and five pairs acquire a real part; for very low coupling C . 0.01, four among these
real pairs experience Hamiltonian Hopf bifurcations yielding complex quartets. This scenario persists for C < 0.80. Beyond
this value, a rather complicated scenario arises, as can be seen in Fig. 5, where the dependence of the stability eigenvalues as
a function of the coupling constant C for ω = 0.7 is shown. One can observe that for large C there are only two sources of
oscillatory instabilities: (1) for C & 2.7, one of the quartets that exists for small C persists even for high C; (2) at C ≈ 8.8, an
additional Hamiltonian Hopf bifurcation takes place. Contrary to the Soler model [31], the 2iω eigenvalue is not present either
in the discrete or in the continuum limit.

It is intriguing to note that for the discretization considered at least one of the Hamiltonian Hopf bifurcations persists for large
values of C. Such a feature has been previously encountered in the finite difference analysis of the Soler model in [31]. Another
interesting feature that occurs below a certain critical frequency is the existence of two branches of solitons, one starting at
C = 0 and another one finishing at C → ∞. These branches are connected by an intermediate one through two saddle-center
bifurcations i.e., the dependence of Q on C has an S-shaped form. This type of bifurcation point arises for higher values of C
when ω decreases. Figure 6 shows the relevant dependence of the charge with respect to C for ω = 0.7 and ω = 0.6. We can
observe in the latter case the existence of this intermediate branch, as well as the associated fold points.

In a similar fashion to the 1D case [31], 1-site solitons also exist and can be continued to the continuum limit. In the AC limit,
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FIG. 2: Dependence of the (top) imaginary and (middle) real part of the eigenvalues with respect to ω. Left (respectively, right) panels
correspond to S = 0 solitary waves (S = 1 vortices). The panels at the left illustrate that the S = 0 solution is only unstable for ω < 0.388.
The panels at the right indicate that the S = 1 solution is unstable for all values of the frequency ω. The color that corresponds to each
q is indicated in the middle left panel. Bottom panels show the dependence of the charge with respect to the frequency. According to the
Vakhitov–Kolokolov criterion, the maximum of the curve indicates the occurrence of an exponential instability caused by radially symmetric
perturbations (q = 0).

they are given by u0,0 =
√
1− ω, while v0,0 = 0. The spectrum at C = 0 comprisesN2−1 pairs at λ = ±i(1+ω), N2 pairs at

λ = ±i(1− ω) and a sole pair at λ = 0. As the single pair at 0 must remain there because of the U(1) symmetry, no eigenvalue
can depart from 0 and the soliton is stable, at least for small values of the coupling parameter C.

The middle panel of Fig. 4 shows the profile of a 1-site soliton for ω = 0.7 and C = 1. Notice that such solitons, for every
coupling, possess the following properties:

• Re(un,m) = 0 if n and m are odd,

• Im(un,m) = 0 if n and m are even,

• Re(vn,m) = 0 if n is odd and m is even,

• Im(vn,m) = 0 if n is even and m is odd,
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evolution of the power based diagnostic of Eq. (17) which is well conserved during the simulation.
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FIG. 4: Profiles of the 9-site (left set of 2× 2 panels), 1-site (middle set of panels) and 2-site (right set of panels) soliton with ν = 0, ω = 0.7
and C = 1.

resembling the properties of the soliton of Fig. 2 of [18] in the large C limit. This also endows the solitons’ real and imaginary
parts with a “staggered” structure with alternating rows missing, as seen in the middle panels of Fig. 4. Figure 7 shows the
dependence of the complex eigenvalues on C. One can see that the soliton is stable (see the real part in the bottom left panel of
the figure) for C below 1.04. At this critical point there is a bifurcation caused by a mode that destabilizes, after bifurcating from
the linear modes band. Above this point, the soliton is exponentially unstable, becoming stable again at C = 1.631. However,
at C = 1.73 it experiences a similar instability anew, while the structure finally stabilizes ∀C ≥ 3.0 in this case of ω = 0.7.

Another interesting structure is the 2-site soliton, which, in the continuum limit is reminiscent of the soliton of Fig. 5 in
[18]. In the AC limit, such a wave structure is given by u0,0 = u0,1 =

√
1− ω, while once again the v field is vanishing. The

spectrum at C = 0 is composed by N2 − 2 pairs at λ = ±i(1 + ω), N2 pairs at λ = ±i(1− ω) and two pairs at λ = 0. As in
the 9-site case, the two pairs remain invariant at 0, and thus no eigenvalue departs from 0, making the structure spectrally stable
for small C.

The right panel of Fig. 4 shows the profile of a 2-site soliton for ω = 0.7 and C = 1. Here too, similarly to the 1-site soliton,
we observe a staggered pattern with the following features:

• Re(un,m) = 0 if n is odd,

• Im(un,m) = 0 if n is even,

• Re(vn,m) = 0 if n is even,

• Im(vn,m) = 0 if n is odd.

