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SIMPLIFICATION IN LIFE CYCLE ASSESSMENT OF SINGLE-FAMILY HOUSES: A REVIEW OF 

RECENT DEVELOPMENTS 

ABSTRACT 

Life Cycle Assessment (LCA) is globally recognized as one of the most complete methods for environmental 

assessment of buildings. Literature assumes that its applications in the building sector are prejudiced regarding 

complexity and difficulty. However, simplification is necessary, since it can facilitate LCA application in 

buildings. Moreover, growing interest on reducing environmental impact in the building sector, as well as the 

relevance of single-family houses on CO2 emissions have become key points on the wide spread of LCA. 

Therefore, this paper presents a research study about simplification in LCA recent studies applied to single-

family houses. The review focuses on 20 cases that were analyzed according to ISO 14040, ISO 14044, EN 

15978, and EN 15804 standards. The main objective was to identify the simplification strategies assumed in each 

paper, to clarify and to help to promote further developments on LCA. This paper examines system boundary 

definition, data sources, life cycle phases included, and environmental impact indicator calculated in case 

studies. Results show the variety of simplifications identified. They affect physical model definition, life cycle 

scenario definition and communication of results. In most cases, the functional unit was the complete building, 

the life cycle scenario definition included production, use and demolition phases, and the most considered 

environmental impact indicator was GWP. Finally, new challenges and recommendations were defined in order 

to establish common criteria to develop simplification strategies that allow results comparability in LCA of 

single-family houses. 

Keywords: Life Cycle Assessment; simplified LCA; environmental assessment methods; environmental 

assessment impacts; review. 

 

Abbreviations: AP, Acidification Potential; BIM, Building Information Modelling; CC, Climate Change; CED, 

Cumulative Energy Demand; EPD, Environmental Product Declaration; ET, Ecological Toxicity; GHG, Green 

House Gases; GW, Global Warming; HTP, Human Toxicity Potential; LCA, Life Cycle Assessment; LCI, Life 

Cycle Inventory; LCIA, Life Cycle Impact Assessment; MRR, Maintenance, Repair and Replacement; PMF, 

Particulate Matter Formation; WD, Water Depletion. 
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1. INTRODUCTION 

Current environmental problems have led to the development of measures for reducing the impact of 

human activities in the environment. These measures aim to control CO2 emissions, improve efficiency and save 

resource consumption. The last COP21 -also known as 2015 Paris Climate Conference- reinforced global 

compromises to reduce Global Warming and concluded by the signature of an agreement for reducing Carbon 

Emissions [1]. The building sector represents 19% of all global 2010 GHG emissions [2]; as well it is also a 

major consumer of natural sources [3]. Moreover, single-family houses have an important role in reducing 

environmental impacts of the building sector, since for example 60% of the EU CO2 emissions of residential 

sector come from single-family houses [4]. 

LCA is recognized as a useful method to assess environmental impact in the building sector. 

Wiessenberger et al. [5] demonstrated the growing interest in LCA of building by the increasing number of 

publications of scientific studies in the last 20 years. Cabeza et al. [6] review, also demonstrated the use of LCA 

in the building sector through the organization of a large number of literature that includes construction products, 

systems, buildings, and civil engineering constructions. Lotteau et al. [7] developed a critical review of LCA 

applications at neighborhood level. The review exposes the trend towards the application of LCA on an urban 

scale, although literature about the subject is still scarce. The study demonstrates the heterogeneity of 

methodological choices and also develops recommendations to promote future research. 

Buyle et al. [8] review focused on building applications of LCA and evidenced that LCA involves making 

a model that simplifies reality. Various LCA studies recognize that complexity and uncertainties are barriers for 

the widespread use of LCA of the built environment [9,10]). Moreover, “typical” applications of LCA in 

buildings are admitted as time-consuming and complex processes[11]. In the European Context several projects 

have been developed aiming to adapt LCA methods to the building sector. Moreover, the standardization work 

on LCA of buildings -CEN TC 350- defines EN 15804 [12] and EN 15978 [13] standards; and provides a 

methodological framework of the information to be included, stages and communication of results [14]. 

However, the advances identified on LCA of buildings, studies about simplification strategies focusing on 

single-family houses are still scarce. 

It is assumed that application of the LCA method necessarily involves the simplification of reality; the 

challenge is the definition of a model so that simplifications do not considerably modify the final results [15]. 

Several studies [9–11,16–19] recognize the need of reliable simplifications in the application of LCA methods in 
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buildings; especially to extend the scope to early stages of design, reduce effort in data acquisition, enable 

comparability of results, and allow results to be interpreted independently from the degree of specialization of 

the technicians. The key aspect is to know how simplifications can modify the representativeness of the results. 

Therefore, this paper analyses recent developments in the application of LCA in single-family houses, 

focusing on methodological aspects and simplification strategies according to ISO 14040 [20], ISO 14044 [21], 

and EN 15978 [13] LCA standards. The main objective was to identify the simplifications and modelling 

assumed on each study, to clarify and to help promote further developments on LCA. Twenty selected cases are 

included in the following review. Some of them are complete building LCA application and others are focused 

on representatives systems, elements or parts of the building. 

2. LCA APPLIED TO BUILDINGS 

2.1. Barriers on LCA applied to buildings 

The LCA method is based on the quantification of environmental impacts of a product throughout its life 

cycle, from "cradle to grave" [20,21]. In general terms, ISO 14040 standards establish the stages for LCA 

application. LCA approach adapted to building is defined in EN 15978 [13] that represents a methodological 

guide for the quantification of environmental impacts on buildings. 

 

Fig. 1. Scheme of the information modules for the different stages of evaluation of the building based on 15978 [13]. 
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EN 15978 [13] is organized according to the “modules principle” of building life cycle, including the four 

stages of life cycle –product, construction, use, end of life- ([13,19]. These stages and modules are shown in 

Figure 1 and cover from A1 to C4 "impacts and environmental aspects" developed within the system boundary, 

while D modules cover benefits and loads that go beyond the system boundary. 

The standards also provide the guidelines for functional unit, system boundary and scenario definitions. 

The functional unit is a “quantified performance of a product system for use as a reference unit" [21], and it 

includes the physical and functional characteristics of the building. System boundary limits the processes 

included in the assessment. The scenarios are hypothesis applied to the subject of study that relates physical 

characteristics with time variable [13]. EN 15978 [13] also defines the structure of results communications and a 

list of environmental indicators that have to be considered as shown in Table 1. Results have to be expressed 

according to the list of indicators included in Table 1, separated by stage (production, construction, use, end of 

life, recycle) and by modules (A1-D) [13]. 

Table 1. List of indicators described in EN 15978 [13] standard. 

