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Recently, the claim was made that cracks in silicate glasses propagate by the nucleation, growth, and
coalescence of cavities at crack tips, which is the same way as in metals but at a much smaller scale. This
hypothesis for crack growth is based in part on the measurement of surface displacements near the tip of an
emerging crack, which is the point at which a crack front intersects the side surface of the specimen. Surface
displacements measured by atomic force microscopy were less than theoretically predicted. The difference
between the theoretical and experimental displacements was attributed to a plastic zone surrounding the tip of
the moving crack. In this paper, we show that the theoretical analysis used earlier was based on an incorrect
assumption about the functional dependence of the displacement with distance from the crack tip. We use a full
three-dimensional finite element analysis combined with an asymptotic solution of the crack geometry to
obtain a solution to the surface displacement problem. We show that the calculated displacements are fully
consistent with those experimentally measured by using an atomic force microscope. No divergence from
elastic behavior is observed. Our results support the view that crack propagation in glass is entirely brittle. No
evidence for plasticity at the crack tips is obtained.
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I. INTRODUCTION

In several recent papers, experiments were carried out on
silicate glasses to monitor surface displacements in the vicin-
ity of crack tips. Because of its high resolution, the atomic
force microscope �AFM� is ideal for this purpose. Two kinds
of experiments were carried out. In one, crack-tip opening
displacements were measured at some small distance from
the crack tip;1,2 in the second, displacements were measured
normal to specimen surfaces near the point of intersection of
the crack front with the side surface of the specimen.3 From
these measurements, the investigators concluded that surface
displacements near the crack tip were not consistent with
those expected if the deformation was entirely elastic. They
attributed this discrepancy to the existence of a zone of in-
elastic or plastic deformation in the vicinity of the crack
tip.1–3

The authors of Ref. 3 also reported cavity formation at the
tips of propagating cracks and claimed that the main mecha-
nism of crack growth in silicate glasses was by the nucle-
ation, growth, and coalescence of cavities at crack tips in a
glass. Data supporting this view were obtained by observing
the tip of a moving crack with an AFM. The data collected
suggested that the size of the cavities in a lithium alumino-
silicate glass was about 20 nm in length and 5 nm in height.
The depth of the cavities could not be determined with the
AFM.

The conclusion that inelastic or plastic process zones sur-
round crack tips in a glass is in conflict with earlier theoret-
ical and experimental results on the nature of deformation
near crack tips in glasses and other brittle ceramics.4,5 By
using transmission electron microscopy, investigators were
able to show that cracks in sapphire, silicon, germanium,

silicon carbide, and SiAlON propagated at room temperature
without the generation and movement of dislocations from
the crack tips.4,6–10 When some of these materials �sapphire,
silicon� were fractured at high temperatures, dislocations
were easily observed at the crack tips, suggesting that if the
dislocations were present at room temperature, they, too,
would have been easily seen. Silicate glasses do not deform
by dislocation motion, but because the type of bonding in
silicate glasses is similar to that in the materials examined in
Refs. 4 and 6–10. The authors of Ref. 4 concluded that the
fracture of silicate glasses also occurs without the interven-
tion of plastic deformation.

In the present paper, we address the problem of plastic
deformation near crack tips in silicate glasses. In particular,
we examine the magnitude of specimen surface displacement
uz, near the tip of an emerging crack, i.e., the point at which
the crack front intersects the side surface of the specimen.
Displacements obtained through a three-dimensional finite
element analysis are compared to experimentally determined
displacements measured by atomic force microscopy.3 Our
finite element analyses are consistent with those displace-
ment measurements.3 In particular, the displacement is finite
at the crack tip, which is in contrast to a theoretical solution
given in Ref. 3. The agreement between the finite element
calculation and the AFM measurements suggests that the
crack-tip displacements in the glass used in Ref. 3 can be
rationalized in terms of elastic processes near the crack tip.
There is no need to invoke the idea of nanoscale plasticity to
explain the results.

We do not address the question of cavity formation in this
paper. This topic has been addressed in other
publications,11–13 wherein AFM data on fracture surfaces
were presented to illustrate that no cavities can be detected in
silicate glasses. In this paper, we just deal with issues related
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to the elastic solution of the surface displacement near an
emerging crack and its relationship to the possibility of plas-
tic deformation at the crack tips in a glass. We will show that
the conclusion made in Ref. 3 that plastic deformation occurs
at the crack tips in a glass is a consequence of a mistaken
assumption about the dependence of surface displacement uz
on distance r from the crack tip. With the correct function-
ality, no divergence from elastic behavior is observed.

