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Abstract

This paper presents a numerical method based on a two-and-a-half dimensional (2.5D) boundary element-

finite element (BEM-FEM) coupled formulation to study noise and vibration from underground structures.

The proposed model properly represents the soil-structure interaction problem and the radiated noise and

vibration. The soil is modelled with the boundary element method, and the Green’s function for a fluid-solid

formation is taken as the fundamental solution to represent a solid half-space flattened by a fluid medium,

which represents the soil and the air above the ground surface. The finite element method is used to represent

structures and enclosed air volumes. The problem representation is limited to a soil-structure interface and

the ground surface does not need to be discretised. Radiated noise and vibration are determined after

the soil-structure interaction problem has been solved. We verify the proposed method by comparing the

solution with an analytical solution for the wave propagation in a fluid-solid medium. Three examples are

given to illustrate the noise and vibration radiated by tunnels. The results show that the soil-structure

interaction influences the sound pressure field above the ground surface.

Keywords: 2.5D BEM-FEM, noise and vibration, tunnels, soil-structure interaction, fluid-structure

interaction

1. Introduction

In their efforts to achieve sustainable growth many countries have implemented an efficient transportation

model to separate economic growth from the use of resources, with lower use of fuel and carbon based

systems. Several areas have therefore been modernised, including connected urban and interurban train,

metro, and tram systems. However, noise and vibration are among the most common environmental impacts

of mass transit solutions, which stem from different sources [1]. Transportation noise can indeed cause

annoyance by disrupting sleep, interfering with communication, adversely affecting health and even adversely

affecting academic performance. Some studies on general annoyance and activity disturbances show that
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train noise is more of a nuisance when there is simultaneous exposure to vibration. This is because it is

difficult to distinguish between noise and vibration and this exacerbates the annoyance from noise [2, 3].

Because transport noise pollution affects large numbers of people, railway infrastructure managers require

an assessment of the disturbances caused by transport operation and their mitigation.

Ground-borne vibration and radiated noise from underground traffic is another major environmental

concern in urban areas. The vibration propagates through the underground structure and the surrounding

soil and it is perceived directly and sensed indirectly as radiated noise. Technically-supported decisions

should be backed up by the accurate numerical modelling of acoustic and elastic waves.

The BEM is well suited to represent unbounded problems and the discretization is limited to the bound-

ary. The influence matrices of the BEM are fully-populated and its computation would involve a high

computational effort when the problem size is large. Some authors have proposed enhancements based on

the fast multipole expansion method (FMM) [4, 5] and on the accelerated BEM by the precorrected fast

Fourier transform method (pFFT) [6]. The accelerated BEM based on hierarchical matrices H and H2

allows the matrix-vector multiplication with almost linear complexity [7, 8]. Brunner et al. [9] compared

the BEM based either on the FFM and the hierarchical matrices for the Helmoltz problem, concluding

that the computation effort for matrix-vector products was significantly lower when using the hierarchical

matrices. Messner and Schanz [10] used H-matrices in the development of an accelerated time-domain BEM

for elasticity. These authors separated the far-field from the near-field by means of the hierarchical matrices.

They improved the compression of the BEM matrices by separating into a sum of H and H2 matrices. The

accelerated methodologies reduce the computational effort in order to represent three-dimensional problems

but the 2.5D formulation is preferred to study quite long invariant geometries. For this, several numerical

models based on two-and-a-half dimensional (2.5D) formulations have been proposed to account for the

longitudinally invariant geometry of structures such as tunnels.

These formulations compute the three-dimensional (3D) wave field from two-dimensional (2D) problems

with different wavenumbers [11] to avoid the computationally expensive disadvantage of 3D formulations.

Forrest and Hunt [12] are among the authors who have proposed a semi-analytical solution for the time-

harmonic displacements of a tunnel modelled as an infinitely long, thin cylindrical shell, where the soil

was represented as a homogeneous full-space. The coupled problem was solved in the frequency domain

by Fourier decomposition into ring modes circumferentially and a Fourier transform into the wavenumber

domain longitudinally. François et al. [13] presented a 2.5D coupled BEM-FEM methodology to compute

the dynamic interaction between a layered soil and structures with longitudinally invariant geometry. This

formulation uses a 2.5D Green’s function for a layered half-space, thus there is no need to discretise the free

surface and the layer interfaces. A regularised boundary integral equation is derived to avoid the evaluation

of singular traction integrals. Later, Galv́ın et al. [14] used that formulation to predict railway induced

vibrations in a tunnel embedded in a layered half-space. Moreover, Gupta et al. [15] proposed a coupled
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periodic BEM-FEM approach, where a boundary element method is used for the soil and a finite element

method for the tunnel. The tunnel periodicity is handled by the Floquet transformation to formulate the

tunnel-soil interaction problem in the frequency-wavenumber domain, and to compute the wave propagation

field in the soil. Furthermore, a windowing technique was proposed by Coulier et al. [16] to represent finite

domain dimensions in a 2.5D formulation to study SSI problems. The proposed method allowed the study

of finite insulation trenches within an invariant soil geometry.

Many works suggest radiated noise should be computed assuming that the sound receiver has no effect on

the vibration generation mechanism. Therefore, this simplification allows the decoupling of the incident wave

field and the radiated noise. Following this procedure, Nagy et al. [17] proposed a Rayleigh integral-based

method combined with the FEM to predict radiated noise in buildings from underground railway traffic.

This model was experimentally validated in a building close to a railway line in Paris and maximum sound

pressure level was found to be 75 dB. Fiala et al. [18] also suggested a numerical model to study vibrations

and radiated noise caused by underground railways. This model solves the soil-structure interaction problem

with a BEM-FEM coupled formulation using the Green’s function for the layered half-space. The acoustic

radiation problem is then computed assuming weak coupling between structural and acoustic waves. An

acoustic spectral finite element method is used to predict the radiated noise. Tadeu et al. [19] subsequently

modelled the acoustic attenuation provided by a barrier in an underground train station using a compre-

hensive coupled formulation based on the BEM and the method of fundamental solutions (MFS). In this

case, the proposed method can compute the noise without the former simplifications. Recent publications

have produced computationally feasible numerical models which can represent the ground-borne vibration

at specific sites. Romero et al. [20] presented a 2.5D BEM-FEM model to study noise and vibration within

a tunnel embedded in an unbounded solid due to a moving load. They used the BEM for the full-space

fundamental solution in elastodynamic and the FEM in fluid-acoustics and elastodynamics. The results

showed that the tunnel displacement and the air pressure inside the tunnel increase with the load speed

according to the regime defined by the wave propagation velocity in each medium. The same behaviour was

observed in the unbounded solid. However, to the best of our knowledge the radiated noise and vibration

at the soil surface from underground structures has not been studied using a coupled formulation.

This work describes a novel numerical model that can handle the above mentioned problem. The model

takes a domain decomposition approach to study fluid acoustics and solid scattering waves in a half-space

medium with an innovative BEM technique. The BEM formulation considers, as fundamental solution, a

problem where a formation composed of an elastic solid medium bounded by an acoustic fluid medium that

can be the soil as well the air above the ground surface. Therefore, the discretisation of the fluid-solid

interface is not needed and only soil-structure interfaces are modelled. The proposed methodology is used to

study the acoustic and elastic scattered wave field inside underground structures, within the soil, and above

the ground surface. The paper is organised as follows. First, the numerical model is presented, the 2.5D
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BEM-FEM fluid-acoustics formulation is described, and the Green’s function for a solid half-space bounded

by a fluid formation is discussed. The proposed method is then verified with a benchmark problem that

studies the wave propagation in fluid-solid formations. This section also analyses the convergence of the

longitudinally spatial Fourier transform. The proposed method is then used to study noise and vibration

in three examples related to the wave field radiated by a single tunnel, a twin tunnel, and an underground

station with a sound insulation screen. Finally, the conclusion section summarises the main contributions

of this work.