Environmental impact  Resource Use  Waste categories and the output 
flow leaving the system  

 

Global warming potential 

(GWP) 

Depletion potential of the 

stratospheric ozone layer 

(ODP) 

Acidification potential of land 

and water (AP) 

Eutrophication potential (EP) 

Formation potential of 

tropospheric ozone 

photochemical oxidants 

(POCP) 

Abiotic resource depletion 

potential for elements (ADPE) 

Abiotic resource depletion 

potential for fossil fuel 

(ADPF) 

 

 

Use of renewable primary energy 

excluding energy resource used 

as raw material (PERE) 

Use of renewable primary energy 

resources used as raw material 

(PERM) 

Use of non-renewable primary 

energy excluding energy resource 

used as raw material (PENRE)  

Use of non-renewable primary 

energy resources used as raw 

material (PENRM) 

Use of secondary material (SM) 

Use of renewable secondary fuels 

(RSF)  

Use of non-renewable secondary 

fuels (NRSF)  

Net use of fresh water (FW) 

 

Hazardous waste disposed (HWD) 

Non-hazardous waste disposed 

(NHWD) 

Radioactive waste disposed 

(RWD) 

Components for re-use (CRU) 

Materials for recycling (MFR) 

Materials for energy recovery  

(not being waste incineration) 

(MER) 

Exported energy (EE) 
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EN 15804 [12] provides calculation rules for Environmental Product Declarations (EPD) and it also 

includes a methodological framework of Modules A1-A3 of EN 15978 standard [13]. Otherwise, the EPD of 

building products can be used as product stage modules in EN 15978 [13]. Passer et al. [22] shown the growing 

interest in EPD of building products, evidenced by the high number of EPD programs that guide CEN/TC 350 

standards “Sustainability of construction works”. 

In the European context the application of LCA method in building sector is promoted by several projects 

as: REGENER [23], Annex 31 IEA [24], PRESCO [25], IMPRO-Building [26], ENSLIC Building [27], LoRe-

LCA [28] and EeB Guide Project [14]. The EeB Guide Project [14] defines three types of LCA in buildings: 

Screening, Simplified and Complete. The classification is developed according to system boundary definition, 

the experience of the practitioner, data availability and the state of development of the product or building being 

assessed [14]. 

EeB Guide Project [14] also establishes a life cycle stages definition for each LCA study types. For 

Complete LCA study, all stages and modules defined in EN 15978 [13] are compulsory. In Screening and 

Simplified LCA types, several stages and modules are optional; depending on the relevance and data availability. 

For Screening LCA only the following modules are compulsory: Product stages for the building envelope, 

structure and foundation (A1-3), Operational use of energy (B6) and water (B7). For Simplified LCA type, in 

addition to compulsory modules considered in Screening type (A1, A2, A3, B6 and B7), the use and end of life 

stages are also partially included; modules as Replacement (B4), Waste treatment (C3) Disposal (C4) and 

Benefits (D) are even considered compulsory [14]. 

Despite the fact that LCA is the most complete tool for the environmental assessment of buildings, their 

application in buildings is not yet widespread. Some of the main difficulties are the extensive and exhaustive 

amount of information required, as well as the required experience of the practitioner for calculating impacts 

[17]. Moreover, architects and technicians involved in the early stages of the design have prejudices about the 

complexity, precision and arbitrary results [17].  

Another difficulty in LCA application is the existence of different methods for impact calculation, so 

depending on the method different results for identical cases [8] can be obtained. Each method has differences in 

weighting impact categories; this can lead to different measures for reducing environmental burdens [8]. 
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2.2. Simplifications in LCA 

In the Spanish context, 150041-1998EX UNE [29] establishes general criteria to simplify the LCA 

method. The regulation establishes the simplifications that can be carried out in the life cycle inventory phase 

and the life cycle impact assessment phase. It means that the life cycle inventory analysis can be reduced to the 

main elements and processes, and the impact assessment phase can be simplified to a few impact categories –

mandatory and optional- [29]. Zabalza et al. [17] assessed a residential building in Spain by developing a 

simplified LCA method. The study focuses on the calculation of operational energy consumption and CO2 

emissions. 

Relevant research papers about LCA of residential buildings and building materials have also simplified 

the application of LCA. Malmqvist et al. [9] recommend for simplifying the LCA method of buildings: (1) 

reducing the data acquisition phase –e.g. focusing on larger building elements-, (2) simplifying inventory 

analysis –e.g. focusing on the most important substances that contribute to a certain impact category-; (3) 

simplifying the calculation by focusing on a few impact categories and finally, (4) reducing the time of data 

applications by using CAD applications. 

Time-reduction of data acquisition strategies are developed in Basbagill et al. [11]. In this study, the uses 

of Building Information Modelling (BIM) applications to quantify building materials were developed to assess a 

residential building in USA. The study proposes a method that integrates BIM, LCA, energy simulation, 

Maintenance, Repair and Replacement (MRR) schedule, and sensitivity analysis software. The method can 

quickly integrate LCA in the early stages of design. 

Moreover, Karami et al. [30] simplified data acquisition in the production phase by using EPDs of 

different building envelopes. The study compares the environmental impact of building envelopes of three 

residential buildings located in Sweden. They also reduce LCA stages by including only production of envelope 

materials and energy consumption of the building in operational phase. Modules A4-A5, B1-B5 B7, C and D are 

included in the study. 

Kellenberger and Althaus [16] aimed to define the relevance of materials and processes on occasions not 

considered in simplified LCA of building components. Results demonstrate the incidence of transport and 

ancillary materials in the impact indicators, and also evidence the irrelevance of building processes and waste 

cutting. 
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On the other hand, Takano et al. [19] studied the application of the standards EN 15978 [13] and EN 

15804 [12] to a referenced wooden building. The authors demonstrate that the standards provide a framework for 

building assessments, though several difficulties are identified. Data complexity and uncertainties in data 

collection are underlined. Simplifications in construction phase assessments are suggested, as well as changes in 

the communication of results. They propose a communication system based on a common method that stimulates 

environmental consciousness in society. 

Therefore, despite literature assumes the need to introduce simplifications in the LCA method; few 

studies have studied the incidence of simplification strategies in the most significant typology in terms of CO2 

emissions. 

3. MATERIALS AND METHODS 

The method consisted of two stages: 1) selection of case studies that refer to literature search and the 

criteria of the cases studies selected, 2) analysis of the LCA applied to single-family houses that includes the 

LCA phases analysis and the life cycle stages.  

3.1. Criteria for selection of case studies 

Over the last five years, after the publication of EN 15978 [13] and 15804 [12] standards, several studies  

have been published about LCA of buildings. This paper carried out a selection of recent publications on LCA in 

single-family houses; typology responsible for the majority of CO2 emissions of building sector. The criteria 

selected were: 1) publications covered by Scopus and included in the Journal Citation Report, 2) studies based 

on LCA applied to single-family houses, and 3) studies conducted in the last five years. Selected papers were  

applications of the LCA method, in which simplifications were identified and analyzed according to LCA 

buildings standards. 

