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OPERATORS ON Lp AND THE ROLE OF THE IMAGE OF
THE UNIT BALL

M. CARMEN ROMERO-MORENO

Abstract. Let p ∈ [1, +∞] such that its conjugate exponent q is not
an even integer and let T be an operator defined on Lp(λ) with values
in a Banach space. In this note we discuss how the image of the unit
ball determines whether T belongs to some classes of operators such as
operator ideals or the class of representable operators. We also study
the monotonicity of these properties, proving that a Banach space is C-
isomorphic to a subspace of an Lq space if and only if the representability
of every operator on Lp is monotone with respect to the image of the unit
ball.

1. Operators on Lp(λ) and the image of the unit ball

Let X be a Banach space. In this note we survey the following general ques-
tion: Let T1 : Lp(λ1) −→ X and T2 : Lp(λ2) −→ X be two bounded linear oper-
ators. Suppose that T1(BLp(λ1)) = T2(BLp(λ2)) or T1(BLp(λ1)) ⊆ T2(BLp(λ2)).
Does then T1 belong to a given class of operators whenever T2 does? This
question is closely related to earlier results by Grothendieck, Rodŕıguez Piazza
and the author. In almost all the cases the results depend heavily on p. The
essential tools here are previous results about equimeasurability and isometries
in Lp spaces due to W. Rudin, W. Lusky, W. Linde and others.

The notation and terminology will follow that of [4]. We denote by L a
Banach lattice. For a real, unless otherwise specified, Banach space X, we
denote by X∗ its dual space. The closed unit ball in X will be denoted by BX .
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For an operator ideal A we denote by A(X, Y ) the linear space of operators
T : X 7→ Y in A. If in addition A is a normed ideal, we denote its norm
by ‖ · ‖A. Familiar examples of Banach operator ideals are the space of all
(bounded linear) operators (L, ‖ · ‖), the space of compact operators (K, ‖ · ‖)
and the space of weakly continuous operators (W, ‖·‖), with the usual operator
norm. Further, for 1 ≤ r, s < ∞, there are the Banach ideals (Π(r,s), π(r,s))
of all (r, s) summing operators and (Ir, ir) of all r-integral operators (see [4]
for the definitions). The notion of an operator ideal is due to A. Pietsch [15].
It is a powerful notion, an elegant abstraction whose roots trace back to A.
Grothendieck’s Resumé [6]. The study of operator ideals is an important topic
in Operator Theory which has generated problems of its own interest and has
provided new insights into the theory of Banach spaces and their operators. The
main difficulties in this area is recognizing and giving criteria for an operator
to belong to a given ideal and the computation of its norm.

Some ideals are by definition determined by the image of the unit ball,
for instance compact and weakly compact operators. However, one cannot
determine whether an operator belongs to a given operator ideal by just looking
to the image of the unit ball. For instance, if T1 is a quotient map from `1 onto
`2 and T2 is the identity operator on `2, then T1(B`1) = B`2 = T2(B`2); by
Grothendieck’s Theorem, T1 is absolutely summing while T2 is not. Therefore,
the fact that the images of the unit balls under two operators coincide does
not always implies that the operators belong to the same ideal. However, if we
restrict ourselves to some classes of spaces, some results can be obtained. The
first result in this vein is due to Grothendieck (see [7] and [5] for the definition
of equimeasurable set).

Theorem 1.1. An operator T : X −→ L1(λ) is integral if and only if it is order
bounded and in this case the integral norm satisfies i1(T ) =

∥∥supx∈BX
|Tx|∥∥.

Also, T is nuclear if and only if T (BX) is order bounded and equimeasurable.