2. Numerical model

The numerical model is based on a coupled BEM-FEM formulation (Figure 1). The underground struc-

ture, composed by solid (Ωs) and fluid (Ωf ) enclosures, is represented by the FEM. The interface between

both enclosures is denoted as Γq. The soil domain (Ωs∞) and the air above the ground surface (Ωf∞) are

described by the BEM. The Green’s function for a fluid-solid formation presented by Tadeu and António

[21] is used as fundamental solution in the BEM. Therefore, the boundary element discretisation is limited

to the limiting interface between the soil and the structure (Γo). The coupled BEM-FEM formulation is

addressed by imposing proper conditions at both interfaces, the fluid-structure (Γq) and the soil-structure

(Γo) interfaces. The radiated wave field is computed once the displacement and traction solutions at Γo are

known.

Ωf∞

Ωs∞

Γo

Γq

Ωf

Ωs

y

x

z

Figure 1: Problem definition (figure not scaled). Solid (Ωs) and fluid (Ωf ) enclosures, soil domain (Ωs∞), air above the ground

surface (Ωf∞) and the fluid-structure (Γq) and the soil-structure (Γo) interfaces.

The 2.5D formulation computes the 3D solution in the frequency domain, assuming that the problem is

invariant in the longitudinal direction z, as the superposition of 2D problems with a different longitudinal

wavenumber (kz) in the z direction. An inverse Fourier transform is used to compute the 3D solution at a
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point x(x, y, z):

a(x, ω) =

∫ +∞

−∞

â(x̂, kz, ω)e
−ikzz dkz (1)

where a(x, ω) is the unknown variable in the frequency domain (e.g. displacement, traction or pressure),

â(x̂, kz , ω) is its representation in the wavenumber-frequency domain at x̂ = x(x, y, 0), ω is the corresponding

angular frequency, and i =
√
−1.

The Equation (1) converges and can be approximated by a discrete Fourier transform over kz. The

wavenumber sampling ∆kz defines the maximum distance z where the solution is accurately computed as

max(z) = 2π/∆kz/2. In this work, the wavenumber sampling used in this work is uniform spaced. Moreover,

the problem solution is obtained at equally spaced points with ∆z = 2π/max(kz). The computational effort

of the spatial Fourier transform depends on these parameters.

Next, the numerical methodology is discussed. First, the BEM formulation and its fundamental solution

are presented. Then, the FEM formulation for elastodynamic and fluid-acoustics are briefly described.

Finally, the coupled BEM-FEM model is obtained.

2.1. Boundary element formulation

The boundary element formulation we present considers an arbitrary boundary inside a solid half-space.

This solid half-space is bounded by a fluid medium. The solid and the fluid half-spaces are used to represent

the soil domain (Ωs∞) and the air above the ground surface (Ωf∞), respectively. The arbitrary enclosure

accounts for the soil-structure interface (Γo).

The integral representation of displacement in the frequency domain for a point xi located at the arbitrary

boundary Γo can be written as [22]:

cilku
i
k(x

i, ω) =

∫

Γo

u∗lk(x, ω;x
i)tik(x, ω) dΓ−

∫

Γo

t∗lk(x, ω;x
i)uik(x, ω) dΓ (2)

where uik and tik are the component k of displacements and tractions at the interface Γo, respectively. u
∗

lk and

t∗lk are the fluid-solid domain fundamental solution for displacements and tractions, respectively, at point x

due to a point load at xi acting in the l direction at the solid [21]. The integral-free term cilk depends only

on the boundary geometry at point xi [22].

Assuming that the boundary Γo is invariant in the longitudinal direction z, Equation (2) is expressed in

terms of integrals over the cross section of the boundary Γo, denoted as Σo:

cilku
i
k(x

i, ω) =

∫

Σo

∫ +∞

−∞

u∗lk(x, ω;x
i)tik(x, ω) dΣ dz −

∫

Σo

∫ +∞

−∞

t∗lk(x, ω;x
i)uik(x, ω) dΣ dz (3)

Equation (3) is then transformed to the wavenumber domain as (Equation 1):
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cilkû
i
k(x̂

i, kz , ω) =

∫

Σo

û∗lk(x̂, kz , ω; x̂
i)t̂ik(x̂, kz, ω) dΣ−

∫

Σo

t̂∗lk(x̂, kz , ω; x̂
i)ûik(x̂, kz, ω) dΣ (4)

The boundary cross section Σo is discretised into elements and nodes, leading to a boundary approximation

of the displacement and traction using the interpolation shape function N . Then, Equation (4) is written

as:

cilkû
i
k =

Q∑

j=1

[{∫

Σj

û∗lkN
j dΣ

}
t̂jk −

{∫

Σj

t̂∗lkN
j dΣ

}
ûjk

]
=

Q∑

j=1

[
Ĝij

lk t̂
j
k − Ĥij

lk û
j
k

]
(5)

where Q is the number of nodes at Σo, and Σj stands for the elements which contain the node j.

The system of equations for all the boundary nodes in the wavenumber-frequency domain becomes:

Ĥ(kz , ω)ûo(x̂, kz, ω) = Ĝ(kz, ω)t̂o(x̂, kz, ω) (6)

where Ĝ and Ĥ are the fully nonsymmetrical boundary element system matrices, and ûo and t̂o are dis-

placements and tractions at the interface Γo, repectively.

In this work, constant boundary elements are used. The boundary integrals are computed using an eight

point Gauss-Legendre quadrature whenever the collocation point does not belong to the integration element.

Closed forms are used to solve singular integrals when the collocation point x̂
i belongs to the integration

element. The exact expressions for the singular integrals given in References [23, 24] are used. The analytical

solution for the steady state response of a formation composed by a homogeneous solid half-space bounded

by a fluid medium subjected to a spatially harmonic load can be found in Reference [21]. This solution

relates displacement at point x(x, y, z) due to a dynamic source placed at a different point xi(xi, yi, zi) in

the fluid-solid formation (Figure 2).

The boundary element collocation method described by Equation (5) requires evaluation of the funda-

mental solution at each Gaussian integration point for sources placed at every nodal collocation point. This

procedure could be highly expensive, depending on the size of the soil-structure interface discretisation. In

this section, the Green’s function presented in Reference [21] is modified in a feasible form to carry out the

BEM collocation methodology.

The Green’s function (G) given by a spatially sinusoidal harmonic load in the z direction in the frequency

domain is expressed as the superposition of 2D problems with the longitudinal wavenumber kz varying in

the z direction:

G(x, ω;xi) =

∫ +∞

−∞

Ĝ(x̂, kz , ω; x̂i)e−ikz(z−zi) dkz (7)

where Ĝ represents the Green’s function in the wavenumber-frequency domain.

The Green’s function for the fluid-solid formation is derived by imposing compatibility and equilibrium

of normal displacements and stresses, and assuming null shear stresses, at the interface between the solid
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Figure 2: Solid formation bounded by a flat fluid medium (figure not scaled). Soil domain (Ωs∞), air above the ground surface

(Ωf∞), source point (xi(xi, yi, zi)), observation point (x(x, y, z)), solid compressional (φs,φis) and rotational (ψx, ψy , ψz ,ψi
x,

ψi
y, ψ

i
z) potentials and fluid dilatational potential (φf ,φ

i
f
).

and the fluid medium. The function can be expressed as the superposition of: (i) source terms equal to those

in the full-space (Ĝfull), and (ii) surface terms (Ĝsurf ) needed to represent the indirect wave field scattered

by the fluid-solid interface [21]:

Ĝ(x̂, kz , ω; x̂i) = Ĝfull(x̂, kz , ω; x̂
i) + Ĝsurf (x̂, kz, ω; x̂

i) (8)

The expressions for the Green’s function for the full-space (Ĝfull) are defined explicitly in Reference [25].