II. REVIEW OF EARLIER WORK ON DEPRESSIONS
NEAR CRACK TIPS

Célarié et al.3 measured the height profile of the free sur-
face near the tip of a growing crack by using an atomic force
microscope. The glass was a lithium aluminosilicate glass
with unspecified composition and manufacturer. Double-
cleavage drilled-compression specimens14–16 �DCDC� �Fig.
1� were used in these studies because they provided a stable
platform for measuring crack-tip profiles by AFM. Measure-
ments were made on surface A �Fig. 1� within the square
surrounding the crack tip.

Profile measurements near the crack front emerging from
surface A of the DCDC specimen resulted in the topography
shown in Fig. 2. A height profile along the x axis �along the
crack plane� can be seen in Fig. 2�a�; a profile along the y
axis is shown in Fig. 2�b�. The crack-tip position, x0 and y0
in Fig. 2, is identified by the vertical dashed-dotted lines.

The authors of Ref. 3 derived a relationship for surface
displacements uz lying normal to surface A in Fig. 1:

uz = z − zo = − 2 cos��/2�B�KI/�E�2�r� , �1�

where r and � are polar coordinates originating at the crack
tip, E is Young’s modulus, v is Poisson’s ratio, and B is the
thickness of the specimen. These parameters have well-
known values in Eq. �1� and are not determined by fitting
procedures. The parameter zo is the position of the surface.

Equation �1� was not used for any of the discussions in
Ref. 3 Instead, the authors assumed that the displacement
had a 1 /�r dependency and fitted an equation with this de-
pendency, uz=−B /�r, to the data shown in Fig. 2. The pa-
rameter B bears no relationship to the coefficient of 1 /�r in
Eq. �1�. It is purely an empirical constant of the fit.

The empirical curve is given by the dashed line for x
�xo and y�yo, where xo and yo are the zero points for the x
and y axes, respectively. The curve matches the experimental
data over a wide range of the data. However, in the region
around the zero point, the empirical and experimental curves
do not match. The differences between the measured dis-
placements �solid curves� and the calculated displacements
�dashed curves� in Fig. 2 were attributed to plastic deforma-
tion near the crack tip.3

Figure 3 gives a comparison of the measured displace-
ments with the calculated displacements, uz=B /�r, on a log-
log plot. The calculated displacements are obtained by fitting
the equation to experimental data for r�rc. The location rc
at which deviations from the straight line occur is interpreted
in Ref. 3 as the radius from the crack for plastic deformation.
Depending on the polar angle � from the crack tip, a plastic
zone is believed to extend from 20 to 100 nm from the crack
tip.

Before proceeding with our finite element analysis of the
depression near an emerging crack, some additional com-
ments on Eq. �1� are necessary. Equation �1�, which was
derived by using plane stress conditions, is not applicable to
the problem it was intended to solve. The equation yields an
infinitely negative displacement at the crack tip when this
line is approached along �=0. However, if the crack tip is
approached along �=�, Eq. �1� yields uz=0. Thus, the com-
patibility condition is violated. Two extremely different dis-

FIG. 1. The DCDC specimen. The square surrounding the right-
hand crack tip shows the area that was scanned with the atomic
force microscope. The parameter p is the compressive stress applied
to the ends of the specimen. The crack surface is normal to surface
A and the crack front makes an angle � to surface A. The displace-
ment uz is measured at the crack tip on surface A �within the square
at the crack tip�.

FIG. 2. Height profile measured around a crack tip �Ref. 3�.

FIG. 3. Comparison of measured displacements uz with calcu-
lated displacements, uz=B /�r, where B is a constant of the fit.
Logarithmic curves of uz are plotted as a function of the logarithm
of the distance from the crack tip. The measured displacements are
given by the solid curves; the calculated displacements are given by
the dashed straight lines. At distances from the crack tip greater
than a critical value rc, the measured and calculated displacements
overlap. �a� Displacements along y=0; �b� displacements along x
=0.
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placements of the same point, r=0, are impossible because
displacements must be continuous even in stress singulari-
ties. This is the meaning of the fundamental compatibility
condition, which is valid for cracks under plane strain and
plane stress conditions, which is in contrast to the evaluation
in Ref. 3 �for this problem, see the review article by Sih17�.