3.2. Criteria for analysis of the LCA applied to single-family houses 

The analysis was organized in two parts, the first one referred to LCA key phases and the second one was 

based on life cycle stages definition. The criteria to organize case study was centered on the classification into 

European and Non-European cases, the scope of the LCA application–partial or complete-, and the 

characteristics of the house –typical or energy efficient certificated-. 
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3.2.1. Criteria for analysis of LCA phases 

References to simplification strategies for LCA focus attention on methodological aspects. Therefore, the 

analysis of simplification strategies in the case studies was centered on functional units, data sources and 

environmental impact indicators. The goal and scope definition analysis -included in Table 2- was analyzed 

according to the following aspects: 1) the reference standard to develop LCA; 2) the object of study and a brief 

characteristic of it –typical or energy efficient certificated-; 3) the functional unit definition –partial and 

complete LCA applications-, 4) the service life time considered. Table 3 was centered on the data sources and 

information structure. It analyzes data sources to obtain the main information modules: 1) product –including 

raw material, transport and manufacturing-; 2) construction, 3) use –including use, maintenance, replacement, 

repair, refurbishment-, 4) end of life –including demolition, waste processing and disposal-, 5) recycle, 6) 

transport to construction site, 7) transport to landfill site, 8) energy consumption and 9) water consumption. 

Table 4 consisted on the analysis of the results including: 1) calculation tools; 2) impact calculation method; 3) 

environmental impact indicators.  

 3.2.2. Criteria for analysis the life cycle stage 

From the literature review, it was detected that LCA of buildings can be focus on certain life cycle stages. 

Several cases [17,30], for example, were focused on product stages as a strategy to reduce the amount of data 

and complexity on LCA application. Based on that fact, LCA stages definition became a relevant aspect on LCA 

of single-family houses. In order to analyze this aspect, a grid was organized to identify stages and modules 

described in EN15978 [13] -European reference in LCA of buildings. Nevertheless, several non-European cases 

[31–34] were included. Table 5 resumes the information modules covered by the LCA application. It was 

focused on identifying the stages that have been selected, as well as the most relevant in case studies. 

4. RESULTS 

4.1 Selected case studies 

An overview of recent developments of LCA applied to single-family houses is shown in Table 2, 3, 4 

and 5. It includes 14 European cases, 5 Non- European cases and a case that compares both situations. 

4.2. Analysis of LCA phases  

4.2.1. Goal and scope definition phase 

The definition of the functional unit had a key role in LCA of single-family houses. According to Cabeza 

et al. [6], LCA of buildings can be classified into product application (EDP) and building application. The papers 
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referred to building application, but in several cases the complete building was considered as the functional unit 

and in other cases the functional unit was a part of the building placed in the building e.g. envelope, windows,  

roof, shading, etc. Most of the papers have considered the complete building as a functional unit. Passivehaus 

standards and energy efficient cases were analyzed; some cases were compared to standard houses. Fouquet et al 

(2015) develop a LCA of a “Passivehaus standard” single-family houses located in France. The study compares 

the same house built with different materials and techniques: Timber frame (landfill and incineration), Cast 

concrete, Concrete blocks cavity walls. Mosteiro-Romero et al. [35] compare a four-bedroom  two-story single-

family house in Chur, Switzerland, certified Minergie-P building design, with an existing four-bedroom two-

story single-family house in Monmouth County (New Jersey) LEED-homes certified. Lewandowska et al. [36] 

described a LCA of four single-family houses: a traditional masonry building, a passive masonry building, a 

traditional wooden building, a passive wooden building. The study compared different scenarios on energy 

consumption: Baseline scenario, Scenario PL 2020, Scenario PL 2025, Scenario PL 2030 and Scenario PL 2050. 

In addition, typical houses were assessed. Cuéllar-Franca & Azapagic [37] for instance study the 

environmental impacts of the housing sector in UK by application of the LCA method in the most common 

housing typologies. They assume a complete building LCA application and consider product, construction, use 

and end of life stages, benefits / loads are partially considered. Rossi et al. [38] compare the same house located 

in three different towns: Brussels (Belgium), Luleå (Sweden) and Coimbra (Portugal). Iddon et al. [39] compare 

different construction scenarios for a single-family house typology located in UK. Takano et al. [40] develop a 

LCA to a hypothetical building model and define as functional unit the space surrounded by exterior wall, roof 

and floor. Houlihan et al. (2014) consider as functional unit a typical timber single-family house, modelled in 

BIM. Oyarzo & Peuportier [33] develop a model based on LCA, adapted to a Chilean context. The model is used 

to assess three alternatives of typical houses located in different climate zone: Punta Arenas, Santiago de Chile, 

Antofagasta and Puerto Montt.  

Although a complete building has been considered as the functional unit, several cases do not include 

interior furniture and installations. Mosteiro-Romero et al. [35] for example does not include: furniture, lighting 

fixtures and appliances, site work outside the building footprint, landscaping and utilities outside the building. 

Moreover, the functional unit could be considered as a representative part of the building, e.g. 1 m2 of 

floor area. Dahlstrøm et al. [41] for example, evaluate different ways of reducing the environmental impact of  
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Table 2. Definition and scope of reviewed papers.  

 
Reference Location Reference 

Standard Scope Functional unit 
Service 
lifetime 
(years) 

 
1. European 
Cases  

 
Houlihan et al., 2014 

 
Norway 

 
EN 15978 

 
Typical Single-family 
house 

 
1 m2 of useful area 

 
60 

       
 Gervasio et al., 2014 Portugal EN 15978 /  

EN 15643 
Single family-house 1 m2 useful area of 

Macro-components 
50 

 Dahlstrøm et al., 2012 Norway NA Two Single family-
house (conventional 
and Passivhaus 
standard) 

1 m2 useful area 
 

50 

 Proietti et al., 2013 Italy ISO 14040 
/14044 

Single-family house 
(Passivhaus standard) 

1 m2 of useful area 
 

70 

 Motuzienè et al., 2016 Lithuania NA Energy efficient 
Single-family house 

1 m2 of heated floor 
area 

100 

 Takano et al., 2015 Finland EN 15978 Hypothetical building 
model 

Net heated floor area 50 

       
  

Cuéllar-Franca & 
Azapagic, 2012Gervasio 

 
UK 

 
ISO 14040/ 
14040 

 
Three typical  
Single family-house 

 
Complete Building 

 
50 

       
 Iddon et al., 2013 UK ISO 14040 Single-family house Complete Building 60 

 Monteiro & Freire., 2012 Portugal ISO 14040 / 
14044 

Single-family house Complete Building 50 

 Rosselló-Batle et al., 2015 Spain NA Single-family house Complete Building 50 

 Rossi et al., 2012 Brussels Luleå 
and Coimbra 

NA Three houses Complete Building 50 

 Lewandowska et al., 2013 Poland ISO 14040 / 
14044 

Four single-family 
house 

Complete Building 100 

 Fouquet et al., 2015 France EN 15978 Three single family-
house  
(Passivhaus standard) 

Complete Building 100 

 Peuportier et al., 2013 France NA Single-family house 
(Passivhaus standard) 

Complete Buildings 50 / 100 

 
2. Non-
European 
cases 

 
Babaizadeh et al., 2015 

 
US 

 
ISO 14040 
ASTM standard  
(for MADA) 