Figure 7 shows the dependence of the linearization eigenvalues with C. One can see that the behavior is essentially the same
as in the case of the 1-site soliton, with the bifurcations taking place at the same points as in the 1-site case. In fact, the spectrum
is almost identical in both 1-site and 2-site case, as the panels of Fig. 7 show.
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0 0.5 1 1.5 2 2.5
0

50

100

150

200

Q

C
0 0.5 1 1.5 2 2.5

0

50

100

150

200

Q

C

1.82 1.825 1.83 1.835 1.84

88

90

92

94

FIG. 6: Dependence of the charge (power) Q on the coupling constant for the 9-site solitons with ν = 0 and ω = 0.7 (left) and ω = 0.6
(right). The inset in the latter zooms in the region where three branches coexist for a narrow interval of values of C.

Following the ideas introduced in [34], one way of lifting the degeneracy between 1-site and 2-site solitons in the vicinity
of the anti-continuum limit could be to introduce next-nearest-neighbour coupling. In order to establish this, we have analyzed
the stability of such solutions for ν = 0.1 when C is varied. The outcome for ω = 0.7 is shown in Fig. 8, where it can be
observed that the change on the stability eigenvalues of the 1-site soliton is only quantitative whereas this change is qualitative
for 2-site solitons. In fact, in the latter case, an eigenvalue bifurcates from λ = 0 towards the imaginary axis and leads to a Hopf
bifurcation observed at C = 0.51 (through its collision with another pair of imaginary eigenvalues). This renders the solution
unstable past this point; at C = 1.00 the solution experiences an exponential bifurcation similar to that of the ν = 0 case (and of
the single site solution); finally, there is another exponential bifurcation at C = 1.22 so that above this point, 2-site solitons do
not exist. Notice that there are two eigenvalues pairs at λ = 0 for ν = 0; when ν ̸= 0, only one of the eigenvalues pairs remains
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identical and, consequently, full blue and dashed red lines match almost perfectly. In every case, the top panels show the imaginary parts and
the bottom panels the real parts (corresponding to unstable growth) of the relevant eigenvalues.

at 0 when C & 0, whereas the other one detaches leading to the Hopf bifurcation; the imaginary part of the departing eigenvalue
grows faster with C when ν increases (while it does not move if ν = 0). This is basically the mechanism that explains how
the degeneracy is lifted: as the 1-site soliton only possesses one eigenvalue pair at λ = 0 at the AC limit, increasing ν cannot
have an effect of degeneracy breaking, contrary to what occurs in the 2-site case. Let us also mention that although staggered
patterns for 1-site and 2-site solitons are also observed for ν ̸= 0, there are no sites where the real/imaginary part of un,m or
vn,m becomes exactly 0.

We have also considered the stability of the above mentioned configurations for fixed coupling near the continuum limit and
variable frequency and ν = 0. Figure 9 shows the profile of such solutions for ω = 0.5 and C = 5.

Figure 10 shows, for C = 2.5 and C = 5, the dependence of the complex eigenvalues with ω for the 9-site solitons. Notice
that solitons only exist above a critical value of ω(C); this critical value decreases with C. For instance, solitons only exist for
ω ≥ 0.47 (ω ≥ 0.22) if C = 2.5 (C = 5). This is caused by a bifurcation similar to that shown in Fig. 6. This bifurcation
is not found (at least for the considered coupling C = 5) in the 1-site and 2-site solitons (see Fig. 11). In the latter case, we
observe that while generally dynamical instabilities may arise for small values of ω as well as in a narrow interval in the vicinity
of ω = 1, a wide parametric interval of frequencies exists where the solitary waves are dynamically stable.

Finally, we have considered the dynamics of prototypical unstable solutions with ν = 0. To this aim, we have included the
spectral plane of the corresponding solution and a link to the movie with the evolution.

We start with the typical evolution for the 9-site soliton at small coupling, where it possesses several coexisting instabilities
(see Fig. 12a). The evolution for C = 0.5 and ω = 0.7, shown in [36], leads to the destruction of the structure. In the case
of 1-site solitons, we consider two cases corresponding to each exponential instability (Figs. 12b-c); the first one leads to the
expansion i.e. dispersion of the solitary wave ([37], for ω = 0.7 and C = 1.45), and the second one to slow soliton motion ([38],
for ω = 0.7 and C = 1.9). For the 2-site soliton, where the spectral dependence on C is qualitatively similar to the 1-site soliton,
the dynamics for the first instability is similar to the 1-site case (i.e. the soliton expands with time); however, for the second
instability (see spectrum in Fig. 12d) we observe that the 2-site soliton breaks up ([39], for ω = 0.7 and C = 1.9), repartitioning
its mass into predominantly single site structures.