III. ASYMPTOTIC SOLUTIONS OF CRACK FRONT
INTERSECTIONS WITH A FREE SURFACE

The deformation state at the surface of finite bodies is
highly three dimensional, which means that a simple two-
dimensional plane stress approximation of the strain fields
around the crack tip is bound to be incorrect in the vicinity of
the crack tip. Descriptions of cracks intersecting free sur-
faces are well known in theoretical fracture mechanics for
both straight and inclined crack fronts. Several studies deal
with the asymptotic analyses that provide exact solutions of
displacements for the vicinity of the crack-terminating
point.18–23 From an asymptotic analysis, the near-tip side-
surface displacements uz depend on the distance r from the
crack tip by the following power law relationship:

uz � r�, � 	 0. �2�

Up to four singularity exponents ��1 ,�2 ,�3 ,�4� can exist
for cracks depending on the type of loading. We calculated
�n for all the cases of loaded cracks by using the techniques
discussed in Refs. 21, 22, and 24 and found that 0
�n
1.
Thus, the power law exponent, �=−0.5, used in Ref. 3 falls
outside the range predicted by Eq. �2� and, consequently, is
not consistent with earlier asymptotic analyses of this kind of
problem.

To determine the terminating angle, DCDC tests on a soda
lime silicate glass were performed. After propagating the
crack by about 4 mm, the specimens were unloaded and
fractured by pressing a large sewing needle into the hole. The
glass used was B270 from Schott, Mainz. The diameter of
the sewing needle exceeded that of the hole by 10%. The
crack contour of the DCDC test was clearly visible under an
optical microscope. Crack-terminating angles in the range of
approximately 50° 
�
73° were observed. Figure 4�a�
shows a part of the crack front near the side surface. The
crack-terminating angle is �=63° in this case. The curved
crack front is a consequence of a reduction in the stress in-
tensity factor in the surface region �see Fig. 4�b��, resulting
in reduced crack growth there. We used a terminating angle
of 60° in the finite element calculations given below. As will
be discussed below, the surface displacements calculated by
using this angle are consistent with the AFM displacements
measured in Ref. 3.

The proportionality factor in Eq. �2� is governed by the
special specimen geometry and loading conditions and can-
not be obtained by an asymptotic analysis. Therefore, the
proportionality factor has to be numerically determined. The
exponent �, by contrast, can be theoretically determined;21,22

it exclusively depends on the crack-terminating angle �. To
determine the proportionality factor, a three-dimensional fi-
nite element study was carried out. The finite element analy-
sis was also used to determine the exponent �. The mesh for

the finite element analysis was fine enough, so that the value
of � determined by the finite element analysis was equal to
the theoretical value of � to within a small experimental
scatter.

IV. THREE-DIMENSIONAL ELASTIC FINITE ELEMENT
STUDY

For the finite element computation, a crack in the DCDC
specimen �Fig. 1� was modeled with c /R=4, H /W=0.1, and
R /H=0.25. The specimen thickness B was chosen as B /W
=0.2, resulting in a square cross section of the bar from
which the specimen is made. We used 5600 elements with
27 000 nodes to model 1/8 of the specimen. The crack-tip
region was modeled by collapsed two-dimensional elements.
Computations were carried out with ABAQUS, Version 6.2,
which provides the displacements uz as well as the individual
stress intensity factors KI and KII.

In this context, it should be emphasized that it was not the
aim of our analysis to model the displacement behavior at
the crack-terminating point exactly. This seemed not possible
to us because of the extremely large number of elements
necessary. Several sizes and types of elements over the speci-
men thickness were chosen. To reach the asymptotic solu-
tion, we sequentially decreased the size of the near-tip mesh
region until the displacement exponent � was close to the
exact value obtained from asymptotic analyses.21,22 The ele-
ment size continuously decreased while approaching the free
surfaces. The two outer elements were drastically reduced to
1/100 and 1/10 of the smallest element of the bulk material.
We assume that the material of analysis is homogeneous and
isotropic at all levels of investigation.

Young’s modulus for the finite element analysis was arbi-
trarily chosen as E=1, the Poisson ratiov was chosen as v
=0.25, and the applied compressive stress p was chosen as
p=1. The x ,y coordinate system in Fig. 1 has its origin at the
crack tip, i.e., xo=yo=0.