The source terms are obtained from compressional (φs) and rotational (ψx, ψy, ψz) potentials for a solid

full-space. The fluid dilatational potential (φf ) for a harmonic pressure load acting on an unbounded fluid

medium defines the Green’s function for the direct pressure field. The meaning of these potentials is well

established in Reference [21].

The surface terms can be expressed in the same way as those of the source terms using the potentials

φis, ψ
i
x, ψ

i
y, ψ

i
z, and φif . Each potential amplitude can be computed imposing the four stated boundary

conditions at the fluid-solid interface (y = 0):





σs
yx = σf

yx = 0

σs
yz = σf

yz = 0

σs
yy = σf

yy

usy = ufy

(9)

where superscripts s and f relate to variables belonging to the solid and fluid subdomains, respectively.
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The surface terms are given by a spatial Fourier transform in the x direction for the wavenumber kx,

which can be approximated by a finite sum of terms:

Ĝsurf (x̂, kz, ω; x̂
i) =

∫ +∞

−∞

G̃surf (kx, y, kz, ω; y
i)e−ikx(x−xi) dkx (10)

Following the approach given in Equation (10), the expressions for solid displacements due to a load acting

in the x direction are defined as [21]:





G̃surf
xx = Ea

[
Ax−ik2x

νsx
Eb +

(
−iγxCx − ikz

γx
Bx

)
Ec

]

G̃surf
yx = Ea (−ikxAxEb + ikxC

xEc)

G̃surf
zx = Ea

(
−ikzkx
νsx

AxEb +
ikzkx
γx

BxEc

)
(11)

where Ea = 1/2ρsω
2, Eb = e−iνs

xy, Ec = e−iγxy, νsx =
√
k2p − k2z − k2x with (Im(νsx) ≤ 0), and γx =

√
k2s − k2z − k2x with (Im(γx) ≤ 0). The wavenumbers related to P and S waves are kp = ω/cp and ks = ω/cs,

respectively, ρs is the solid density, and cp and cs are the propagation velocity of P and S waves in the solid,

respectively. Ax, Bx, and Cx are unknown coefficients to be determined from the conditions defined by

Equation (9). The imposition of the four boundary conditions leads to the following two systems of four

equations [21]:




−2k2x −k2z k2x − γx
2 0

−2 1 1 0

−k2s − 2ν2zx
νsx

0 2γx
−i2ρsω2

νfxµs

−i 0 i
−2ρsω

2

k2fλf







A
x

B
x

C
x

D
x



=




−2k2x
(
−k2s + 2k2x

)

−2 2(
k2s + 2ν2zx

νsx

)
−2γx

−i i




(12)

where µs is the solid second Lamé constant, λf is the fluid Lamé constant, νfx =
√
k2f − k2z − k2x with

(Im(νfx ) ≤ 0), νzx =
√
−k2z − k2x, and the wavenumber related to the fluid pressure wave is kf = ω/cf , with

cf being the fluid compressional wave velocity.

After the solution vectors A
x
, B

x
, C

x
and D

x
are computed, the amplitudes of the potentials are given

by the following expressions:





Ax = Ei
bA

x
(1) + Ei

cA
x
(2)

Bx = Ei
bB

x
(1) + Ei

cB
x
(2)

Cx = Ei
bC

x
(1) + Ei

cC
x
(2)

(13)

with Ei
b = e−iνs

xy
i

and Ei
c = e−iγxy

i

. The fluid pressure is computed from D
x
[21].
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In the same way, the fundamental solution for a load acting in the y direction is expressed through the

following equations: 



G̃surf
xy = Ea [−iAykxEb + iBykxEc]

G̃surf
yy = Ea

[
−iνsxAyEb +

(
−ik2x
γx

By +
−ik2z
γx

Cy

)
Ec

]

G̃surf
zy = Ea [−iAykzEb + iCykzEc]

(14)

where the amplitudes of potentials are defined by:



−2νsx
−k2x
γx

+ γx
−k2z
γx

0

−2νsx
−k2x
γx

−k2z
γx

+ γx 0

−k2s − 2ν2zx −2k2x −2k2z
−i2ρsω2

νfxµs

−iνsx
−ik2x
γx

−ik2z
γx

−i2ρsω2

k2fλf







A
y

B
y

C
y

D
y



=




2νsx −
(
ν2zx
γx

+ γx

)

2νsx −
(
ν2zx
γx

+ γx

)

(
−k2s − 2ν2zx

)
2ν2zx

iνsx

(
ik2x + ik2z

γx

)




(15)

and: 



Ay = Ei
bA

y
(1) + Ei

cA
y
(2)

By = Ei
bB

y
(1) + Ei

cB
y
(2)

Cy = Ei
bC

y
(1) + Ei

cC
y
(2)

(16)

Furthermore, solid displacements for a load acting in the z direction are obtained as follows:





G̃surf
xz = Ea

[
−ikzkx
νsx

AzEb +
ikzkx
γx

CzEc

]

G̃surf
yz = Ea [−ikzAzEb + iBzkzEc]

G̃surf
zz = Ea

[
−ik2z
νsx

AzEb +

(
−ik2x
γx

Cz − iγxB
z

)
Ec

]
(17)

The amplitudes of the potentials are provided by the following system of equations:




−2 1 1 0

−2k2z k2z − γx
2 −k2x 0

−k
2
s + 2ν2zx
νsx

2γx 0
−i2ρsω2

νfxkzµs

−ikz ikz 0
−2ρsω

2

k2fλf







A
z

B
z

C
z

D
z



=




−2 2

−2k2z
(
k2z − γx − k2x

)
(
k2s + 2ν2zx

νsx

)
−2γx

−ikz ikz




(18)

thus,





Az = Ei
bA

z
(1) + Ei

cA
z
(2)

Bz = Ei
bB

z
(1) + Ei

cB
z
(2)

Cz = Ei
bC

z
(1) + Ei

cC
z
(2)

(19)
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Finally, the well-known equations relating strains and displacements, and strain and stresses are used to

calculate expressions for stress in the solid formation.

The computational effort to evaluate the BEM Equation (5) can be reduced taking into account that

the surface terms Ĝsurf (Equation (10)) are given by a Fourier transform in the x direction. In this way,

the surface terms G̃surf written in their current form do not depend on the horizontal distance between

the source and the observation point. Moreover, potential amplitudes only depend on the source location

coordinate yi and they are computed independently of the receiver position. The surface terms defined by

Equations (11), (14) and (17) are then only evaluated for a single set of sources and receivers (Figure 3).This

methodology considerably reduces the computational time. The computation of source terms Ĝfull takes

much less time than the computation of the surface terms.

Uniqueness regionFull region

⇒x̂
i

x̂

yi

y

y

x
zΩ

∞f

Ω∞s

Ĝsurf (x̂, kz , ω; x̂
i) G̃surf (kx, y, kz , ω; yi)

Figure 3: Collocation nodes (crosses) and Gauss integration points (circles) for the full region and the uniqueness region (figure

not scaled). Soil domain (Ωs∞), air above the ground surface (Ωf∞), surface terms (Ĝsurf and G̃surf ).

The proposed model only accounts for the radiation soil damping according to the Sommerfield condi-

tion. The internal soil damping could be considered through a hysteretic damping model by complex wave

propagation velocities [22]. The solution for layered soils would be obtained by the superposition of the

surface terms contribution defined for each layer interface. These terms could be expressed as the sum of

dilatational and rotational potentials of a solid layer similarly to those described in this section [26].