Another interesting regime for the dynamical observation of the solutions’ instability regards the setting close to the continuum
limit. To this end, we have fixed C = 5 and observed the 9-site soliton dynamics for three cases (see Figs. 12e-g), which are
traced in [40] (ω = 0.7), [41] (ω = 0.6) and [42] (ω = 0.3). In the first case, there is only an oscillatory instability that leads
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FIG. 9: Profiles of the 9-site (left set of 2× 2 panels), 1-site (middle set of panels) and 2-site (right set of panels) soliton with ν = 0, ω = 0.5
and C = 5. We can clearly observe in the 9-site case that the configuration approaches the continuum soliton. In the 1-site and 2-site cases,
the staggered patterns with the previously mentioned characteristics persist.

to the transformation of the soliton in a pair of precessing (and periodically recombining) solitary structures; in the second case,
there is an additional oscillatory instability whose consequence is the eventual destruction of the solitary wave after it is initially
converted into a 1-site soliton pair. Finally, in the third case, apart from the two oscillatory instabilities identified in this case,
there is a dominant exponential instability which leads to the soliton’s expansion and subsequent pulsation. An example of the
instability of the 1-site soliton as we approach the continuum limit (for large C = 5 and ω = 0.2) is shown in [43]. Here the
soliton ends up breathing as a result of its exponential instability.

Page 10 of 13AUTHOR SUBMITTED MANUSCRIPT - JPhysA-107720.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



11

0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

Im
(λ

)

ω
0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Im
(λ

)

ω

0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

R
e(

λ)

ω
0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

0.2

0.4

0.6

0.8

1

R
e(

λ)
ω

FIG. 10: Dependence of the relevant stability eigenvalues for the 9-site soliton with respect to ω for ν = 0 and C = 2.5 (left panels) and
C = 5 (right panels); N = 200 in both cases. The bottom panels suggest that for both values the soliton is dynamically unstable in nearly the
full interval of frequencies between ω = 0 and ω = 1. Notice the different scales on the ω-axis in the left and right panels.

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

ω

Im
(λ

)

 

 

1−site
2−site

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

ω

R
e(

λ)

 

 

1−site
2−site

FIG. 11: Dependence of the relevant stability eigenvalues for the 1-site (full blue line) and 2-site (red dashed line) solitons with respect to
ω for ν = 0 and C = 5. N = 200 in both cases. Only a partial spectrum is shown. Notice that the two spectra are almost identical and,
consequently, full blue and dashed red lines match almost perfectly.

IV. CONCLUSIONS & FUTURE CHALLENGES

In the present work, we have given a systematic account of some of the prototypical solitary states that a two-dimensional
model of a Dirac type can bear as stationary solutions. Our work was motivated by models of binary waveguide lattices that
have recently appeared in the literature [18, 19]; thus, we have considered nonlinearities that are onsite in each component. We
have explored the model from two complementary perspectives. We have identified the continuum limit solution and extended it
all the way to the anti-continuum limit where somewhat surprisingly we have found it to correspond to a 9-site solution. On the
other hand, we have constructed some of the simplest solutions of the anti-continuum limit, such as the 1- and 2-site ones and
extended them over all couplings towards the continuum limit. In addition to the existence problem, we have provided a road
map towards the corresponding stability properties. The 1- and 2-site solutions with their staggered structure appear to be rather
robust and, in the exception of some finite intervals of instability, appear to feature stable dynamics. On the other hand, the 9-site
solution contains considerably more directions of potential instability, yet most of these disappear in the large coupling regime.
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FIG. 12: Spectral planes of unstable solitons with ν = 0 for which dynamics is analyzed. (a-d) correspond to fixed ω = 0.7 and different C
whereas (e-h) hold for fixed C = 5 and variable ω. (a) 9-site soliton with C = 0.5; (b) 1-site soliton with C = 1.45; (c) 1-site soliton with
C = 1.9; (d) 2-site soliton with C = 1.9; (e) 9-site soliton with ω = 0.7; (f) 9-site soliton with ω = 0.6; (g) 9-site soliton with ω = 0.3; (h)
1-site soliton with ω = 0.2.

The unstable dynamics of the different waveforms were also considered showing examples of breathing, mobility, and fission
as potential manifestations of the instability, depending on the solution of interest and its specific (frequency and coupling)
parameters.

Finally, the current study suggests a number of future directions of interest. In the context of the discrete version of the
nonlinear Schrödinger equation, a systematic perturbative analysis was developed from the anti-continuum limit that enabled a
characterization of the stability features in the vicinity of this limit and the development of an understanding of the conditions
under which structures near this limit might be stable [44]. A similar theory seems to be within reach in the case of the Dirac
model (see also [22] for a recent analysis in 1D binary waveguide arrays), but has not been developed as of yet. On the other
hand, and although it is less relevant to the optical problem per se, extending Dirac-like models and associated consideration to
three-dimensional settings would be a particularly challenging theme of work. Here, once again the continuum limit preliminary
conclusions of [30] suggest possible existence of stable solutions, which may in principle be possible to continue between the
continuum and anti-continuum limit and be spectrally stable in wide parametric intervals between these two limits. Studies along
these directions are currently in progress and will be reported in future publications.
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