 
Typical Single 
family-house 

 
Shading for windows 

 
40 

 Utama et al., 2012 Indonesia ISO 14040 Typical stand-alone 
residential house 

Building envelope 40 

 Hanandeh, 2015 Jordan ISO 14040 Six single family-
house 

Complete Building 50 

       
 Islam et al., 2014 Australia ISO 14044 Typical Australian 

house 
Complete Building 50 

 Oyarzo & Peuportier, 
2014 

Chile ISO 14040 Single-family house Complete Building 30/50/80/100 

 
3.  
European and  
Non-European  
cases 
 

 
Mosteiro-Romero et al., 
2014 

 
US / 
Switzerland 

 
ISO 14040 / 
14044 

 
Two Single-family 
house 

 
Complete Building 

 
65 
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building life cycle by considering two types of single-family houses –a conventional and a passive house 

standard- in Norway. Moreover, the study compares a renewable heating system with a Standard Norwegian 

system based on electricity. The functional unit is 1 m2 of useable floor area of a wooden house with four 

inhabitants.  

Others studies were focused on assessing the environmental impact of an element or system that compose 

the building. Babaizadeh et al. [31] develop a LCA of 5 types of shading windows located in different climate 

zones of US. The study shows the environmental impact of the shading material tested on a typical single-family 

house. Hanandeh [32] applies the LCA method to evaluate the efficiency of different exterior wall construction 

of typical single –family houses. Gervasio et al. [42] develop an LCA method for quantifying cycle embodied 

impacts and energy consumption at early stages of design. The study focuses on a macro-components approach 

that reduces the amount of information and complexity on the application of the LCA method. 

The use of standards to develop the LCA application was confirmed in 80 % percent of cases studies. 

Almost 30 % of European cases have developed LCA applications according to EN 15798 [13]. Non-European 

cases and 30 % of European cases have been based on ISO standards [20]. 

 

4.2.2. Life Cycle Inventory (LCI) phase 

According to literature, the Life Cycle Inventory (LCI) aims to quantify input and output flows and it is 

considered the most complex and time-consuming process [11]. Among the analysis of the selected papers a 

wide variety of data sources were identified. Results described in Table 3 were organized conforming to EN 

15978 [13] information structure, as follow: building model –including materials, components and systems that 

compose the building-; building process – including transport, maintenance, repair, replacements, 

refurbishments, demolition, waste processing, recycling-; operational consumption –including energy and 

water consumption-. 

The Building Model is a physical reference of the subject of study and it includes all the products and 

components that composed the building. For the quantification and organization of data certain simplifications 

strategies were identified. The use of BIM to quantify building material was identified in Iddon, et al. [39] and in 

Houlihan et al. [43]. On the other hand, the use of other data structures to organize information about building 

materials and products was detected in Islam et al. [44] Gervasio et al. [42], Dahlstrøm et al. [41]. 
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Building process refers to processes and activities related to the life cycle of the building including: 

transport, construction, maintenance, repair, refurbishment, replacement, demolition, and disposal. These 

processes were grouped as: Construction, Use, Demolition, Recycle, Transport to construction site and to landfill 

as shown Table 2. In the Building process major uncertainties were identified, because of the need to define 

processes adapted to case studies. Table 3 evidenced that most of the case studies develop estimations for 

building processes in use and demolition stage. 

Most of the case studies use Ecoinvent, a generic database for obtaining environmental data about 

construction materials. However, Proietti et al. [45] and [46] Cuéllar-Franca & Azapagic did not specify the 

Ecoinvent version applied in the LCA. The Ecoinvent database version  2.2  was used in 15 % of the case studies 

[35,36,43]. Ecoinvent databases represents one of the most complete and widely used databases as other authors 

indicated [47,48]. Although it is recognized that the use of generic databases can help and reduce significantly 

the amount of data and complexity during product phase, representativeness of data cannot be assured [14].   

On the other hand, several cases that regional LCI have not been available, data used from generic 

databases has been adapted to reflect regional characteristics. Islam et al. [44] for instance, use wherever possible 

Australian region specific database (AusLCI) and data from the European Ecoinvent database “adjusted” to 

Australian electricity and transportation. Cuéllar-Franca & Azapagic [37] carry out data collection by using 

Ecoinvent and GaBi V4.3. It has also used other literature sources as: Berge [49], Anderson et al. [50], DEFRA 

[51], Dewulf et al. [52], Prime et al. [53], Ortiz et al. [54], Utley & Shorrock [55], Zabalza et al. [17]. However, 

the mix of different databases has to be carefully carried out. In that sense, Takano et al. [48] compare five 

databases used in buildings LCA –Gabi 6, Ecoinvent v3.0, IBO, CFP, and Synergia-. The study demonstrates 

that in spite of the fact that the compared database shows similar trends in assessment results, there are numerical 

differences between the studied databases.  

Other cases were based on local data sources. For instance, Hanandeh [32] estimates transport based on 

distances from factory to construction site. Dahlstrøm et al. [41] develop data collection about construction based 

on calculations and contact with external companies as DeWalt Power Tools [56], SINTEF Byggforsk [57], 

Horn [58], F-Tech [59]. 

Operational consumption is related to energy consumption and water use of the building. In most cases, it 

was detected that energy consumption was calculated by dynamic thermal simulations tools that were in several 

cases adapted to regional energy efficiency regulations. For instance, Rosselló-Batle et al. [60] use LIDER-
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CALENER –a Spanish tool-, Peuportier et al, [61] and Fouquet et al. [62] employ PLEIADES+Comfie -a French 

tool-, Houlihan et al. [43] use SIMIEN –Norwegian tool-. 

During the modelling of energy consumption it was detected that several cases do not include internal 

equipment from activities developed in the building. Monteiro & Freire [63] for example, do not include in 

energy consumption: electric appliances, lighting, cooking, and domestic hot water. Despite the fact that it 

restricted the comparability of results, the strategy could reduce the complexity of data sources by focusing the 

attention on the envelope and the thermal performance of the building. 



