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Multiple Linear Regression

Given a set of variables X1; : : : ;Xd multiple regression analyzes the
existence of some relationship among them.

f (X1; : : : ;Xd) = 0

And the function f is estimated based on a sample of data.
A Linear Regression model appears if we assume that f belongs to the
set of linear functions, i.e.:

f (X1; : : : ;Xd) = �0 +

dX
k=1

�k Xk

for some �0; �1; : : : ; �d 2 R.
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Residuals

Given a sample of data fx1; : : : ; xng � Rd+1 1 one tries to �nd the
model that minimizes the deviation of the data with respect to the
�tting body

H(β̂) = fz 2 Rd+1 :

dX
k=0

�̂kzk = 0g:

For an observation x the residual is the error when adjusting a model
compared to the sample data.

✠ Usually: "x =

�����xd �
d�1X
k=0

�kxk

�����, (�d = 1). (Vertical Distance)

1assume that xi = (1; xi1; : : : ; xid )
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Residuals

Let "x : Rd+1 ! R+ be a mapping that represents how \far" is the
point (observation) x 2 Rd+1 with respect to the hyperplane
H(β) = fy 2 Rd : (1; y t )β = 0g, as

"x (β) = D(x�0;H(β));

being D a distance measure in Rd .

(for any x 2 Rd+1, x�0 = (x1; : : : ; xd ), the vector with the last d
coordinates of x excluding the �rst one)



Aggregation Criteria

The �nal goal of a regression model is:

Given a set of points fx1; : : : ; xng � Rd , �nd the coe�cients
minimizing the residuals.

min("1; : : : ; "n )

A multiobjective optimization problem (Carrizosa, Conde, Fern�andez,

Mu~noz, Puerto; 1995).
It is usual to transform such a multiobjective problem into a scalar
problem by aggregating residuals.

✠ Sum of Residuals.

✠ Sum of Squares of residuals.

✠ Maximum of residuals.
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Aggregating Residuals

Let �1; : : : ; �n 2 R and let ε 2 Rn be the residuals.
We consider the aggregation criteria � : Rn ! R+ de�ned as:

�(ε) =
nX

i=1

�i ε
p

(i)

where ε(i) 2 fε1; : : : ; εng is such that ε(1) � � � � � ε(n).

✠ SUM (�i = 1, p = 1)

✠ SOS (�i = 1, p = 2)

✠ MAX (�n = 1, �i = 0, i 6= n)

✠ MEDIAN (�d n
2 e

= 1, �i = 0, i 6= dn2 e)

✠ TRIMMED MEAN (�i = 0; i = 1; : : : ; dn2 e, �i = 1, i > dn2 e)

✠ RANGE (�n = ��1 = 1, �i = 0, i 6= 1;n)

✠ : : :
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Are the extesions reasonable?

\Least squares regression estimators, has been studied
intensively for well over 200 years now, primarily due to its
convenient closed form." (Giloni & Padberg, 2002).

Under Gaussian distribution of the error terms an impressive statistical
apparatus has been created to assess the goodness of �t, the quality of
individual and/or subsets of the regression coe�cients, as well as other
statistical properties of the linear regression model. But:

\The ancient solitary reign of the exponential (Gaussian) law
of error should come to an end". (Edgeworth, 1920).

\We have left out a summary of linear regression models using
the more general `� -norms with � 62 f1; 2;1g for which the
computational requirements are considerably more burdensome
than in the linear programming case (as they generally require
methods from convex programming where machine
computations are far more limited today)." (Giloni & Padberg,
2002).
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Generalized Linear Regression

Given:

✠ A sample of data fx1; : : : ; xng 2 Rd+1,

✠ Residuals "x : Rd+1 ! R, and
✠ Aggregation of residuals criterion � : Rn ! R.