2.2. Finite element formulation for fluid-acoustics

The FEM wavenumber-frequency domain formulation that was previously presented by the authors in

Reference [20] is very briefly summarized in this section. The 2.5D governing equation in fluid-acoustics is

derived from the 3D formulation, assuming that the fluid subdomain is invariant in the longitudinal direction

[20]. Wave propagation within an inviscid fluid is expressed by the homogeneous Helmholtz equation [27],
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and the energy lost at the fluid boundary enclosure can be represented by a resistivity term [28]. The finite

element equation is then derived from a virtual differential of pressure δp acting on the subdomain Ωf :

∫

Ωf

δp(x, ω)∇2p(x, ω) dΩ + k2
∫

Ωf

δp(x, ω)p(x, ω) dΩ− ikβ

∫

Ωf

δp(x, ω)p(x, ω) dΩ = 0 (20)

where k = ω/cf is the wavenumber, cf is the fluid compressional wave velocity, p is the fluid pressure, and

β is the fluid absorption coefficient.

The FEM equation is addressed on the assumption that the fluid subdomain (Ωf ) is invariant along the

z coordinate. The cross section of Ωf is discretised into elements, and the pressures are approximated within

every element by interpolation shape functions. The fluid momentum equation yields a relationship between

pressure and particle displacement, involving spatial derivatives that are solved by a Fourier transform along

the longitudinal coordinate z. Then, the FEM equation is approached by [20]:

[
−(k2 − ikβ)D+ F0 − ikzF

1 − k2zF
2
]
p̂(x̂, kz, ω) = ω2ρfRûq(x̂, kz , ω) (21)

where ûq is the displacement vector at the fluid-solid interface Γq, ρf is the fluid density, and the matrices

D, F0, F1, F2, and R are properly defined in Reference [20]. The matrix ω2ρfR is the coupling fluid-mass

matrix, and relates boundary displacements at the interface Γq to pressures in the subdomain Ωf .

Finally, Equation (21) is rewritten considering an equivalent dynamic fluid matrix (F̂) as:

F̂(kz , ω)p̂(x̂, kz, ω) = ω2ρfRûq(x̂, kz, ω) (22)

where the matrix F̂ is computed for each wavenumber and frequency.

2.3. Finite element formulation for elastodynamics

The solid FEM frequency domain formulation is based on the virtual work principle [29]:

− ω2

∫

Ωs

δu(x, ω)ρsu(ω,x) dΩ +

∫

Ωs

δε(x, ω)σ(x, ω) dΩ

=

∫

Ωs

δu(x, ω)ρsb(x, ω) dΩ +

∫

Γo

δu(x, ω)f(x, ω) dΓ

(23)

where u is the displacement vector, ε and σ are respectively the strain and stress tensors, ρsb is the body

force and f is the nodal force. A variable preceded by δ denotes again a virtual change of this magnitude.

Once the displacements are approximated within every element by interpolation shape functions, the

stress and strain vectors are derived from displacements through the constitutive law of material, assuming

linear behaviour and a homogeneous medium. The spatial derivatives involved in the strain-displacement

relation are solved by means of a Fourier transform. Afterwards these procedures, Equation (23) is written

as [13]:
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[
−ω2M+K0 − ikzK

1 − k2zK
2 + ik3zK

3 + k4zK
4
]
û(x̂, kz, ω) = f̂(x̂, kz , ω) (24)

where M is the mass matrix and K0, K1, K2, K3 and K4 are the stiffness matrices. The meanings of these

matrices are well established in References [13, 29, 30].

Equation (24) is rewritten as shown below if an equivalent dynamic stiffness matrix (K̂) is considered:

K̂(kz, ω)û(x̂, kz, ω) = f̂(x̂, kz, ω) (25)

2.4. BEM-FEM coupling procedure

Equations (6), (22) and (25) are coupled under imposed force equilibrium and displacement compat-

ibility at the soil-structure interface Γo. Also, the equilibrium and compatibility of normal pressure and

displacement, and null shear stresses at the interface Γq must be ensured. These equations are assembled

into a single comprehensive system, together with the equilibrium and compatibility conditions.

Firstly, the coupling of the BEM and the FEM solid subdomains leads to an assembled system of

equations that represents the soil-structure interaction problem. Equilibrium of forces at the interface Γo is

fulfilled integrating nodal tractions according to the element shape function N:

f̂o =

∫

Γo

NT t̂oN dΓ = Tt̂o (26)

Substituting Equation (6) into Equation (26) yields:

f̂o = TĜ
−1

Ĥûo (27)

Equation (27) defines a boundary element stiffness matrix K̂o that relates nodal displacements and forces

[13]:

K̂o(kz , ω)ûo(x̂, kz , ω) = f̂o(x̂, kz, ω) (28)

Equations (25) and (28) are assembled into a global system of equations by means of the equilibrium and

compatibility conditions at the interface Γo:

D̂(kz , ω)û(x̂, kz, ω) = f̂(x̂, kz, ω) (29)

where D̂ is the coupled BEM-FEM matrix which describes the soil-structure interaction problem.

On the other hand, the load vector f̂q at the fluid-solid interface is obtained by pressure integration over

Γq [20]:
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f̂q =

∫

Γq

NTnqNp̂q dΓ = RT p̂q (30)

where p̂q is the fluid pressure at the interface Γq, and nq is the outward normal to Γq.

The coupling of Equations (22) and (29) is carried out with the imposition of equilibrium and compati-

bility conditions of normal pressure and displacement at the interface Γq, and null shear stresses. Equations

(22) and (29) are split in two parts according to the boundary subdomain definition (Figure 1). Both systems

of equations are assembled into an overall system:




D̂ss D̂sq 0 0

D̂qs D̂qq −RT 0

0 −ω2ρR F̂qq F̂qf

0 0 F̂fq F̂ff







ûs

ûq

p̂q

p̂f



=




f̂s

0

0

0




(31)

where subscript q indicates degrees of freedom belonging to the fluid-solid interface Γq, s stands for the

other solid degrees of freedom, and f represents the rest of fluid degrees of freedom. Equation (31) is solved

using a direct solver for each frequency-wavenumber step to compute the coupled fluid-solid response.

2.5. Radiated wavefield

After the interaction problem has been solved, the radiated wave field is computed by means of the

Somigliana identity. Soil displacements ûr at receiver locations Ωs∞ are computed as:

ûr(x̂, kz , ω) = Ĝ
s

r(kz , ω)t̂o(x̂, kz , ω)− Ĥ
s

r(kz , ω)ûo(x̂, kz, ω) (32)

where Ĝ
s

r and Ĥ
s

r are obtained from Equation (5) using receivers as collocation points.

Moreover, the radiated field at Ωf∞ is computed using the integral representation of the pressure for a

point xi located in the fluid formation:

p̂i(x̂i, kz, ω) =

∫

Σs

t̂∗fk(x̂, kz , ω; x̂
i)ûik(x̂, kz, ω) dΣ−

∫

Σs

û∗fk(x̂, kz, ω; x̂
i)t̂ik(x̂, kz , ω) dΣ (33)

where ûik(x̂, kz, ω) and t̂
i
k(x̂, kz, ω) are the boundary solutions, and û∗fk(x̂, kz, ω; x̂

i) and t̂∗fk(x̂, kz , ω; x̂
i) are

the fundamental solutions for displacements and tractions, respectively, at a point x̂ in the solid due to a

pressure load acting at point x̂i in the fluid.

In this case, the fundamental solution is only defined by surface terms [21]:
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



G̃surf
xf = Ea

(
−iAfkxEb + iBfkxEc

)

G̃surf
yf = Ea

[
−iνsxAfEb +

(
−ik2x
γx

Bf +
−ik2z
γx

Cf

)
Ec

]

G̃surf
zf = Ea

(
−iAfkzEb + iCfkzEc

)
(34)

where the amplitudes of each potential (Af , Bf , Cf ,and Df ) are determined by imposing the four stated

boundary conditions (Equation (9)) as [21]:




−2νsx
−ksx2

γx
+ γx

−k2z
γx

0

−2νsx
−ksx2

γx

−k2z
γx

+ γx 0

−k2s − 2ν2zx −2k2x −2k2z
−i2ρsω2

νfxµs

−iνsx
−ik2x
γx

−ik2z
γx

−2ρsω
2

k2fλf







Af

Bf

Cf

Df



=




0

0

−i2ρsω2

νfxµs

2ρsω
2

k2fλf




(35)

After solving Equation (35), each potential amplitude is computed by multiplication with the term Ei
f =

e−iνf
xy

i

.