A general theory about properties of operators determined by the image of
the unit ball has been developed by Rodŕıguez-Piazza and the author in the
framework of vector measures. In [18] Rodŕıguez-Piazza, answering a question
raised by Anantharaman and Diestel in [2], showed that the range of a vector
measure determines its total variation; that is, if two measures with values in
a Banach space have the same range, then they have the same total varia-
tion. Later, Rodŕıguez-Piazza in [19], proved that the range also determines
the Bochner derivability. These results can be translated into the language of
operators: if λ is a finite measure and T : L∞(λ) −→ X is a weak*-weakly con-
tinuous operator, then T (BL∞(λ)) determines the 1-summing and the nuclear
norms of T . In [20], similar results were obtained for (r, s)-summing norms and
r-nuclear norms. The basic tool to obtain these results is the following result
about determination of symmetric measures on the sphere.
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Theorem 1.2. If µ and ν are two finite, positive and symmetric measures on
Sn−1 such that, for every ξ ∈ Rn,∫

|〈x, ξ〉|dµ(x) =
∫
|〈x, ξ〉|dν(x);

then µ = ν.

Theorem 1.2 goes back, at least, to Blaschke [3] who proved it for n = 3
in 1916. The general theorem was first proved by Aleksandrov [1] in 1937,
and was reproved by Petty [14] in 1961, Rickert in [16] and [17] in 1967 and
Matheron [12] in 1971.

Let p ∈ [1,∞]. Henceforth q will be the conjugate exponent of p, that is,
1/p + 1/q = 1. The key to prove the most general theorem about properties of
operators determined by the image of the unit ball is the following result due
to W. Lusky, see [11].

Theorem 1.3. Let q ∈ [1,+∞] such that q 6= 4, 6, 8.... Let µ, ν be two positive
measures, E a subspace of Lq(µ), and S0 : E −→ Lq(ν) an isometry. Then
there exists an extension S : Lq(µ) −→ Lq(ν) of S0 such that ‖S‖ = 1.

For q = ∞, last result is a consequence of the injectivity of L∞(ν). For
q = 2, it is a consequence of the fact that every subspace of a Hilbert space is
complemented with a norm one projection. For the other values of q, Theorem
1.3 is due to W. Lusky [11] for complex Lq spaces; its proof makes use of a
result of Rudin [23] for complex scalars. The real version of the last result
was given by Linde in [9], that is, Theorem 1.3 holds for real Lq spaces. As a
consequence, we have the main theorem in [21] stated as follows.

Theorem 1.4. Let X be a Banach space and p ∈ (1,+∞] such that its conju-
gate exponent q 6= 4, 6, 8.... Let A be an operator ideal. Let T1 : Lp(λ1) −→ X

and T2 : Lp(λ2) −→ X be two operators such that T1(BLp(λ1)) = T2(BLp(λ2)),
and they are weak∗-weakly continuous if p = ∞. Then T1 ∈ A if and only if
T2 ∈ A; if in addition A is a normed ideal, then ‖T1‖A = ‖T2‖A.

Proof. Observe first that T1(BLp(λ1)) = T2(BLp(λ2)) if and only if ‖T ∗1 x∗‖ =
‖T ∗2 x∗‖, for every x∗ ∈ X∗. Therefore, there exists an isometry between
T ∗1 (X∗) and T ∗2 (X∗) sending T ∗1 x∗ to T ∗2 x∗. Using Theorem 1.3, this isom-
etry can be extended to an operator S : Lq(λ1) −→ Lq(λ2) such that ‖S‖ = 1,
then T ∗2 = S ◦ T ∗1 which implies T ∗∗2 = T ∗∗1 ◦ S∗. From the fact that Lp is
reflexive for p ∈ (1, +∞) or the condition of being weak∗-weakly continuous for
p = ∞, it follows that T2 = T1 ◦ S∗. In particular, this implies that T2 ∈ A
if T1 ∈ A and that ‖T2‖A ≤ ‖T1‖A for a normed ideal. The same argument
proves that T1 ∈ A if T2 ∈ A and that ‖T1‖A ≤ ‖T2‖A. ¤

Theorem 1.4 does not hold for p = 1 or p = ∞ dropping the condition of
being weak∗-weakly continuous, where we can only obtain that T ∗∗1 ∈ A if
and only if T ∗∗2 ∈ A and ‖T ∗∗1 ‖A = ‖T ∗∗2 ‖A when A is a normed ideal. The
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same can be said for C(K) spaces. Counterexamples for these values of p and
q 6= 4, 6, 8... are exhibited in [21].