The numerical results of our analysis are plotted in Figs. 5
and 6. The inset of Fig. 5�a� shows the curved crack approxi-
mated by straight segments. The outer part of the crack in-
tersects the free surface with an angle of � ��=90° corre-

FIG. 4. �a� Crack contour at the free side surface, y=0. �b�
Theoretical variation in the stress intensity factor �expressed by the
geometric function F�K� along a straight crack, �=90°. At the
surface �circles�, the results are doubtful because of change in the
singularity type of stresses.
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sponds to a straight crack�. The intermediate part of the crack
was modeled as a straight line with an angle of ��+90°� /2.
In a short unpublished study, we found that the near-tip dis-
placements uz were independent of changes made in the
shape of the crack front in the inner regions of the specimen.

The uz displacements at the free surface are shown in Fig.
5�a� for an angle of �=60°, y=0. As the angle � increased
�not shown in Fig. 5�a��, the same displacement behavior
was found but at slightly greater distances from the tip �Fig.
5�a��. In Fig. 5�b�, the differences in displacements, �uz
=uz�x�−uz�0�, are plotted for distances from the tip that are
comparable to the region of measurement in Ref. 3.

Figure 6 illustrates the differences in displacements along
the y axis, i.e., for x=0. The near-tip displacements of Figs.
5�b� and 6 were fitted for small �x ,y� by a power law rela-
tionship according to Eq. �2�, which is now in the following
normalized form:

uz
E

�p�W
= Ax,y� �x,y�

W
��

, �3�

where Ax results from a fit in the x direction and Ay results
from that in the y direction. The exponent � numerically

found from the fitting procedure was �=0.41 for x=0 and
�=0.43 for y=0, which are in excellent agreement with the
theoretical result of 0.42.22 This may be considered an indi-
cation of a sufficiently fine finite element mesh, one that is
comparable to the experimental results in Ref. 3.

The elastic displacements given in Eq. �3� are not singu-
lar. They are root shaped in the +x and �y directions since
��0. In the wake of the crack �y=0,x0�, the near-tip
behavior is roughly linear, uz	−x. From these results, we
can conclude that the angular function of the root-shaped
displacements disappears for y=0, x0 or is at least signifi-
cantly smaller than for the two other directions �i.e.,A−x
�Ax�. Equation �3� is also continuous through the origin and
hence satisfies the compatibility conditions.

V. COMPARISON OF FINITE ELEMENT RESULTS WITH
ATOMIC FORCE MICROSCOPY MEASUREMENTS

The finite element results, which are summarized by the
near-tip relationship in Eq. �3�, can be used to predict the
experimental displacements uz. The stresses at the ends of
the specimen and the crack length are not explicitly given in
Ref. 3, but we are able to determine an effective compressive
stress p that causes KI=0.43 MPa�m, at which the experi-
ments were performed. For the crack length of c=2 mm
�c /R=4� used in our finite element model, this corresponds
to p
70 MPa. The displacements computed for 2W
=40 mm, E=70 GPa, and �=0.25 are shown in Figs. 7�a�
and 7�b� as solid curves. Both the finite element analysis and
the experiments from Ref. 3 show the same shape for the
distribution of uz as a function of the distance from the crack
tip. Since 0�1, the displacement profiles must exhibit a
root-shaped uz dependency with an infinite steepness at the
crack tip.

Referring now to Fig. 7, for small distances from the
crack tip, good agreement between measurement and finite
element computations was found, especially in Fig. 7�a�,
where the �=60° curve follows the experimental curve over
most of the graph, provided we ignore the waviness of the
actual AFM data, which is due to surface roughness. To get a
better comparison between the theoretical curves in Fig. 7
and the curves determined by AFM, the apparent surface
noise due to roughness has to be added to the smooth theo-
retical curves in Fig. 7. This is done in the Appendix, where
we show that when compared in this manner, the theoretical

FIG. 5. �a� uz displacements obtained for �=60°; �b� displace-
ment very close to x=0.

FIG. 6. Representation of the differences in displacements,
�uz=uz�y�−uz�0�, along x=0 in the region of measurement ob-
tained for �=60°.

FIG. 7. Comparison of the finite element results for �=60°
�solid curves� with the measured surface displacements from Ref. 3
for K=0.43 MPa�m: �a� line y=0; �b� line x=x0.
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and experimental curves show great similarity. Figure 7�b�
only qualitatively follows the experimental data because the
experimental curves seem to deviate from the finite element
solution within the limits of the graph.