15 

Table 3. Data sources include on reviewed papers.  
  Building model Building process Operational consumption 

 

Reference 
Material and 
products 
quantification  

Product stage 
(A1,A2,A3) 

Construction  
stage 
(A5) 

Use stage 
(B1, B2, B3, B4, 
B5)  

End of Life  
stage 
(C1,C3,C4) 

Recycle stage 
(D) 

Transport to 
construction  
site (A4) 

Trasnsport  
to lanfill site 
(C2) 

Energy  
Consumption  
Calculation 
(B6) 

Water  
Consumption  
(B7) 

 
1. European 
cases 

 
Houlihan et al., 
2014 

 
BIM model  

 
Ecoinvent  v2.2 

 
- 

 
- 

 
- 

 
- 

 
- 

 
- 

 
Norwegian 
official standards 
 [64–67] 

 
- 

 Gervásio et al., 
2014 

Uniformat 
classification 
scheme  

GaBi 6 - - - - - - Design Builder - 

 Dahlstrøm et al., 
2012 

Previous 
research 
[68]  

Ecoinvent v2.0  Previous research 
[56–59] 
 

- - - - - Authors 
estimations 

Statistic 
estimations  
[69] 

 Motuzienè et al., 
2016 

BIM model SimaPro libraries - - - - - - DesignBuilder - 

 Proietti et al., 
2013 

 Ecoinvent and  
Previous research 
[70–72] 
 

Authors 
estimations and  
Previous research 
[16,70–78] 
 

Authors 
estimations and  
Previous research 
[16,70–75,77–81] 
 

Authors 
estimations and  
Previous research  
[16,70–
72,74,75,77,79,80
,82–85] 

Authors estimations  
and previous 
research 

Cooperation  
with the 
designer/owner, 
technical data 

- PHPP - 

 Takano et al., 
2015a 

- Ecoinvent v3.01 - - Finnish Ministry 
of the 
Environment 

EQUA Simulation 
AB 

EQUA Simulation 
AB 

- EQUA Simulation 
AB 
and other sources 
[86]  

- 

 
 

Cuéllar-Franca & 
Azapagic, 2012 

Previous 
research 
[50,87,88] 
 

Ecoinvent,  
GaBi V4.3 
and previous  
research [49–55] 

Previous research 
[73] 

Previous research 
[50] 

Authors 
estimations 

Authors estimations Previous research 
[54] 

Authors 
estimations 

Previous research 
[55,89] 
 

Previous 
research 
[55] 

 Iddon et al., 2013 BIM model  ICE database  
 

- - - - - - ISO standard [90], 
BRE Domestic  
Energy Model, 
and other sources 
[91] 

- 

 Monteiro & 
Freire, 2012 

- Sources based on 
Ecoinvent v2.0 
[92–94] 
 

Authors 
estimations and  
Previous research 
[16] 

Authors 
estimations  

- - Authors 
estimations  

- RCCTE 
calculation 
method 

- 
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Table 3. (continued) 
Building model Building process Operational consumption 

 
Reference 

Material and 
products 
quantification  

Product stage 
(A1,A2,A3) 

Construction  
stage 
(A5) 

Use stage 
(B1, B2, B3, B4, 
B5)  

End of Life  
stage 
(C1,C3,C4) 

Recycle stage 
(D) 

Transport to 
construction  
site (A4) 

Trasnsport  
to lanfill site 
(C2) 

Energy  
Consumption  
Calculation (B6) 

Water  
Consumption  
(B7) 

 
1. European 
cases 
(cont.) 

 
Rosselló-Batle et al., 
2015 

- BEDEC - - 
 
- 

 
- - - LIDER + 

CALENER - 

Rossi et al., 2012 - Bees 
WORLDSTEEL, 
CRTI 

- - - - - - Pleaides + Comfie 
 

- 

 Lewandowska et al., 
2013 

- Ecoinvent v2.2. - Authors 
estimations  

- - Vehicle route 
planning software 

Vehicle route 
planning 
software and 
other sources.  

Based on 
architectural 
projects and energy 
certificates 

Authors 
estimations 
based on 
Minister of 
Construction 
[95]  

 Fouquet et al., 2015 - Ecoinvent v3.01 - - - - Authors 
estimations  
based on previous 
research [18] 

Authors 
estimations 

Comfie - 

 Peuportier et al. , 
2013  

- Ecoinvent. v1.1 
and further 
versions. 

- - Authors 
estimations 

Authors 
estimations 

Authors 
estimations 

Authors 
estimations 

Comfie - 

 
2. Non-
European 
cases 
 

 
Babaizadeh et al., 
2015 

 
BEES model 

 
Ecoinvent 3.0  
BEES model 

 
- 

 
- 

 
Authors 
estimations 

 
Authors 
estimations 

 
Ecoinvent 3.0 
BUWAL 250 

 
- 

 
EnergyPlus 7.2 

 
- 

Utama et al., 2012 - Previous research  
[96]  

Authors 
estimations  

Authors 
estimations 

- - - - Authors estimations 
 

- 

 Hanandeh, 2015 - ELCD database 2.0 
and previous 
research [97,98] 
 

- - Authors 
estimations 

Authors 
estimations 

Statistic 
estimations  
 

- Statistic estimations 
and previous 
research  
[99] 

- 

 Islam et al., 2014 BBQ (Builder’s 
bill of quantity) 

AusLCI database  
Ecoinvent 

- Authors 
estimations  

- - Authors 
estimations  

Authors 
estimations 

AccuRate software - 

 Oyarzo & Peuportier, 
2014 - Ecoinvent  v1.1 - - - - Authors 

estimations 
Authors 
estimations 

Comfie and 
multizone approach 

Authors 
estimations 
based 

3.  
European and  
Non-European  
cases 

Mosteiro-Romero  
et al., 2014 - Ecoinvent v2.2  - - Authors 

estimations 
Authors 
estimations 

Authors 
estimations and 
previous research 
[100] 

Authors 
estimations 

REM/DesignTM 
Software  - 
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 4.2.3. Life cycle Impact Calculation (LCAI) and interpretation Phases 

Among the selected papers a wide variety of environmental impact indicators were identified. Different 

criteria in environmental impact indicators definitions were recognized. Some of them corresponded to global 

environmental priorities and some of them responded to regional environmental priorities. About Global 

priorities Table 1 shows EN 15978 [13] environmental indicators categories including: Environmental impact 

indicators, Resource Use and Waste categories and the output flow leaving the system. 75% of the selected 

papers analyzed focused on some of those Environmental Impact Indicators, GWP was mostly considered. 

Strictly speaking, Resource Use indicators and Waste categories indicators were not considered. About local 

priorities Hanandeh  [32] defines the environmental impact indicators by focusing on the most significant 

environmental problems in Jordan: WD, CC, AP, HTP, and PMF. Islam et al. [44] define global -GHG and 

CED- and regional categories -water use and solid waste-. 

 

On the other hand, several cases focus on CO2 emissions; one of the most significant environmental 

indicators in climate change mitigation. Moncaster & Symon [101] recommend its calculation as a part of 

building design process. Rossi et al. [38], Iddon et al. [39], Houlihan et al. [43] calculated Carbon emissions –

Embodied and Operational-. Moreover, Rosselló-Batle et al. [60] focused on Embodied and Operational Energy. 
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1 

 
Table 4  
Selected cases organized by environmental impact indicators. 
 