Finally, pressure field p̂r at the fluid receivers is computed by Equation (33) as:

p̂r(x̂, kz , ω) = Ĥ
f

r (kz , ω)ûo(x̂, kz , ω)− Ĝ
f

r (kz , ω)t̂o(x̂, kz , ω) (36)

where Ĝ
f

r and Ĥ
f

r are obtained using fluid receivers as collocation points.

3. Numerical verification

The example studied in this section concerns a fluid-solid formation elicited by a spatially harmonic

varying line load buried in the solid formation (Figure 4). This problem was solved by assuming a finite solid

subdomain (Ωs) with same properties as the unbounded solid domain (Ωs∞), which were both represented

with the proposed formulation. The fluid-solid formation is excited by a harmonic point source applied in

direction y, located at source point So (0, 2). Solid displacement at receiver location R1, x = 2.0m and

y = 5.0m, and fluid pressure at receiver R2, x = 2.0m and y = −1.0m, were analysed. The analytical

solution can be found in Reference [21].

The fluid medium allows cf = 1500m/s with ρf = 1000 kg/m
3
, while the solid medium takes cp =

4208m/s, cs = 2656m/s, and ρs = 2140 kg/m
3
. The analysis was carried out in a frequency range of 2.5Hz

to 320Hz, with a frequency step ∆f = 2.5Hz. Complex frequencies were used with a small imaginary part

of the form Im(ω) = −0.7∆ω to avoid the aliasing phenomena. The effect of the complex frequency produces

a damped response with a time decay of the form e−0.7∆ωt. The effect of the imaginary part would remove

in the time response applying an exponential window e0.7∆ωt.
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R2

So

R1

y

x
zΩf∞

Ωs∞

Γo

Ωs

Figure 4: Problem discretisation (figure not scaled). Soil domain (Ωs∞), air above the ground surface (Ωf∞), solid enclosure

(Ωs), soil-structure interface (Γo), source point (So) and observation points (R1 and R2).

The solid subdomain has circular geometry, centred at the source point So. The radius of the cylindrical

inclusion was set to r = 0.05m to verified the proposed formulation with a reliable problem that allowed

fast computations without loss of validity. The limiting interface within the unbounded solid half-space

(Γo) was represented with the BEM, and the FEM was used to represent the enclosed region (Ωs). The

problem solution is defined by Equation (29). The number of boundary elements used to discretise the solid

interface was 48, enough to represent the wavelength of the shear waves and the geometry adequately. The

solid subdomain was modelled with 480 solid finite elements. The ratio between the element size and the

minimum wavelength was 7.2 × 10−4. The limiting interface at the fluid-solid formation does not need to

be discretised because the stated boundary conditions at the fluid-solid formation, defined by Equation (9)

are implicitly satisfied in the fundamental solution.

First, the surface terms of the Green’s function are analysed in order to set an appropriate wavenumber

kx interval where Equation (10) converges. Figure 5 shows the Green’s function terms G̃surf
xy , G̃surf

yy and

G̃surf
zy at receiver R1, and the pressure field σ̃fy at R2, when the source is acting in the y direction in So at

frequency ω = 314.16 rad/s. The pressure field σ̃fy is given by the following expression [21]:

σ̃fy = − i

2π

(
Ef

νfx
Dy

)
(37)

where Ef = e−iνf
xy, and Dy = Ei

bD
y
(1) + Ei

cD
y
(2) is the fluid amplitude potential computed by Equation

(15).

Figure 5 shows the surface terms represented versus dimensionless wavenumbers kx = kxcs/ω and kz =
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kzcs/ω. Superimposed on this figure we can see the dispersion curve kR = cs/cR of the Rayleigh waves with

propagation velocity cR = 2442m/s, and the dispersion curve kF = cs/cf of the dilatational pressure waves

in the fluid. The dispersion curve kC = cs/C of waves with phase velocity C is also represented. The phase

wave velocity was estimated as:

C(ω) =
ω√

k∗2x (ω) + k∗2z (ω)
(38)

where k∗x and k∗z denotes the wavenumbers where G̃surf
yy (kx, y, kz, ω; x̂0) takes its maximum value.

(a) (b)

(c) (d)

0 10.50.25 0.75

Figure 5: Real part of the Green’s function for displacements (a) G̃
surf
xy (×1014 m), (b) G̃

surf
yy (×1014 m), and (c) G̃

surf
zy

(×1014 m) at receiver R1, and pressure (d) σ̃fy (×105 Pa) at receiver R2. Dimensionless wavenumber kR (solid line), kC

(dashed line), and kF (dotted line) are also represented.

The aforementioned dispersion curves define circumferential geometric regions where surface terms reach

local maxima. Afterwards the Green’s function varies smoothly and decays to zero value. In this work, the

surface terms G̃surf were computed using 500 logarithmic spaced points for kx, from 10−6 to 106, to ensure

the convergence of Equation (10).

Figure 6 compares the analytical solution and the numerical results for solid displacement at receiver R1,

and the pressure field at receiverR2. A constant wavenumber kz = 0.4 rad/mwas assumed for the verification
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of the proposed formulation. Numerical results are in good agreement with the reference solution [21].
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Figure 6: Real (black) and imaginary (grey) parts of the analytical solution [21] (solid lines) and numerical results (circles) for

(a) horizontal, (b) vertical, and (c) longitudinal displacements at receiver R1, and (d) pressure at receiver R2, due to a vertical

load acting at So.

The 3D problem solution is given by Equation (1) as the superposition of 2D problems with different

wavenumbers kz. This equation converges and can be solved by a finite sum of terms. In order to study the

convergence, Figure 7 shows the problem solution at R1 and R2 for a range of frequencies and wavenumbers

kz , and the previous dispersion curves were also represented. The phase wave kC and the Rayleigh wave

kR dispersion curves intersect each other at the frequency fco = 118Hz. Local maxima were found around

kC at lower frequencies, after which the solution decays for wavenumbers higher than kR. Additionally,

the fluid pressure is mainly found around the region defined by kR and kF , and becomes significant from

the frequency. Thus, the convergence of Equation (1) would be ensured for wavenumbers kz higher than

kF from the frequency fco. However, the computation for lower frequencies should be extended for a few

wavenumbers until the solution decays to zero.
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(a) (b)

(c) (d)

0 10.50.25 0.75

Figure 7: Amplitude of (a) horizontal (×1012 m), (b) vertical (×1011 m), and (c) longitudinal (×1012 m) displacements at

receiver R1, and (d) pressure field (×102 Pa) at receiver R2, due to a vertical load acting at So. Dimensionless wavenumber

kR (solid line), kC (dashed line), and kF (dotted line) are also represented.

4. Applications

This section explores ground vibrations and radiated noise in three applications. First, the wave field

radiated by a single tunnel due to harmonic loads is evaluated. Next, the scattered wave field caused by the

insertion of a second tunnel is studied in a twin tunnel system. Finally, changes in sound pressure at the

free-field produced by the insertion of mitigation systems in the underground structure are assessed. In this

last example, an underground railway station with an acoustic barrier is considered.

4.1. Radiated noise and vibration generated by a tunnel

This example analyses the noise and vibration field radiated from a tunnel embedded in a homogeneous

half-space (Figure 8). Soil displacements and the sound pressure level inside the tunnel and above the ground

surface due to a harmonic load P = 2πN are studied for a maximum frequency range of fmax = 250Hz.

The soil response of this problem has previously been studied by Gupta et al. [31]. This reference has been

given to verify the conclusions obtained with the proposed methodology.
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Ωf∞
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Ωs

Ωf
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d

Figure 8: Definition of tunnel and subdomains (figure not scaled). Soil domain (Ωs∞), air above the ground surface (Ωf∞),

solid (Ωs) and fluid (Ωf ) enclosures, the fluid-structure (Γq) and the soil-structure (Γo) interfaces, tunnel depth (d) and acting

force (P ).