There is a significant difference in the trend of uz along
y=0 for a distance of x−x0−350 nm �Fig. 7�a��. At first,
the measured displacement increases in the same way as the
computed displacements. Then, after about 350 nm, the mea-
sured displacement rapidly decreases compared to the calcu-
lated displacement. In our opinion, this deviation represents
the influence of an open crack. This is schematically illus-
trated in Fig. 8. For a scan along line AB �Fig. 8�a��, the
probe tip can enter the crack opening, which is to the left of
the crack origin �xo ,yo�, giving a superposition of true dis-
placements uz and a contribution that arises from the crack
opening. The open crack results in larger depth displace-
ments since the sensor with a finite radius feels the open
crack as a surface depression �Fig. 8�c��. If R denotes the
sensor radius and � is the crack opening displacement, the
additional depth h caused by the open crack for �R is

h = R − �R2 − �2 �
�2

2R
, �4�

with the approximate expression valid for ��R. In the near-
tip region, the crack opening displacement is given by

� = C�x0 − x��, x  x0, �5�

as shown in Fig. 8�a�. Combining Eqs. �4� and �5� gives an
approximation for the measurable apparent depth displace-
ments:

uz,measured = uz�x� −
C2

2R2 �x0 − x�2�. �6�

For a scan along line AB �Fig. 8�a�� for x−xo�0, the
correct surface displacements �dashed curve in Fig. 8�b�� are
obtained if the scan probe stays on the specimen surface. If
the probe enters into the crack, then an experimental scan
along line AB for x−xo0 gives a superposition of true dis-
placements uz and a contribution that arises from the crack
opening. The open crack results in larger depth displace-
ments since the sensor with a finite radius feels the open

crack as a deep surface depression �Fig. 8�c��.

VI. DISCUSSION

In this section, we compare the two theoretical predictions
of surface displacement with the AFM data presented in Ref.
3. Neither Eq. �1� nor the finite element analyses �Eq. �3�� are
fits to the AFM data. They are both a priori calculations,
which are based on theoretical considerations. Both predic-
tions contain constants, such as Young’s modulus and Pois-
son’s ratio, that are physically based; neither contains an un-
determined constant that has to be evaluated from the data.
Therefore, both theories should be able to predict the dis-
placement around the crack tip without further modification.
We show that the predictions of Eq. �1� are about 4 orders of
magnitude higher than the AFM measured displacements
near the crack tip. By contrast, the prediction by the finite
element analysis is only about 30% different from the mea-
sured displacement. The possible reasons for the difference
in the case of the finite element analysis are discussed.

We also discuss the fitting procedure used in Ref. 3 to
describe their AFM data. We note that the fitted curve has no
basis in theory and its extrapolation beyond the region of the
fit can have serious implications regarding the zero-point of
the fit. Because minimization of the error to obtain the “best”
fit of the curve to the data requires movement of the zero-
point of the fitted curve, the origin selected by the fit is not
necessarily at the same location as the crack tip. In the case
of Ref. 3, we suggest that the fitting procedure used by the
authors place the origin of the fit into the wake of the crack,
which is about 100 nm into the open crack, so that the dis-
placement reported in Ref. 3 as a plastic zone was, in fact,
the elastic depression on the wake side of the crack tip.

A. Theoretical equations

Equation �1� contains no free parameters that can be used
in a minimization procedure to obtain a better fit of the equa-
tion to the data. All the quantities in Eq. �1� are either speci-
men dimensions or well-known physical constants. In order
to check the equation against the AFM data, displacements
have been computed for �=0 �along the x axis�, r1
=100 nm and r2=500 nm. These distances are within the
range of the measured displacements �Fig. 2�. By introducing
these geometrical data into Eq. �1� and using B=4 mm, KI

=0.43 MPa�m, E=70 GPa, and v=0.25 as the test data,
the z displacements at the two locations are uz1=−15.2 �m
for r1 and uz2=−6.8 �m for r2. The computed difference in
the displacements between these two locations is �uz=uz2
−uz1=8400 nm. For the same distance in the y direction, one
obtains 8400�2 nm�6000 nm. The measured difference
between r1 and r2 is 0.9 nm �as indicated by the difference
between the two circles in Fig. 9�. Thus, the prediction and
measurement differ by a factor of approximately 9000,
which is almost 4 orders of magnitude. These values are not
shown in Fig. 9 because the scale of the calculated displace-
ment is so much larger than the scale of the measured dis-
placement. This result emphasizes the inadequacy of Eq. �1�
as a predictor of the displacement in the vicinity of a crack
tip.