 Reference  Impact Calculation method Indicators 

 
1. European cases 

Houlihan et al., 2014  NA ED, EC, OCE 

Gervasio et al., 2014  NA ADP –E, ADP –F, AP, EP, GWP, OLDP, POPC 
Dahlstrøm et al., 2012  ReCiPe v1.03 CC, ED, GHG, PMF, TA 
Motuzienè et al., 2016  AHP GWP, OLDP, PED 

Proietti et al., 2013  EPD 2007 and Eco-indicator  99 AP, EP, GER, GWP, NRE, POCP 
Takano et al., 2015  Previous research [102] NRPEC, RPEC 
Cuéllar-Franca & Azapagic, 2012  CML 2001 method AP, ADP, EP, FAETP, GWP, HTP, MAETP, OLDP, POCP, TETP 

Iddon et al., 2013  NA ED, EC, OCE 

Monteiro & Freire, 2014  CED, CML 2001, Eco-indicator’99 ADP, AP, Car, CC, EP, ET,  FAETP, FFD, GWP, HTP, LO, M, MAETP, NRCED, NRE, OLDP, POCP, R, Ra, RI, RO, TETP 

Rosselló-Batle et al., 2015  - ED, EE 
Rossi et al., 2013  - EE, OE 

Lewandowska et al., 2013  Impact 2002+ method Eco-indicator results (weighted impact category indicator results for: AP, EP, GWP, HHC, HHNC, LO, ME, IR, OLDP, RI, TE, 
TETP) 

Fouquet et al., 2015  - GWP 
Peuportier et al., 2013  - AP, B, EP, HH, GWP, O, PED , R, RW, S, W, WC 

 
2. Non-European 
cases 
 

Babaizadeh et al., 2015  BEES 4.0 model AP, CAP, EP, ET, FFD, GWP, HA, HHC, HHNC, OD S, WI 
Utama et al., 2012  CML 2 baseline 2000 ADP, AP, EP, GWP , HTP, POCP 

Hanandeh, 2015  ReCiPe Midpoint (H) and Previous 
research [103] AP, CC, HTP, PMF, WD 

Islam et al., 2014  Australian Impact  and CED CED, GHG, SW, WC 
Oyarzo & Peuportier, 2014  CML and DALY indicator ADP, AP, CED, EP,  GWP, HH, NRW, O, POCP, RW, TETP, W, WC 

3. European and Non-
European cases Mosteiro-Romero et al., 2014  IMPACT 2002+ AAP, AEP, GWP, NRE, OLDP, TA 

AAP Aquatic Acidification Potential; AEP, Aquatic Eutrophication Potential; ADP Abiotic Depletion Potential;  ADP –E Abiotic Depletion Potential for non-fossil resources; ADP –F Abiotic Depletion Potential for fossil 

resources; AP Acidification Potential; B Biodiversity; CAP Criteria Air Pollutants; Car Carcinogens; CC Climate Change; CED Cumulative Energy Demand; EC Embodied Carbon Emissions; ED Energy Demand; EE Embodied 

Energy; EP Eutrophication Potential; ET Ecological Toxicity; FAETP Freshwater Aquatic Eco-Toxicity Potential; FFD Fossil Fuel Depletion; GER Gross Energy Requirement; GHG Green House Gases; GWP Global Warming 

Potential; HA Habitat Alteration; HH Human Health; HHC Human Health Cancer; HHNC Human Health non Cancer; HTP: Human Toxicity Potential; IR Ionizing Radiation; LO Land Occupation; M Minerals; MAETP: Marine 

Aquatic Eco-Toxicity Potential; ME Mineral Extraction; N-Car Non-Carcinogens; NRE Renewable and Non Renewable Energy; NRCED Non-renewable Cumulative Energy Demand; NRE Non-Renewable Energy Consumption; 

NRPEC Non- Renewable Primary Energy Consumption; NRW Non-Radioactive Waste; O Odor; OCE Operational Carbon Emissions; OLDP Ozone layer Depletion Potential; OE Operational Energy; PED Primary Energy 

Demand; PMF Particulate Matter Formation; POCP Photochemical Ozone Creation Potential; Ra Radiation; R Resources; RI Respiratory Inorganics;  RO Respiratory Organic; RPEC Renewable Primary Energy Consumption; 

RW Radioactive Waste; S Smog; SW Solid Waste; TA/NP Terrestrial Acidification/Nutrification Potential; TETP Terrestrial Eco-toxicity Potential; W Waste; Water Intake; WC Water Consumption; WD Water Depletion. 
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4.3. Analysis of the life cycle stages and scenario definition 

Among the selected papers, it was detected that none of the cases included all modules. Reduction of 

stages and modules depended on the aim of the study. The major reductions were detected in use, demolition, 

and loads and benefits stages. In that respect, 30% of cases studies omitted two or more LCA stages. Utama et al. 

[34], compared direct and indirect emissions of building envelope materials on product, construction and 

maintenance modules. Houlihan et al. [43] calculated environmental impact of complete building considering 

production, maintenance and operational energy and water. Iddon et al. [39] compared four different 

construction scenarios for a typical house including production and operational energy use. Rossi et al. [38] 

compared embodied and operational consumption for a house in three different European locations by 

considering production, transport to site, operational energy and water use. Rosselló-Batle et al. [60] also 

compared embodied and operational energy demand in a Mediterranean climate by including production stage, 

maintenance –partially- and operational energy. Several omitted modules were justified by previous research. 

Furthermore, more than 70% of papers included all LCA stages within system limits -production, 

construction, use and demolition-. Gervasio et al. [42] introduced an LCA application for early stages of design. 

The study is the most complete case; it included almost all modules, except A5, B1 y B7. Lewandowska et al. 

[36] became one of the most complete cases, by including: A2-A5, B1, B2, B3, B4, B6, B7, C1, C2 and C4. 

Islam et al. (2014) included: A1-A5, B2, B4, B6, C1 and C2. Dahlstrøm et al. [41] included: A1-A5, partially B2 

(just for ventilation and heating systems), B6, B7, C1 and C3. Hanandeh [32] included all LCA stages: 

production, construction, operational stage –just B2, B6, B7- and recycling – just for aluminum windows and 

frames. Babaizadeh et al. [31] omitted A5, B1-B5 and B7.  

 

4.3.1. Analysis of the production stage 

Production stage was included in all the selected papers. It referred to the phase that data collection is 

more accessible than use or end of life phase. Table 3 demonstrates that it was the phase where generic database 

or other sources were mostly used. 

4.3.2. Analysis of the use stage 

Use stage was the most heterogeneous phase in terms of module assessment; none of the selected papers 

had totally considered this. Operational energy use was included in 95% of cases, while replacement, 

refurbishment and repair were hardly included. It was confirmed that the use stage had the most uncertainties in 
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data collection, because of the lack of data bases, statistics or any other criteria that simplified the process. 

According to Table 3 data sources about the use stage were mostly based on the authors´ estimations. 
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1 

 
 
 
 
Table 5.  
Comparison of life cycle stages considered on reviewed papers. 
   