The tunnel is at depth d = 20m, has radius r = 3.0m and wall thickness t = 0.3m. The lining

has concrete properties with Young’s modulus E = 35 × 109 N/m
2
, Poisson’s ratio ν = 0.25, and density

ρ = 2500 kg/m
3
. The soil has a P-wave propagation velocity cp = 500m/s, an S-wave propagation velocity

cs = 250m/s, and a density ρs = 1750 kg/m
3
. The sound propagation velocity is cf = 340m/s, and the air

density takes a value of ρf = 1.22 kg/m
3
.

The analysis was carried out in the frequency-wavenumber domain for frequencies ranging from 2Hz to

250Hz, with a frequency step of 2Hz. The longitudinal wavenumber varies from kz = 0 to kz = 3×kF = 4.08,

which ensure the radiated field is computed accurately at receivers far from the application load. The

wavenumber step was set so as to adequately represent n = 100 acoustic wavelengths, ∆kz = 1/n.

The tunnel lining is represented with 216 shell finite elements (Ωs), and the discretisation matches with

the boundary element mesh used for the soil-structure interface (Γo), as well as the fluid-structure interface

(Γq). The 2.5D shell element is a two-nodes line element with four degree of freedom at each node (three

displacements and one rotation around the z axis). The air volume inside the tunnel (Ωf ) is represented

with 9562 fluid finite elements [20], allowing the representation of wavelengths with at least 6 elements.

Figure 9 shows vertical displacements and sound pressure levels at three observation points on the

ground surface (y = 0m), at different distances from the tunnel axis: x = 0m, x = 4m, and x = 16m.

The frequency content has an undulating behaviour because different waves are propagating through the

fluid-solid formation, and the frequency step between subsequent undulations becomes lower as the distance

of the observation point increases, but remains uniform in the frequency range. The Green’s function for

the fluid-solid formation is also represented in this figure to show that differences between the field radiated

by the tunnel and the fluid-solid formation behaviour are due to the waves scattered by the structure. The
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mismatch becomes more significant as fluid-solid wavelengths are smaller than the tunnel size. These results

are consistent with those reported in Reference [31] for the soil response.
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Figure 9: (a-c) Vertical displacement (black line), and (d-f) sound pressure level (black line), at points on the ground surface

with (a,d) x = 0m, (b,e) x = 4m, and (c,f) x = 16m due to a load acting at the tunnel invert. The analytical solution for a

homogeneous fluid-solid formation [21] is also represented (grey line).

Vertical soil displacement and sound pressure level distribution, both inside the tunnel and above the

ground surface, are represented in Figure 10 for frequencies of 10Hz and 80Hz. Results were computed at a

grid of 7141 receivers equally spaced, and the 3D solution was computed afterwards. Maximum displacements

were found around the tunnel invert according to the soil wavelength. A shadowed part is observed above

the tunnel where the response is lower. Moreover, the sound pressure distribution is defined by the fluid-

momentum relation, which links fluid pressure with soil displacement. Therefore, radiated waves at the free

field show a maximum above the tunnel, and the maximum inside the tunnel is found around the lining.

Fluid wavelengths are longer than those in the solid, according to the wave propagation velocity in each

medium.

4.2. Scattered wave field by a twin tunnel system

This example examines the wave field scattered by two tunnels embedded in a homogeneous half-space

(Figure 11). One of these tunnels is subject to a dynamic force P = 2πN applied to the tunnel invert. The

importance of the tunnel’s interactions is analysed through the insertion gain that results from the existence
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(a) (b)

−1 10−0.5 0.5

Figure 10: Real part of tunnel and soil vertical displacements (×107 m), and sound pressure inside the tunnel (×102 Pa at

10Hz and ×101 Pa at 80Hz) and above ground surface (×103 Pa), produced by a point load of (a) 10Hz and (b) 80Hz acting

on the tunnel invert.

of a second tunnel. Kuo et al. [32] studied the effect of a twin tunnel system on the wave propagation in an

unbounded soil domain. The same system is analysed in this example. The radiated noise is also studied.

y

x

z
Ωf∞

Ωs∞

P

c
Ωf Ωf

Γo

Γq

Ωs

d

+ +

Figure 11: Diagram of twin tunnel (figure not scaled). Soil domain (Ωs∞), air above the ground surface (Ωf∞), solid (Ωs) and

fluid (Ωf ) enclosures, the fluid-structure (Γq) and the soil-structure (Γo) interfaces, tunnel depth (d) and acting force (P ).

Both tunnels are located at depth d = 20m and they are separated by a distance of c = 10m, they

have radius r = 3.0m and the wall thickness is t = 0.3m. The lining has the properties of concrete, with
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Young’s modulus E = 35 × 109N/m
2
, Poisson’s ratio ν = 0.25, and density ρ = 2500 kg/m

3
. The soil has

a P-wave propagation velocity cp = 500m/s, an S-wave propagation velocity cs = 250m/s, and a density

ρs = 1750 kg/m
3
. The sound propagation velocity is cf = 340m/s, and the air density takes a value of

ρf = 1.22 kg/m
3
.

The response of the twin-tunnel system is computed using the proposed methodology. Each tunnel

is modelled with 56 shell elements and the volume of air within the tunnels is discretised with 588 fluid

elements. The boundary element mesh matches the finite element discretisation. The solution is computed

for a vertical load applied on the left-hand tunnel invert (Figure 11) acting at 60Hz. The wavenumber kz

range was set as in the previous example.

Figure 12.(a) shows the vertical soil displacements and the sound pressure inside tunnels. The soil

response exhibits a non-symmetric distribution around the vertical axis of the loaded tunnel due to the wave

field scattered by the right-hand tunnel. Maximum displacements occurred around the source point. The

sound pressure pattern of both tunnels is defined by the soil displacement around them. The sound pressure

reaches its highest value in the loaded tunnel.

(a) (b)

Figure 12: (a) Real part of vertical soil displacement (×107 m) and radiated noise inside the tunnels (×101 Pa), due to a

harmonic load acting on the tunnel invert at f = 60Hz, and (b) the insertion gain from the response of a twin-tunnel system

over that of a single-tunnel.

The effect of waves scattered by the right-hand tunnel is investigated in terms of the insertion loss in the

single-tunnel and twin-tunnel systems. The second tunnel changes both the soil displacement distribution

and the sound pressure inside the loaded tunnel, and this becomes more important at the right-hand tunnel,

as can be seen in Figure 12.(b). These conclusions agree with those presented by Kuo et al. [32] for the

ground response. In fact, the second tunnel modifies the sound pressure level distribution at the ground
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surface (Figure 13). The sound pressure field is distributed around the source point and comprises a circular

region about 20m. The insertion loss also shows major differences between the tunnel systems.

(a) (b)

Figure 13: (a) Real part of sound pressure level [dB ref 20µPa] at the ground surface due to a harmonic load acting on the

tunnel invert at f = 60Hz, and (b) the insertion gain [dB] from the response of a twin-tunnel system over that of a single

tunnel. Tunnel locations are marked by a dashed line.

4.3. Noise radiated from an underground train station with acoustic insulation

The last application examines the noise radiated by an underground railway station (Figure 14) that

has an acoustic barrier that separates the two railway tracks. An acoustic point pressure load, located at

S0(−2, 14) simulates the noise of a passing train. This example was proposed by Tadeu et al. [19] for an

unbounded domain to study the sound wave propagation inside the station in 2D cases. We have extended

the problem to evaluate the influence of an acoustic barrier on the free-field radiated noise.