FIG. 8. Influence of the crack opening displacement on the mea-
sured surface displacement uz.
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Following a similar procedure for the finite element
analysis along the crack plane with �=60° �Fig. 7�a�� gives
the difference, �uz=uz2−uz1=0.68 nm, which is comparable
to the measured difference of 0.9 nm. For the surface dis-
placements perpendicular to the crack plane �Fig. 7�b��, the
calculated displacements are about 30% higher than the mea-
sured displacements. While not very large compared to the
deviation calculated for Eq. �1�, the deviations have a num-
ber of possible causes. First, the result presented in Fig. 1
represents just one scan of a surface containing an emerging
crack. As the crack moves along, the AFM image of the
crack will change its appearance from point to point, prima-
rily as a consequence of surface roughness. If some “aver-
age” image of the depression could have been obtained, it is
possible that the agreement of the finite element analysis
with the AFM image would be even better than the estimate
given here.

Surface roughness is important in the measurement of the
surface depression. The rms roughness reported in Ref. 3 is
0.25 nm, which means that 95% of the measured surface
heights lie between �0.50 nm. This height difference of
about 1 nm is comparable to the magnitude of the depres-
sions shown in Fig. 1 and will affect the final shape and
magnitude of the crack-tip depression. The effects of rough-
ness could be removed from the data shown in Figs. 2 and 3
by subtracting the original position of the specimen surface
from the displaced position. Displacement data obtained in
this manner should be independent of the surface roughness.

B. Curve fitting

1. Least-squares procedure

In Ref. 3, the authors fitted their experimental data with
the following function: uz=−B /�r. The functional depen-
dence of the distance from the crack tip, r, was not justified
in their paper, although it had the same functional depen-
dence as Eq. �1�. Interestingly enough, the equation fits the
experimental data very well, passing right through the
middle of the data. The authors used the fit to obtain the
position of the crack tip, xo, which required an extrapolation
from the region of the fit to the point at which uz approaches
negative infinity. The value of xo is then used to establish the

width of the nonlinear zone, which is identified as a plastic
zone in Ref. 3

The problem with the procedure used in Ref. 3 is that the
fitting curve is extrapolated beyond the range of the data.
This extrapolation procedure might be justified if the func-
tional form used for the fit had theoretical support, but it
does not. In fact, the fitting exponent used by the authors
falls outside of the theoretically acceptable range for surface
displacements surrounding an emerging crack, �=0–1.21,22

Because of this problem, one has to be cautious about using
the value of xo established by this fit. Later in this paper, we
will present an argument that the extrapolation used in Ref. 3
placed the origin approximately 100 nm behind the tip of the
crack, which is almost exactly equal to the claimed size of
the plastic zone in Ref. 3.

2. General least-squares fit

Before discussing the fit by Célarié et al.,3 we perform a
more general fit to the experimental data by using three fit
parameters. The first is the crack-terminating angle, which is
represented by the corresponding exponent � in the alumino-
silicate glass. Instead of fixing the value of � at −1 /2, as was
done in Ref. 3, � is now a variable of the fit. The second
parameter is the exact location of the crack tip �i.e., the value
of xo�. The third parameter is the minimum value of the
displacements at x=xo, i.e.,uz�xo�.

Since the measurements for y=0 show a monotonically
increasing curve with continuously decreasing steepness, it is
possible to fit the measured data by arbitrary functions of the
following type:

uz = Co + C1�x − xo�n ⇒ �uz = C1�x − xo�n, n � 0, n  1

�7a�

with the location xo taken as a fit variable.
For the displacements along the y axis, it is clear a priori

by symmetry arguments where the minimum is. Therefore,
the fit curve does not contain an unknown, yo,

uz = Do + D1yn ⇒ �uz = D1yn, n � 0, n  1. �7b�

Equations �7a� and �7b� include the theoretical solution with
n=�, as well as the assumption in Ref. 3 that n=−1 /2. That
exponent n, which simultaneously yields the best fit for two
scanning lines, y=0, x�xo and x=xo, was considered to be
the solution to the fit problem.

The best exponent was found to be n=�=0.39. This value
corresponds to �=57°. The xo value found by this procedure
is shifted by about 35 nm to the right of the fit in Ref. 3. This
is already taken into account in Fig. 10�a�. Figures 11�a� and
11�b� represent the same fit on a log-log plot. There is no
indication of a plateau due to a plastic zone around the crack
tip in Figs. 11�a� and 11�b�.