The last result suggests many questions. At first glance, we can pose the
following problems.

Problem 1. Once we know that the image of the unit ball determines
the belonging to an operator ideal, it would be interesting to find geometrical
conditions on the image of the unit ball to belong to a given ideal.

Problem 2. Theorem 1.4 applies to a large variety of properties of op-
erators. However, it does not apply to some important classes of operators
on Banach lattices. What are the analogues of this result for other classes of
operators that are not ideals of operators?

In the remainder of this section, we will collect some results that solve af-
firmatively the second problem for concave and representable operators, which
do not in general correspond to ideals of operators.

If 1 ≤ r, s < ∞, an operator T : L −→ X is (r, s)-concave if and only if there
exists a constant M < ∞ such that the inequality

(
n∑

i=1

‖Tϕi‖r

)1/r

≤ M

∥∥∥∥∥∥

(
n∑

i=1

|ϕi|s
)1/s

∥∥∥∥∥∥
holds for every positive integer n and for all ϕ1, . . . , ϕn ∈ L. The least of such
M is denoted by α(r,s)(T ), the (r, s)-concave norm of T (or αr(T ) if r = s).
Let C(r,s)(L,X) (or Cr(L,X) if r = s) be the space of (r, s)-concave operators
from L to X. If we denote by Π(r,s)(L,X) the space of (r, s)-absolutely sum-
ming operators then we have the following relationship between those classes
of operators:

Π(r,s)(L, X) ⊆ C(r,s)(L,X).

The following theorem, whose proof can be found in [4, Theorem 16.5], pro-
vides a characterization of (r, s)-concave operators in terms of (r, s)-summing
operators.

Theorem 1.5. Suppose that 1 ≤ r ≤ s < ∞ and C > 0. An operator
T : L −→ X is (r, s)-concave with α(r,s)(T ) ≤ C if and only if, for each compact
Hausdorff space K and every positive operator P : C(K) −→ L, the composition
T ◦ P : C(K) −→ X is (r, s)-summing with π(r,s)(T ◦ P ) ≤ C‖P‖.

Next theorem proves that the image of the unit ball of an operator defined
on Lp(λ) determines whether the operator belongs to the space of (r, s)-concave
operators when q 6= 2, 4, 6, . . ., see [22].

Theorem 1.6. Suppose that X is a Banach space and p ∈ [1,+∞] such that
its conjugate exponent q is not an even integer. Let T1 : Lp(λ1) −→ X and
T2 : Lp(λ2) −→ X be two operators such that T1(BLp(λ1)) = T2(BLp(λ2)). Then
α(r,s)(T1) = α(r,s)(T2).
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The idea of the proof of Theorem 1.6 is the fact that it suffices to prove it for
finite dimensional Banach spaces X and operators defined on Lp(µ), where µ is
a finite measure on the Euclidean unit sphere. Once this reduction is made, the
theorem is proved using the following result about determination of symmetric
measures on the sphere whose proof can be found in [8], [9] and [13].

Theorem 1.7. Let q be a real number in [1, +∞) which is not an even integer.
If µ and ν are two finite, positive and symmetric measures on Sn−1 such that,
for every ξ ∈ Rn,

∫
|〈x, ξ〉|qdµ(x) =

∫
|〈x, ξ〉|qdν(x);

then µ = ν.

It is worth pointing out that Theorem 1.7 does not hold when q is an even
integer, since in such a case the space generated by the functions |〈·, ξ〉|q, with
ξ ∈ Rn, in the space of continuous and symmetric functions on the sphere is
finite dimensional. This is the reason why Theorem 1.6 does not hold for these
values of q. Counterexamples can be found in [22]. It is important to note that,
in high contrast with Theorem 1.4, Theorem 1.7 fails to be true for p = 2.