Find
β̂ 2 arg min

β2Rd+1
�(εx (β)); (LRP�;ε)

where εx (β) = ("x1(β); : : : ; "xn (β))
t is the vector of residuals.
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Regression and Location

Given a set of demand points A = fa1; : : : ;ang � Rd+1 (assuming
that ai1 = 1 for i = 1; : : : ;n) endowed with a distance measure
between points in Rd+1, 
, the goal of continuous location models is
to �nd β�

β� 2 arg min
�2Rd

	(
(a1;β); : : : ; 
(an ;β)):

For an error measure " (de�ned as a norm-based distance k � k) and an
aggregation criterion �, solving the linear regression problem to �t
the model βtX = 0 is nothing but a continuous location problem
where the residuals "ai

are:

"ai
:= 
(ai ;β) = D(ai ;H(β)) =

jβtai j

k(�1; : : : ; �d )k�

This implies that many results already known in the �eld of Location
Analysis can be applicable in solving generalized regression problems.
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Responses and Prediction

For norm-based distances (based in Mangasarian, 1999):

For a given observation z t = (1; z1; : : : ; zd) and the linear �t-
ting body H(β) the response ẑ consistent with the residual εz =
miny2H(β) kz�0 � yk is given by

ẑ = z�0 �
βtz

kβ�0k
�
k(β);

where k � k� is the dual norm to k � k and k(β) = arg max
kxk=1

βt
�0x .

Moreover,

εz =
jβtz j

kβ�0k
�
: (1)

Marginal variation: @ẑd
@zj

= �
�j

kβ�0k
�
k(β)d .



Responses and Prediction

Let z = (1; z1; : : : ; zd )
t , then

1 If D is the `1- distance,

ẑk =

8<:
zk if j�k j 6= maxfj�j j : j = 1; : : : ; dg,

zk �
βt z

kβ�0k1
vk ; if �k = maxfj�j j : j = 1; : : : ; dg,

zk +
βt z

kβ�0k1
vk ; if �k = �maxfj�j j : j = 1; : : : ; dg,

for

k = 1; : : : ; d, and for some v1; : : : ; vd � 0 such that
X

j

vj = 1.

2 If D is the `1- distance,

ẑk =

(
zk �

βt z

kβ�0k1
; if �k > 0,

zk +
βt z

kβ�0k1
; if �k < 0,

k = 1; : : : ; d:

3 If D is the `� - distance with 1 < � < +1 then

ẑk = zk �
βt z

kβ�0k�
k� (β)k ; k = 1; : : : ; d and

k� (β)k =

(
sg(βk )jβk j

�=�

(

P
d

j=1
jβj j

� )1=�
if βk 6= 0

0 if βk = 0;

k = 1; : : : ; d; 1
� + 1

� = 1.



A General Model: non-negative lambdas

�� = min

nX
j=1

�j �j (LR�;k�k)

s.t. εi �
jβtxi j

kβ�0k
�
; 8i = 1; : : : ; n; (2)

z
s
i � ε

r
i ; 8i = 1; : : : ; n; (3)

zi � �j +M (1� wij ); 8i ; j = 1; : : : ; n; (4)

�j � �j�1; 8j = 2; : : : ; n; (5)

nX
i=1

wij = 1; 8j = 1; : : : ; n; (6)

nX
j=1

wij = 1; 8i = 1; : : : ; n; (7)

β 2 Rd+1
;w 2 f0; 1gn�n

; z ; � 2 Rn
+:

OWA: (Nickel and Puerto, 2003), (Fern�andez, Pozo and Puerto, 2015)



A General Model

Each constraint z s � εr can be equivalently written as a set of
O(blog2(r)c) second order cone constraints with blog2(r)c additional
nonnegative variables. (B., Puerto, ElHaj; 2014)

For 0 � �1 � � � � � �n :

�� =min

nX
j=1

vj +

nX
i=1

wi

s.t. εi �
jβtxi j

kβ�0k
�
;8i = 1; : : : ;n ;

z s
i � εr

i ;8i = 1; : : : ;n ;

vj + wi � �izj ; 8i ; j = 1; : : : ;n ;

β 2 Rd+1
; z 2 Rn

+; v ;w 2 Rn

(B., Puerto, Salmer�on, Arxiv2015): SOCP for block-norm residuals and inner-outer

approx. for `� . Lots of Experiments...
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GCoD

GCoD�;ε = 1�
��

��0

��0: optimal value when the model is required to be constant: Xd = �0.
GCoD�;ε measures the improvement of the model that considers all the
independent variables with respect to the one that omits all of them.