Some general comments concerning the fit are in order.
First, the constants of the least-squares fit are close to those
used by the finite element analysis for which �=0.42 and
�=60°. The fit to the AFM data are better for the least-
squares fit than for the finite element analysis, which is ex-
pected since by definition, the error to the particular data set
is minimized to obtain the best fit. Does this mean that the

FIG. 9. Difference in displacements �uz between locations: x
−xo=100 nm and x−xo=500 nm. The theoretical prediction based
on Eq. �1� of 6000 nm is much larger than the measured displace-
ment difference of 0.9 nm.
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least-squares fit is better than the finite element analysis in
expressing the depression around a crack tip? Not necessar-
ily, since the fit given here is only for a single set of AFM
data. As the crack moves, the AFM image will change. If one
considers scatter in the AFM image due to movement of the
crack and surface roughness, the finite element analysis
probably gives a better description of the mean surface dis-
placement than the least-squares fit of a single image.

3. Application of the least-squares fit to the finite element analysis
results

In this final section, we directly compare the finite ele-
ment analysis to the fitting technique used by Célarié et al.3

to obtain the zero position of the crack tip. We will assume
that the finite element analysis provides a correct, unbiased
description of a depression caused by an emerging crack in a
homogeneous, isotropic material, such as a commercial
glass. In the finite element analysis, the position of the origin
and the shape of the depressed area are known and charac-
terized. We then perform a least-squares fit of the equation
uz=B /�r �Ref. 3� to the surface displacements obtained from
the finite element analysis. Following the same procedure as
used in Ref. 3, only the displacements to the right of the
crack origin in Fig. 7�a� are used in the least-squares fit
analysis.

The results of this calculation are shown in Fig. 12. The
profile of the depressed area around the crack tip from the
finite element analysis is given by the solid line to the left of
the origin and by the solid curve to the right; it is the same
profile shown in Fig. 7�a�. The + symbols are the points on

the finite element curve that were used for the least-squares
fit. The least-squares fit �assuming uz	1 /�r� is given by the
dashed curve in Fig. 12.

First, we note that the dashed curve and the solid curve
are almost congruent within the data set. The main difference
between the two curves is the location of the zero points. The
zero point for the finite element analysis is at zero �by defi-
nition�. The zero point for the least-squares fit lies 101.1 nm
to the left of the crack origin given by the finite element
analysis. Therefore, the crack origin, which is estimated from
the least-squares fit, actually lies in the wake of the crack.
Any measured displacement in this wake represents the elas-
tic depression of the specimen surface behind the crack tip. It
does not represent the plastic deformation near the crack tip,
as was suggested in Ref. 3. The interpretation in Ref. 3 oc-
curs because the functionality of the fitted curve is incorrect.
Fitting the curve to the data requires an extrapolation of the
curve beyond the region of the data, resulting in a crack-tip
position that is off by about 100 nm.

VII. SUMMARY

Three-dimensional finite element computations were car-
ried out for DCDC specimens made of glass. The surface
displacements uz were computed for the free surface near a
crack tip. The analysis was performed under the assumption
of a pure linear-elastic material behavior. The comparison
between our calculations and experimental results from lit-
erature was consistent with the hypothesis that the material
in the vicinity of crack tips in silicate glasses behaves in a
linear-elastic fashion. The results are not consistent with the
premise that the crack-tip material behaves in a nonlinear or
“plastic” fashion.

We also explored the consequence of fitting the AFM data
from Ref. 3 with power law functions. Asymptotic analysis
solutions for displacements in the vicinity of the crack-
terminating point have the form uz	r�, where �	0. The
finite element analysis yields values of � that are a function
of the crack-terminating angle � and fit within the acceptable
range for �. Along the projected crack plane, �=0, the value

FIG. 10. Fitting curves for uz: �a� fit according to Eq. �7a� along
y=0; �b� fit by Eq. �7b� along x=x0.

FIG. 11. These curves represent the same set of data as in Fig.
10 but in a logarithmic format.