Building life cycle information 
 Suppletory Information beyond 

Build. life cycle 
  A1-A3 

Product stage 

A5-A6 
Construction 

stage 

B1-B7 
Use stage 

C1-C4 
End of life stage  D 
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1. 
European  
Cases 

Houlihan et al., 2014 X X X - - - - - X - X - - - - -  - 

Gervasio et al., 2014 X X X X - - X X X X X - X X X X  X 

Dahlstrøm et al., 2012 X X X X X - X - - - X X X X X -  - 

Motuzienè et al., 2016 X X X X X - X - X - X X X X X X  - 

Proietti et al., 2013 X X X X X - X - - - X - X X X X  (X) 

Takano et al., 2015 X X X - - - X - X - X - X X X X  X 
Cuéllar-Franca & Azapagic, 
2012 X X X X X - X - X - X X X X X X  X 

Iddon et al., 2013 X X X - - - - - - - X - - - - -  - 
Monteiro & Freire, 2012 X X X X X - X - X - X - - - - -  - 
Rosselló-Batle et al., 2015  X X X X - - - - - - X - - - - -  - 

Lewandowska et al., 2013 - X X X X X X X X - X X X X - X  - 

Rossi et al., 2015 X X X X - - - - - - X X - - - -   

Fouquet et al., 2015 X X X X X - - - - X X - X X X X  - 

Peuportier et al., 2013 X X X X X - X - - - X X X X - X  - 
 
2.  
Non- 
European  
Cases 

Babaizadeh et al., 2015 X X X X - - - - - - X - X X X X  X 

Utama et al., 2012 X X X X X - X - X  - - - - - - -  - 

Hanandeh, 2015 X X X X X - X - - - X X - X - X  X 

Islam et al., 2014 X X X X X - X - - - X - X X - -  - 

Oyarzo & Peuportier, 2014 X X X X X X X X - - X X X X X -  - 

3. European 
and Non-
European 
cases 

Mosteiro-Romero et al.,  2014 X X X X X - X - X - X - X X X X  X 
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4.3.3. Analysis of the end of life stage 

End of life stage was omitted in 20% of the case studies, and several strategies were detected. Peuportier 

et al. [61], for instance, assumed landfill for demolition waste as a way for simplifying end of life stage 

definition. Fouquet et al. [62] defined two scenarios for a timber frame system, comparing incineration and 

landfill. Babaizadeh et al. [31] also described different scenarios for building materials: 75% of wood is assumed 

to be used for landfill, the rest 25% is incinerated, and aluminum and PVC is assumed to be recycled. On the 

other hand, Monteiro & Freire [63], justify the end of life omissions by considering the limited importance of 

end-of-life stage impacts in South European single-family houses, demonstrated in Nemry et al. [104] . 

4.3.4. Analysis of the benefits and loads 

Benefits and loads were hardly included. Several cases included partial accounts. Hanandeh [32] for 

example considered benefits only for aluminum windows and frames. Other cases justified the omission. 

Dahlstrøm et al. [41] assumed the worst-case waste scenario, so no gains from reuse or recycling material were 

considered. 

5. DISCUSSION 

Reference literature [9,29] assumes that simplifications to LCA referred to system boundary definition, 

data acquisition and results communication. Therefore, simplifications of the LCA method refer to reducing and 

optimizing those aspects. Based on that fact, from publications analyzed the following issues are discussed: 

strategies that search to reduce the amount of data and processes – Study of object boundary-, strategies that 

search to optimize life cycle stages and scenario definition -Life cycle stages and scenario definition-, and 

finally, strategies that search to simplify impact calculation and result communication -Impact calculation and 

results communication-. 

 

5.1 Study of object boundary 

The study of object definition involves setting limits to real building. Detected simplification strategies 

are mostly focused on reducing the amount of data, optimizing data collection and simplifying LCA. According 

to EN 15978 [13] system boundaries and functional unit definition do not only refer to complete building 

application, it also allows for partial assessment of buildings, e.g. building envelope, windows, roofs, etc. So, 

that reduction is considered as a simplification strategy. Among papers reviewed, 35 % of partial or reference 
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area applications are detected. Babaizadeh et al. [31] focus the study on shading assessment. Gervasio et al. [42], 

for instance, develop a macro–component approach. Dahlstrøm et al. [41] reduce the functional unit to a 1m2 of 

useable floor area. 

Papers analyzed show growing interest in using BIM for developing the physical model of the building 

[3,39,43]. [3] 

Although, Houlihan et al. [43] recognize the existence of several limitations in calculation of some 

building components, it demonstrates that BIM is a helpful format for quantifying material inputs. The lack of 

data sources and the complexity in modelling building processes –such as transport, maintenance, repair, 

refurbishments, demolition, waste treatment or recycling-, is simplified in most cases as estimations based on 

previous research or regional data sources. 

5.2 Life cycle stages and scenario definition  

The review demonstrates that life cycle stages definitions also play an important role to simplified LCA 

for single-family houses. Among papers analyzed, no complete modules–A1 to D- assessment is detected. So 

according to the EeB Guide [14] type classification, most of the cases correspond to Simplified LCA application 

type. The review also demonstrates the relevance of product stages and operational energy use module in LCA 

for single-family houses. Product stage (A1 to A3) is included in all cases and Operational energy consumption 

(OE) is also mostly considered. Cuellár-Franca & Azapagic [37] show that it represents about 90% of GWP.  

 

Regarding case studies, reduction and simplification in life-cycle stages, these are related to the scope and 

objectives of each case. According to Houlihan et al. [43], Iddon et al. [39], Rossi et al. [38], Rosselló-Batle et 

al. [60], if the assessment is focused on comparing embodied and operational impacts, life-cycle stages definition 

is centered on product stages and energy consumption during use module. In other cases [3,31–

33,35,36,40,41,44,45,62,61,105], if the assessment is focused on environmental impact during the life-cycle; 

product, construction, use and demolition are mostly included, while loads and benefits are hardly considered. It 

is also detected in Gervasio et al. [42] that early stages of design assessments are focused on products, 

construction, use –partially-, and demolition stages. Utama et al. [34] center on building material performance; 

product, construction and use are partially considered.  

 

Furthermore life cycle stages and scenario definitions are heterogeneous in all case studies. Product 

stages scenario is mostly recognized to be supported by generic databases as shown Table 4. However, EN 
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15798 [13] assumes the use of EPD as a simplification to product stage scenario definition. Among papers 

reviewed no EPD applications are detected. Use stage scenario definition is directly related to construction 

materials, climate, technology, and other regional characteristics. Simplification strategies aim to facilitate 

access to uncertain information. In this context, most of the papers considered are based on the authors’ 

estimations or previous research as shown in Table 4. Moreover, the use of Dynamic Thermal Simulations tool 

to help on Operational energy use scenarios definition is widely recognized. End-of-life stage was one of the 

most heterogeneous stages. Detected simplification strategies assume in several cases landfill, justified omission, 

or incineration, as an alternative for a waste treatment scenario. In spite of that fact the European context goals 

by 2020 aim to reuse, recycle or recovery of material of at least 70% of non-hazardous construction and 

demolition waste [106]. 

5.3 Impact calculation and results communication  

Results demonstrate that depending on Impact calculation methods, final results can differ. Moreover, 

calculation methods are defined based on selected environmental impact indicator. Monteiro & Freire [63] 

demonstrate the influence of Impact calculation methods in LCA results. The study, that compares three of the 

most used calculation methods –CML, Ecoindicator´99 and CED-, demonstrates that by using these methods 

inconsistent results can be obtained for HTP, ET and PODP. So, the study suggests that LCA for single-family 

houses ought to include multiple environmental impacts and ought not to include toxicity categories.  