For 1-concave operators T : Lp(λ) −→ X, we can find a decomposition of
the operator by means of a weak∗ measure on X∗∗, [22]. We will denote by
Ba(X∗∗, w∗) the Baire σ-algebra on X∗∗ with respect to the weak* topology
in X∗∗, that is, the smallest σ-algebra making measurable every real-valued
function which is continuous for the weak* topology. In fact, this σ-algebra
turns out to be the σ-algebra generated by the functionals in X∗, [24, 2-2-
4]. It is important to note that, in general, the unit ball of X∗∗ is not Baire
measurable for Ba(X∗∗, w∗). This is the reason why we have to consider the
outer measure µ∗T (BX∗∗) in the following theorem. Observe that α1(T ) < ∞
means that the operator T ∗ : X∗ −→ Lq(λ) satisfies

sup
x∗∈BX∗

|T ∗x∗| = h ∈ Lq(λ),

see Proposition 1.d.4 in [10]. If µ is a measure on Ba(X∗∗, w∗), µs will
denote its symmetrization defined as µs(A) = 1

2

(
µ(A) + µ(−A)

)
for every

A ∈ Ba(X∗∗, w∗).

Theorem 1.8. Let p ∈ (1,+∞] such that q 6= 2, 4, 6 . . . and let T : Lp(λ) −→ X
be an operator with α1(T ) < +∞ (weak∗-weak continuous if p = +∞). Then
there exists a positive measure µT on Ba(X∗∗, w∗) such that:

(a) (α1(T ))q = µT (X∗∗) = µT
∗(BX∗∗).

(b) ‖T ∗x∗‖q =
∫ |〈x∗, x∗∗〉|qdµT (x∗∗).

Moreover, if T̃ : Lp(λ̃) −→ X is another operator and µT̃ satisfies (a) and (b)
for T̃ , then T (BLp(λ)) = T̃ (BLp(λ̃)) if and only if µs

T = µs
T̃
.
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We denote by Lq(λ,X) the space of X-valued strongly measurable functions
f such that

‖f‖q =
(∫

‖f‖q dλ

)1/q

< ∞.

If T : Lp(λ) −→ X is an operator such that

Tϕ =
∫

ϕ · f dλ, for every ϕ ∈ Lp(λ),

and f ∈ Lq(λ, X), we say that T is represented by the function f . The rep-
resentation of a linear operator on Lp(λ) by means of an strongly measurable
function in Lq(λ, X) provides a very strong structural information about the
operator under consideration. This is not the case for other weaker integral
representation theories such as in Theorem 1.8 which fails to provide a good
representation for well behaved operators.

Following the same argument as a result of Talagrand [24, 3-4-1], one can
see that an operator T : Lp(λ) −→ X is represented by a function f ∈ Lq(λ, X)
if and only if there exists a separable subspace H of X such that µ∗T (H) =
µT (X∗∗). In this case, µT is a Radon measure on X. Since H is a symmetric
set, using the previous theorem we can deduce the following corollary, [22].

Corollary 1.9. If we have two operators T1 : Lp(λ1) −→ X and T2 : Lp(λ2) −→
X such that T1(BLp(λ1)) = T2(BLp(λ2)) and p ∈ (1,∞], q 6= 2, 4, 6 . . . (T1, T2

weak∗-weak continuous if p = ∞), then T1 is represented by a function in
Lq(λ1, X) if and only if T2 is represented by a function in Lq(λ2, X).

This result can also be obtained as a consequence of Theorem 4 in [9]. For
the other values of p, this theorem fails to be true using counterexamples by W.
Linde in [9] and R. Sztencel (unpublished). Moreover, for p = 2 this theorem
is only valid when X is isomorphic to a Hilbert space.

2. Monotonicity with respect to the image of the unit ball

At this stage we know that, for many values of p, the image of the unit
ball for an operator T : Lp(λ) −→ X determines many of its properties. So
one can wonder about the monotonicity of these properties with respect to the
image of the unit ball. The precise questions follow for T1 : Lp(λ1) −→ X and
T2 : Lp(λ2) −→ X:

Question 1. Does the condition T1(BLp(λ1)) ⊆ T2(BLp(λ2)) implies that T1

belongs to a given class of operators whenever T2 does?