FIG. 12. A comparison of the finite element analysis results with
the technique used in Ref. 3. The crack is advancing from the left to
the right. Note that xo for the least-squares fit lies 101.1 nm to the
wake side of the advancing crack. The equation gives the displace-
ment as a function of x.
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of �=0.42 for �=60° is obtained from the finite element
analysis. If a general power law function is fitted to the AFM
displacement data, a value of 0.39 is obtained for �, which is
close to the value obtained from the finite element analysis.
The value of �=0.39, in turn, yields a value of 57° for the
angle �, an angle that is similar to the value of 60° measured
on a soda lime silicate glass.

If � is forced to take on a value of −0.5, as in Ref. 3, and
is fitted to the displacements from the finite element analysis,
�=0, the resulting equation fits the displacements very well
within the range of the data; however, in projecting the equa-
tion out of the range of the data, we find that the crack origin
xo now lags about 100 nm behind the actual crack origin, as
defined by the finite element calculation. We suspect that the
same thing happened in Ref. 3. A consequence of this pro-
cedure is that the displacements measured by the AFM
within the region behind the crack tip represent not a plastic
zone but the elastic displacements on the trailing edge of the
crack.
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APPENDIX

As noted in Sec. IV, the data resulting from the AFM
surface scan do not exactly correspond to the expected the-
oretical curve. There are two effects that contribute to this
difference. First, the surface is never perfectly flat, so re-
sidual relief in the surface intersected by the crack front will
affect the shape of the depressed area around the crack tip.
Second, electronic noise from the microscope always yields
a slight jitter to the image, which is noticeable at high reso-
lutions. The combined result of these effects is an effective
roughness of the surface, which is superimposed on the the-
oretical displacement caused by the stress field of the crack.
The sum of these two effects �apparent surface roughness
and displacement caused by the crack tip� is what the AFM
detects.

When comparing experimental and theoretical results, the
effect of this surface roughness has to be taken into account
to see whether the theory is in agreement with the observa-
tions. Thus, for the theory laid out on the present work, a set
of simulations was carried out to determine what the ac-
quired AFM images should look like in practice.

The exact procedure used is as follows. First, the rms
values for the original surface and the electronic noise are
estimated. For each of these values, a noise set with the
corresponding rms value as its standard deviation is gener-
ated. The chosen method for noise generation was successive
random addition with H=0.5 as the roughness exponent.25

Each noise set is equivalent to a nonpersistent Brownian ran-
dom walk.

The base line of each generated noise set, which is calcu-
lated by first order linear regression, is then subtracted from

it. This procedure mitigates the influence of long wave-
lengths in the generated noise and removes any dc �constant�
component on it. This is expected for a polished surface
�polishing removes long-range, long-amplitude waviness
from the surface�, as well as a very common step in AFM
data processing, usually referred to as “flattening” of the
data. The rms value of the resulting sets can be adjusted by
scaling each of them by an appropriate constant.

The “surface” noise is superimposed on the theoretical
curve �Fig. 7�a�� to approximate the real surface profiles. The
data are then convoluted with the tip shape �a spherical tip
was assumed�, so that the effects of the finite size of the tip
are taken into account. Finally, the “electronic” set of noise
from the AFM is added. The result is what the surface is
expected to look like when scanned with an AFM if the
underlying theory is correct.

Based on what is known of the data from Ref. 3, the tip
radius was assumed to be 10 nm, and the final rms value of
the roughness was assumed to be about 0.1 nm. This rough-

FIG. 13. Superposition of noise on the theoretical function for
the surface displacement near a crack tip penetrating through a free
surface. The theoretical curve is for a crack making an angle of 60°
with the external surface. The tip of the theoretical curve is indi-
cated by the dotted line.

FETT et al. PHYSICAL REVIEW B 77, 174110 �2008�

174110-8



ness was assumed to contain both the noise due to surface
roughness and the electronic noise of the AFM. Both of these
are usually contributors to the measured surface roughness
when using an AFM to measure roughness. It is worth noting
that, for the chosen range of observation �about 1 �m� and
tip size, the influence of the tip shape was found to be neg-
ligible. In practical terms, this means that it is unnecessary to
distinguish between the two rms values �surface and elec-
tronic� as long as the total rms value is kept constant.

The results of eight representative simulations are sum-
marized in Fig. 13, which are in the curves labeled A−H.
The original theoretical curve is also included for compari-
son. A vertical guide line is drawn for x=xo, which helps
identify where the origin is in the simulated data. The simi-
larity between these results and the original experimental
data in Fig. 2 is evident. We therefore conclude that the
simulations are in good agreement with the experimental re-
sults.
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