The station is at a depth d = 12m and the geometry can be found in Figure 14. The structure has a

concrete wall of thickness t = 0.3m, Young’s modulus E = 50×109N/m
2
, Poisson’s ratio ν = 0.3, and density

ρ = 2500 kg/m
3
. The soil has a P-wave propagation velocity cp = 500m/s, an S-wave propagation velocity

cs = 250m/s, and a density ρs = 1750 kg/m
3
. The air takes sound propagation velocity cf = 340m/s, and

density ρf = 1.22 kg/m3. The acoustic barrier was assumed to be rigid, and 3.5m long, and it was modelled

as a discontinuity for the air volume Ωf . There is a gap of 1m exists between the station invert and the

barrier.

The vibration and radiated noise produced by a moving pressure load P acting at point So are analysed

next. This load reproduces a moving source travelling in the z direction at speed cf = ω/kz. This speed

is not a realistic traveling train speed but its interest is related with the wave propagation phenomenum in

mediums with different wave propagation velocities. The source is assumed to be represented as a Ricker

wavelet with a characteristic frequency of 145Hz and amplitude 2πPa [19]. The solution was computed for a

frequency range from 2Hz to 512Hz, with a frequency step of 2Hz. Complex frequencies with an imaginary

part of the form Im(ω) = −0.7∆ω were used to reduce the contribution of the virtual source to the response

and to prevent the occurrence of aliasing phenomena. Each frequency step was solved for a wavenumber
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Figure 14: Diagram of underground station and definition of subdomains (figure not scaled). Soil domain (Ωs∞), air above

the ground surface (Ωf∞), solid (Ωs) and fluid (Ωf ) enclosures, the fluid-structure (Γq) and the soil-structure (Γo) interfaces,

depth (d) and source point (So).

defined by the load speed. The characteristic element size enabled the minimum wavelength to be suitably

represented with at least six elements.

Figure 15 compares the sound pressure distribution inside the station with and without the insulation

barrier at the cross section defined by the coordinate plane y = 12m. The pressure distribution was

represented for the time when the load passes at z = 0m. Time solutions were obtained by applying an

inverse Fourier transform to the frequency response. The sound pressure fields exhibit a typical Mach cone

and many differences between the two cases were found due to the presence of the barrier. The acoustic

screen induced several wave reflections at the station wall and at the barrier.

The free-field radiated noise is due to ground-borne vibration defined by the stated boundary conditions

at soil surface (Equation (9)). The sound pressure changes after the insertion of the acoustic barrier, as can

be seen in Figure 16, and so does the soil displacement (Figure 17). The barrier redistributes displacements

and tractions at the soil-structure interface and this modifies the wave field at the ground surface. The

arrival time of S waves gives a spatial delay of 18m in the displacements and sound pressure field.

5. Conclusions

This work has proposed a BEM-FEM formulation to study fluid and solid wave scattering in half-space

formations. The method was formulated in 2.5D but is suitable for 3D problems whose material and
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Figure 15: Radiated noise inside the station at a plane defined by the coordinate y = 12m, due to a moving load travelling at

v = cf , (a) without acoustic barrier, and (b) with acoustic barrier (black line).
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Figure 16: Radiated noise at the soil surface due to a moving load travelling at v = cf (a) without acoustic barrier, and (b)

with acoustic barrier.

geometric properties are homogeneous in one direction. The proposed model has been developed to analyse

the acoustic and elastic wave propagation from underground structures. The FEM modelling structures

and enclosed fluid subdomains, while the BEM represents the soil-structure interface. The model was

verified through a benchmark problem with a known analytical solution, and numerical results were in good

agreement with the reference solution.

The main practical application of the method is the analysis of the noise and vibration radiated from

tunnels, with a comprehensive formulation that predicts both sound pressure and soil displacement. Three

examples were given that show the free-field radiated noise dependence on the scattered waves within the
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Figure 17: Vertical displacement at the soil surface, due to a moving load travelling at v = cf , (a) without acoustic barrier,

and (b) with acoustic barrier.

soil. The solution of the problem shows that:

• When a single tunnel is studied, the radiated wave field shows wavelengths according to soil and sound

wave propagation velocity. A shadowed cone zone is found above the tunnel where soil displacements

are lower. The wave field scattered by the tunnel is more important for wavelengths shorter than the

tunnel size.

• If a twin-tunnel system is considered, the soil displacements and sound pressure field show a non-

symmetric distribution because of the waves scattered by the second tunnel. This effect changes the

sound pressure level above the ground surface. However, the pressure field inside the loaded tunnel

remains almost unchanged.

• Any modification of the pressure distribution inside structures involves a variation of both the pres-

sure field at the ground surface and the soil displacements. This subject has been analysed in an

underground station with an acoustic barrier, with the findings stated above.

These conclusions show that a fully coupled formulation could be advisable to accurately compute the noise

and ground-borne vibration radiated from underground structures.
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[30] L. Gavrić, Computation of propagative waves in free rail using a finite element technique, Journal of Sound and Vibration

185 (3) (1995) 531–543.

[31] S. Gupta, Y. Stanus, G. Lombaert, G. Degrande, Influence of tunnel and soil parameters on vibrations from underground

railways, Journal of Sound and Vibration 327 (1-2) (2009) 70–91.

[32] K.A. Kuo, H.E.M. Hunt, M.F.M. Hussein, The effect of a twin tunnel on the propagation of ground-borne vibration from

an underground railway, Journal of Sound and Vibration 330 (25) (2011) 6203–6222.