Question 2. Does the condition

C1T2(BLp(λ2)) ⊆ T1(BLp(λ1)) ⊆ C2T2(BLp(λ2)),

where C1 and C2 are positive constants, implies that T1 belongs to a given class
of operators if and only if T2 does?
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The first authors to isolate these kinds of questions were Anantharaman
and Diestel, see [2], in the context of vector measures, exhibiting two c0-vector
valued measures µ and ν such that rg µ ⊆ rg ν, being ν of bounded variation
while µ is not. This provides a counterexample to Question 1 for the class of
absolutely summing operators defined on L∞. Following this study, Rodŕıguez-
Piazza showed in [18] that the monotonicity of the variation characterizes the
subspaces of L1. This means that the absolutely summing norm is monotone
with respect to the image of the unit ball for operators defined on L∞ if and
only if the range is C-isomorphic to a subspace of L1.

A result due to W. Linde in [9] leads us to the same conclusion for repre-
sentable operators in Lp. Observe that no restriction on q is needed.

Theorem 2.1. Let X be a Banach space and C ≥ 1. Then the following
statements are equivalent for 1 < p ≤ ∞:

(a) X is C-isomorphic to a subspace of some Lq space.
(b) For every pair of operators T1 : Lp(λ1) −→ X and T2 : Lp(λ2) −→

X (if p = ∞, then T1, T2 must be weak∗-weak continuous), the condition
T1(BLp(λ1)) ⊆ T2(BLp(λ2)) implies that T1 is represented by a function when-
ever T2 is. In this case if fi is the function representing Ti, for i = 1, 2,

‖f1‖q ≤ C‖f2‖q.

Proof. Suppose that condition (b) holds. Observe that two operators T1 and
T2 satisfy T1(BLp(λ1)) ⊆ T2(BLp(λ2)) if and only if for every x∗ ∈ X∗ we have
‖T ∗1 x∗‖ ≤ ‖T ∗2 x∗‖. Indeed, since T1(BLp(λ1)) and T2(BLp(λ2)) are convex sets,
we have T1(BLp(λ1)) ⊆ T2(BLp(λ2)) if and only if

sup
ϕ∈BLp(λ1)

〈x∗, T1ϕ〉 ≤ sup
ψ∈BLp(λ2)

〈x∗, T2ψ〉 for every x∗ ∈ X∗.

The above display is equivalent to

sup
ϕ∈BLp(λ1)

〈T ∗1 x∗, ϕ〉 ≤ sup
ψ∈BLp(λ2)

〈T ∗2 x∗, ψ〉 for every x∗ ∈ X∗

which, in turn, is equivalent to

‖T ∗1 x∗‖ ≤ ‖T ∗2 x∗‖ for every x ∈ X∗.

If T2 is represented by a function f2 in Lq(λ2, X), then T ∗2 x∗ = x∗f2, for any
x∗ ∈ X∗. In this case, since µT2 can be extended to a Radon measure on X,
we have

‖T ∗1 x∗‖q ≤ ‖T ∗2 x∗‖q =
∫
|〈x∗, x〉|qdµT2(x) and

∫
‖x‖q dµT2(x) < ∞.

Using [9, Theorem 6], we easily deduce that condition (b) is equivalent to X
being a subspace of some Lq space. ¤

Remark 2.2. Another application of [9, Theorem 6] and an easy adaptation
of the proof of Theorem 5 in [18], solves the same problem for other classes of
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operators. Indeed, one can prove that condition (b) in the last theorem can be
replaced by the following: For every pair of operators T1 : Lp(λ1) −→ X and
T2 : Lp(λ2) −→ X (T1, T2 weak∗-weak continuous if p = ∞), the condition
T1(BLp(λ1)) ⊆ T2(BLp(λ2)) implies that T1 is p-summing whenever T2 is. In
this case, πp(T1) ≤ Cπp(T2), the same is true for p-integral operators. Indeed,
this happens when the operators T1 and T2 are order bounded (see [4, Corollary
5.22]).

Acknowledgment. The author would like to thank to the referee for some
comments that improved the exposition.
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[19] Rodŕıguez-Piazza, L. Derivability, variation and range of a vector measure, Studia

Math. 112 (1995), 165–187.
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