Several cases have cut down the number of impact indicators by considering different criteria as: regional 

representativeness, global impact, embodied vs operational impact, renewable vs non-renewable energy 

consumption. From the analysis of the selected papers it is demonstrated that this simplification strategy can 

reduce the amount of data and complexity in LCA application, without altering result comparability. According 

to the selected papers GWP is the most significant environmental indicator; globally recognized as one of the 

most significant indicators for climate change mitigation strategies, and also takes part of the EN 15978 [13] 

required environmental indicators. Almost 20% of case studies [33,35,62,105] that considered complete building 

as the functional unit have calculated and included GWP results in the paper. Those cases were compared in Fig. 

2, in spite of the fact that methodological differences between them are recognized.  

Fig. 2 summarized the GWP ratio (kg. eq. CO2/m2/yr.) obtained from selected cases studies. According to 

Fig. 2 results obtained are heterogeneous. Only two cases [33,105] considered similar service lifetime (50 years), 

similar life cycle stages and the same impact calculation method (CML 2001 method). For these cases, the GWP 
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ratio ranges from 23 to 105 kg. eq.CO2/m2/yr. and the  media value for typical or reference scenario was 57 kg. 

eq.CO2/m2/yr.   

 

Fig. 2. Comparison of  GWP ratio (kg. eq. CO2/m2/yr.) from selected case studies [Selected case studies: Cuéllar-Franca & 
Azapagic: C-DE, detached house; C-SD, semi-detached house; C-TH terraced house; Monteiro & Freire: M-H0, reference 
house with double hollow brick masonry; M-H1 reference house with double facing and hollow brick masonry; M-H2, 
reference house with light weight concrete block masonry; M-H3, reference house with thermal concrete blocks masonry; M-
H4, reference house with autoclaved aerated concrete block masonry; M-H5, reference house with hollow brick masonry & 
ext. wood cladding; M-H6, reference house with wood frame and cladding; Fouquet et al.: F-OBL, reference house 
considering timber frame landfill scenario; F-OBI, reference house considering timber frame incineration scenario; F-DM, 
reference house with concrete blocks cavity walls; F-BB, reference house with cast concrete walls; Oyarzo & Peuportier: O-
PA1, reference house in Punta Arenas; O-PA2, regulatory house in Punta Arenas; O-PA3, improved house in Punta Arenas; 
O-PM1, reference house in Puerto Montt; O-PM2, regulatory house in Puerto Montt; O-PM3, improved house in Puerto 
Montt; O-S1, reference house in Santiago; O-S2, regulatory house in Santiago; O-S3, improved house in Santiago; Mosteiro-
Romero et al.: M-US, LEED-H certified house in US; M-SW, Minergie-P certified house in Switzerland].  

 

Results communications play a key role to organize and compare calculated environmental impact. 

Almost half of the selected papers analyzed [3,35,38–41,45] organize results according to building parts -e.g. 

external walls, internal walls, windows, roof, shadings, etc.-. Several cases [31,34,43,60,105] organize results by 

classification of construction materials. Cuéllar-Franca & Azapagic [105], Fouquet et al. [62], Monteiro & Freire 

[63], Lewandowska et al. [36], Proietti et al. [45], Oyarzo & Peuportier [33], Peuportier et al. [61], Mosteiro-
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Romero et al. [35] organize results by LCA stages, adapting them to the particular case. Islam et al. [44] compare 

different building type impact and Hanandeh [32] develop an environmental impact comparison. Other cases 

[40,42] present results by stage and modules criteria described in EN 15798 [13].Takano et al. [40] for example, 

combine LCA stages and building part organization, so it allows for partial comparison or complete LCA 

application. 

6. CONCLUSIONS 

The papers analyzed show growing interest in LCA for single-family houses and the trend towards 

simplifying environmental assessment based on the LCA method. Results show that the focus on simplification 

is set on system boundary definition – including model definition and life cycle stages definition-, on scenarios 

definition and on results communication. The review confirms that simplifications to real buildings are necessary 

during LCA application, however it is necessary to know their limits and how it affects reliability, transparency 

and comparability of the results. 

Selected papers, demonstrate the influence of EN 15978 [13] in the LCA for single-family houses during 

the last five years and its relevance as a methodological guidance for them. Although it is also demonstrated that 

the global reference on LCA for single-family houses are ISO standards [20,21], considered mostly in European 

and non-European cases. Furthermore, each of the selected papers analyzed proposes different application of the 

LCA method. Results show the usefulness of the LCA method to assess environmental impact during the life-

cycle of the building or a part of it, to assess environmental impact during the early stages of design, and to 

compare embodied and operational impact. It is also demonstrated that simplification strategies can help on 

optimizing input account, reducing the amount of data, reducing the complexity of process assessment and 

impact assessment calculation.  

The review confirms the existence of several simplification strategies as follow: optimization of data 

collection process, reduction of the functional unit, limitation of the study to relevant stages and modules, 

simplification of the scenario definition, use of databases or other generic data sources, use of calculation 

methods, and reduction of environmental indicators. It is demonstrated that simplification strategies refer in all 

cases to the scope and objectives of the study. On the other hand, due to the heterogeneity of simplification 

strategies it is not possible to ensure the comparability of the results. 
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Finally, several recommendations and challenges for simplification strategies for single-family houses 

LCA can be concluded: 

- Regarding the difficulties on data collection, it is needed to develop common criteria 

to define several processes as construction, transports, use, maintenance, replacements, repair, 

refurbishments and end-of-life processes according to regional characteristics, which can improve 

and provide guarantees to compare results. 

 

- The use of EPD is still not verified in single-family houses LCA, in spite of being 

considered as a strategy to simplify product stage. This highlights the need to continue developing 

EPD for construction products. 

 

- About data quantification, the review demonstrates the growing interest in including 

BIM in LCA for single-family houses. Almost 15 % of papers reviewed have recommended or 

used BIM models during LCA application. Further study would be needed to improve their 

complementarity. 

 

- Regarding results communication, it is evident that EN 15978 [13] has improved LCA 

results communication. However, it is needed to go further to establish common criteria to compare 

results of similar building typologies and to simplify comparison of partial applications of LCA. 

Results can be presented by component or system that composes the building, -e.g. building 

envelope, windows, roof, and structure-. This would allow the comparison of environmental impact 

organized by life cycle stages, of components or systems of similar case studies. 

 

Therefore, this paper demonstrates the need to further develop simplification strategies that do not alter 

results representativeness and also allow their comparability. It is also needed to extend the application of LCA 

in buildings -especially in single-family houses-, as well as to expand the use of environmental criteria in the 

building sector. 
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Highlights:  

 Review of recent single-family houses LCA, focused on simplification strategies. 

 Simplification mainly focused on system boundary and results communication.  

 The most considered environmental impact indicator was GWP. 

 Future studies need simplification strategies that allow results comparability. 

 