��0 =
1

max
z2Rd :kzk�1

zd
min
�02R

�(jx1d � �0j; : : : ; jxnd � �0j);

✠ ��0 can be computed in O(n2) by a simple exploration.
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Multisource regression

It may occur that a single linear model is not adequate for the
data because there are subgroups of the sample with signi�-
cantly di�erent behavior with respect to the others.

One of the solutions to this problem is to consider simultane-
ously the two-side problem of classifying and �t the data to sev-
eral linear models with an uni�ed framework. This approach is
called Clusterwise regression Jiang et al. (2013) or Segmented
Regression Chen et al. (2012).
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Multisource Regression

A sample of n observations about d quantitative measures,
fx1; : : : ; xng � Rd+1

Our goal is to compute p linear models to �t the data as well as
the allocations of each point to the best model (in terms of the
residuals). We compute a set of p hyperplanes of the following
general shape:

H(βj ) = fy 2 Rd : (1; y t )βj = 0g; j = 1; : : : ;p:

Residuals: "i = minj2f1;:::pg "ij , with "ij the residual of allocating
observation xi to model H(βj ), i.e., "ij = d(xi ;H(βj )).
Aggregation Criterion: �("1; : : : ; "n).

Cluster & Regression (CRIO): First group, then estimate (Bertsimas and

Shioda, 2007).
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Multisource regression

min �(e1; : : : ; en )

s :t : (8)

ei � "ij zij ;

representation of residuals("); (9)
pX

j=1

zij = 1;8i = 1; : : : ;n ;

zij 2 f0; 1g;8i = 1; : : : ;n ; j = 1; : : : ;p;

ei 2 R+;8i = 1; : : : ;n ;

βjk 2 R;8j = 1; : : : ;p; k = 0; : : : ;d � 1:

where

zij =

�
1 if the ith observation is assigned to H(βj ),
0 otherwise,
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Set partitioning formulation

✠ Let I = f1; : : : ;ng denote the entire set of observations.

✠ Let S be a cluster of observations S � I .

✠ Let cS denote the cost of cluster S , i.e. the overall aggregation of
the residuals of data in S .

yS =

�
1 if cluster S is selected
0 otherwise:

The set partition formulation is:

min
X
S

cSyS (10)X
S

yS = pX
S3i

yS = 1 8 i = 1; : : : ;n

yS 2 f0; 1g; S � f1; : : : ;ng: (11)
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Pricing problem

Let u be the dual variable for constraint (
P

S yS = p) and vi the dual
variables for constraints (

P
S3i yS = 1). The reduced cost for variable

yS is �cS = cS � u �
P

i2S vi .
For instance, the pricing problem for the vertical distance residual:

min
S

X
i2S

e2i � u �
X
i2S

vi

Clearly, this pricing problem can be formulated as a Mixed Integer
Non Linear Programmming Problem similar to the single-source
regression models.
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Pricing as a mixed integer quadratic

min

nX
i=1

ti �

nX
i=1

vihi

s.t.ei � jy � βtxi j �M (1� hi );8i (12)

ti � e2i ; 8i = 1; : : : ;n ; (13)

hi 2 f0; 1g; 8i = 1; : : : ;n ;

ei 2 R+; 8i = 1; : : : ;n ;

βk 2 R; k = 0; : : : ; d � 1:

where hi = 1 i� i 2 S .

COLUMN GENERATION...
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To be continued...

✠ Behavior of CG...

✠ Use of norm-based residuals.

✠ Notion of MultiSource GCoD... Computation?

✠ Adapt to study Structural Changes in Time Series.

✠ ...



Thank you!

vblanco@ugr.es
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