28

View publication statsView publication stats

https://www.researchgate.net/publication/257397048_Coupling_the_BEMTBEM_and_the_MFS_for_the_numerical_simulation_of_acoustic_wave_propagation?el=1_x_8&enrichId=rgreq-e2de7cd370f95cd096cfb40e1deb421b-XXX&enrichSource=Y292ZXJQYWdlOzMxMjMyMDY4OTtBUzo0NTA4NDAwMjk4NjM5MzhAMTQ4NDUwMDA0NzcxNw==
https://www.researchgate.net/publication/257397048_Coupling_the_BEMTBEM_and_the_MFS_for_the_numerical_simulation_of_acoustic_wave_propagation?el=1_x_8&enrichId=rgreq-e2de7cd370f95cd096cfb40e1deb421b-XXX&enrichSource=Y292ZXJQYWdlOzMxMjMyMDY4OTtBUzo0NTA4NDAwMjk4NjM5MzhAMTQ4NDUwMDA0NzcxNw==
https://www.researchgate.net/publication/267068000_25D_Green's_functions_for_elastodynamic_problems_in_layered_acoustic_and_elastic_formations?el=1_x_8&enrichId=rgreq-e2de7cd370f95cd096cfb40e1deb421b-XXX&enrichSource=Y292ZXJQYWdlOzMxMjMyMDY4OTtBUzo0NTA4NDAwMjk4NjM5MzhAMTQ4NDUwMDA0NzcxNw==
https://www.researchgate.net/publication/267068000_25D_Green's_functions_for_elastodynamic_problems_in_layered_acoustic_and_elastic_formations?el=1_x_8&enrichId=rgreq-e2de7cd370f95cd096cfb40e1deb421b-XXX&enrichSource=Y292ZXJQYWdlOzMxMjMyMDY4OTtBUzo0NTA4NDAwMjk4NjM5MzhAMTQ4NDUwMDA0NzcxNw==
https://www.researchgate.net/publication/267214850_25D_coupled_BEM-FEM_used_to_model_fluid_and_solid_scattering_wave?el=1_x_8&enrichId=rgreq-e2de7cd370f95cd096cfb40e1deb421b-XXX&enrichSource=Y292ZXJQYWdlOzMxMjMyMDY4OTtBUzo0NTA4NDAwMjk4NjM5MzhAMTQ4NDUwMDA0NzcxNw==
https://www.researchgate.net/publication/267214850_25D_coupled_BEM-FEM_used_to_model_fluid_and_solid_scattering_wave?el=1_x_8&enrichId=rgreq-e2de7cd370f95cd096cfb40e1deb421b-XXX&enrichSource=Y292ZXJQYWdlOzMxMjMyMDY4OTtBUzo0NTA4NDAwMjk4NjM5MzhAMTQ4NDUwMDA0NzcxNw==
https://www.researchgate.net/publication/222443238_Closed-form_integration_of_singular_terms_for_constant_linear_and_quadratic_boundary_elements_Part_1_SH_wave_propagation?el=1_x_8&enrichId=rgreq-e2de7cd370f95cd096cfb40e1deb421b-XXX&enrichSource=Y292ZXJQYWdlOzMxMjMyMDY4OTtBUzo0NTA4NDAwMjk4NjM5MzhAMTQ4NDUwMDA0NzcxNw==
https://www.researchgate.net/publication/222443238_Closed-form_integration_of_singular_terms_for_constant_linear_and_quadratic_boundary_elements_Part_1_SH_wave_propagation?el=1_x_8&enrichId=rgreq-e2de7cd370f95cd096cfb40e1deb421b-XXX&enrichSource=Y292ZXJQYWdlOzMxMjMyMDY4OTtBUzo0NTA4NDAwMjk4NjM5MzhAMTQ4NDUwMDA0NzcxNw==
https://www.researchgate.net/publication/222454509_Closed-form_integration_of_singular_terms_for_constant_linear_and_quadratic_boundary_elements_Part_2_SV-P_wave_propagation?el=1_x_8&enrichId=rgreq-e2de7cd370f95cd096cfb40e1deb421b-XXX&enrichSource=Y292ZXJQYWdlOzMxMjMyMDY4OTtBUzo0NTA4NDAwMjk4NjM5MzhAMTQ4NDUwMDA0NzcxNw==
https://www.researchgate.net/publication/222454509_Closed-form_integration_of_singular_terms_for_constant_linear_and_quadratic_boundary_elements_Part_2_SV-P_wave_propagation?el=1_x_8&enrichId=rgreq-e2de7cd370f95cd096cfb40e1deb421b-XXX&enrichSource=Y292ZXJQYWdlOzMxMjMyMDY4OTtBUzo0NTA4NDAwMjk4NjM5MzhAMTQ4NDUwMDA0NzcxNw==
https://www.researchgate.net/publication/222454509_Closed-form_integration_of_singular_terms_for_constant_linear_and_quadratic_boundary_elements_Part_2_SV-P_wave_propagation?el=1_x_8&enrichId=rgreq-e2de7cd370f95cd096cfb40e1deb421b-XXX&enrichSource=Y292ZXJQYWdlOzMxMjMyMDY4OTtBUzo0NTA4NDAwMjk4NjM5MzhAMTQ4NDUwMDA0NzcxNw==
https://www.researchgate.net/publication/222788778_A_finite_element_model_for_acoustically_lined_small_rooms?el=1_x_8&enrichId=rgreq-e2de7cd370f95cd096cfb40e1deb421b-XXX&enrichSource=Y292ZXJQYWdlOzMxMjMyMDY4OTtBUzo0NTA4NDAwMjk4NjM5MzhAMTQ4NDUwMDA0NzcxNw==
https://www.researchgate.net/publication/222788778_A_finite_element_model_for_acoustically_lined_small_rooms?el=1_x_8&enrichId=rgreq-e2de7cd370f95cd096cfb40e1deb421b-XXX&enrichSource=Y292ZXJQYWdlOzMxMjMyMDY4OTtBUzo0NTA4NDAwMjk4NjM5MzhAMTQ4NDUwMDA0NzcxNw==
https://www.researchgate.net/publication/223798424_Influence_of_tunnel_and_soil_parameters_on_vibrations_from_underground_railways?el=1_x_8&enrichId=rgreq-e2de7cd370f95cd096cfb40e1deb421b-XXX&enrichSource=Y292ZXJQYWdlOzMxMjMyMDY4OTtBUzo0NTA4NDAwMjk4NjM5MzhAMTQ4NDUwMDA0NzcxNw==
https://www.researchgate.net/publication/223798424_Influence_of_tunnel_and_soil_parameters_on_vibrations_from_underground_railways?el=1_x_8&enrichId=rgreq-e2de7cd370f95cd096cfb40e1deb421b-XXX&enrichSource=Y292ZXJQYWdlOzMxMjMyMDY4OTtBUzo0NTA4NDAwMjk4NjM5MzhAMTQ4NDUwMDA0NzcxNw==
https://www.researchgate.net/publication/275378570_Analytical_Evaluation_of_the_Acoustic_Behavior_of_Multilayer_Walls_When_Subjected_to_Three-Dimensional_and_Moving_25-Dimensional_Loads?el=1_x_8&enrichId=rgreq-e2de7cd370f95cd096cfb40e1deb421b-XXX&enrichSource=Y292ZXJQYWdlOzMxMjMyMDY4OTtBUzo0NTA4NDAwMjk4NjM5MzhAMTQ4NDUwMDA0NzcxNw==
https://www.researchgate.net/publication/275378570_Analytical_Evaluation_of_the_Acoustic_Behavior_of_Multilayer_Walls_When_Subjected_to_Three-Dimensional_and_Moving_25-Dimensional_Loads?el=1_x_8&enrichId=rgreq-e2de7cd370f95cd096cfb40e1deb421b-XXX&enrichSource=Y292ZXJQYWdlOzMxMjMyMDY4OTtBUzo0NTA4NDAwMjk4NjM5MzhAMTQ4NDUwMDA0NzcxNw==
https://www.researchgate.net/publication/275378570_Analytical_Evaluation_of_the_Acoustic_Behavior_of_Multilayer_Walls_When_Subjected_to_Three-Dimensional_and_Moving_25-Dimensional_Loads?el=1_x_8&enrichId=rgreq-e2de7cd370f95cd096cfb40e1deb421b-XXX&enrichSource=Y292ZXJQYWdlOzMxMjMyMDY4OTtBUzo0NTA4NDAwMjk4NjM5MzhAMTQ4NDUwMDA0NzcxNw==
https://www.researchgate.net/publication/251480568_The_effect_of_a_twin_tunnel_on_the_propagation_of_ground-borne_vibration_from_an_underground_railway?el=1_x_8&enrichId=rgreq-e2de7cd370f95cd096cfb40e1deb421b-XXX&enrichSource=Y292ZXJQYWdlOzMxMjMyMDY4OTtBUzo0NTA4NDAwMjk4NjM5MzhAMTQ4NDUwMDA0NzcxNw==
https://www.researchgate.net/publication/251480568_The_effect_of_a_twin_tunnel_on_the_propagation_of_ground-borne_vibration_from_an_underground_railway?el=1_x_8&enrichId=rgreq-e2de7cd370f95cd096cfb40e1deb421b-XXX&enrichSource=Y292ZXJQYWdlOzMxMjMyMDY4OTtBUzo0NTA4NDAwMjk4NjM5MzhAMTQ4NDUwMDA0NzcxNw==
https://www.researchgate.net/publication/245285253_Green's_Functions_for_Two-and-a-Half-Dimensional_Elastodynamic_Problems?el=1_x_8&enrichId=rgreq-e2de7cd370f95cd096cfb40e1deb421b-XXX&enrichSource=Y292ZXJQYWdlOzMxMjMyMDY4OTtBUzo0NTA4NDAwMjk4NjM5MzhAMTQ4NDUwMDA0NzcxNw==
https://www.researchgate.net/publication/245285253_Green's_Functions_for_Two-and-a-Half-Dimensional_Elastodynamic_Problems?el=1_x_8&enrichId=rgreq-e2de7cd370f95cd096cfb40e1deb421b-XXX&enrichSource=Y292ZXJQYWdlOzMxMjMyMDY4OTtBUzo0NTA4NDAwMjk4NjM5MzhAMTQ4NDUwMDA0NzcxNw==
https://www.researchgate.net/publication/312320689

