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Abstract

This paper deals with the homogenization of two-dimensional oscillating convex function-
als, the densities of which are equicoercive but not uniformly bounded from above. Using
a uniform-convergence result for the minimizer, which holds for this type of scalar prob-
lems in dimension two, we prove in particular that the limit energy is local and recover
the validity of the analog of the well-known periodic homogenization formula in this de-
generate case. However, in the present context the classical argument leading to integral
representation based on the use of cut-off functions is useless due to the unboundedness
of the densities. In its place we build sequences with bounded energy, which converge
uniformly to piecewise-affine functions, taking pointwise extrema of recovery sequences
for affine functions.
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1 Introduction

General homogenization theorems ensure that the limit of oscillating functionals of the

form
/ fn(g%, Vu) dx
Q

with domain some WP Sobolev space is a homogeneous integral of the same form

/ Jrom(Vu) dx
Q

provided the function f is periodic in the first variable and satisfies the ‘standard p-growth
conditions’ ¢1 [€P — 1 < f(y,&) < ca (14 [£[P) (see, e.g., [4]). This result, up to the use of
asymptotic homogenization formulas to describe fiom in the vector case, is valid in any
dimension and its proof is usually achieved using a technical argument due to De Giorgi,
which consists in the use of ‘cut-off’ functions ¢, in the construction of recovery sequences
of the form vy, + (1 — ¢pn)u, as a convex combination of two recovery sequences. The
use of the p-growth condition allows to optimize the choice of these ¢,. This argument
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is used to ‘glue’ optimal sequences on overlapping sets, match boundary conditions, etc.,
and is stable under small variations of f under the above-mentioned growth conditions
(see [4]).

For functionals not uniformly satisfying a p-growth condition, this result fails. In
particular the limit of energies of the form

Fuw) = [ (2, 90) do.

where f,, are periodic in the first variable and satisfy ‘degenerate standard p-growth
conditions’ c}|¢P — 1 < f(y,&) < 5 (1 + |£|P) with ¢} possibly vanishing and ¢ possibly
diverging, a ‘local’ representation of the limit energy through the single variable v may
fail. For quadratic energies it can be represented as a Dirichlet form (see [17]), or as a
multi-phase energy (see [1], [6], [8], [9], [13], [15], [16]). Results by Camar-Eddine and

Seppecher [10] determine that a wide class of local and non-local quadratic forms can be

reached as I'-limit of usual local Dirichlet-type integrals with degenerate coefficients.

The object of this paper is the homogenization of (nonlinear) integral functionals F),
as above, where  is a bounded open set of R? and w is scalar, when f, satisfies very
mild growth conditions from above (see (2.1)—(2.3) below). In the simplest (linear and
isotropic) case this can be translated into the I'-convergence of oscillating functionals of
the form

F,(u) = /Qan(fn) |Vul|? dz,

where a, > 1 are l-periodic but a, are not bounded in L°°. In this case many of
the usual techniques of I'-convergence hinted at above do not work as they are usually
stated, but must be carefully modified. This can be seen by examining a sequence w,, :=
Ontn + (1 — pn)v, obtained by “joining” two sequences u,, and v, with bounded energy.
Its energy can be estimated by the energies along the sequences u, and v,, and a term
depending on V¢, and u, — v,. In the linear case above this remainder term takes the
form

/ a"(i) ’V30n|2 |un - Un|2 dx,
Q

and can be made arbitrarily small when u,, —v,, tends to zero in L?, upon suitably choosing
¥n, if ay is bounded in L*°. For unbounded coefficients, for such an argument to work
some stronger convergence is required. In the two-dimensional case the compactness result
of Briane and Casado-Diaz [7] ensures that we can restrict to sequences such that u, — v,

converges to zero uniformly, so that the error above is estimated by
IVl llun — vnll5 /Qan(gi) dz < |Q/[[Venll3 sup lanll L1 (0,1)2) [lun — vnllZ;
n

which shows that the L'-boundedness of a, can be used in the cut-off argument.
In place of an L'-boundedness assumption we will suppose that

lim flom(e) <b(1+ [¢P)

n—o0

for all £ € R?, where the energy density f1°™ is given by the cell-problem formula (2.4).
This assumption clearly holds if f, satisfies an L'-boundedness hypothesis of the type

fn(y,€) < bn(y) (1+[€]7),

with sup,, [|bnl[£1((0,1)2) < o0, but is more general and covers the case of domains with
strong inclusions.
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Under such a general assumption we bypass the cut-off arguments above, using the
specificity of the scalar setting coupled with the improved convergence of recovery se-
quences. To exemplify our approach, we can consider the simplest case of the construction
of optimal sequences for a function of the form v = u!' vV u? (V denotes the maximum)
with u® affine. If u’, are optimal sequences for u’ then we can simply set u, := ul V u2.
The uniform convergence of uf, allows then to estimate the error in terms of the size of a
small neighbourhood of the set {u! = u?}. A technical argument allows then to carry on
this construction to optimal sequences for arbitrary piecewise-affine functions and then
by density to the whole space WP, This proves one of the two inequalities — namely, the
I'-limsup inequality — of I'-convergence.

To prove the I'-liminf inequality we have found it convenient to use the Fonseca-Miiller
blow-up technique, which allows to reduce to the study of converging sequences when the
target function is linear £ - x. A similar argument as above allows then to modify such
sequences so that it satisfies periodic boundary conditions, which allows an estimate with
the energy densities f1°™(¢). Again the scalar nature of the problem is heavily exploited
both in the modification leading to periodic boundary conditions and in the reduction to
a single cell-problem formula.

The paper is organized as follows. In Section 2 we state the main result which is
proved in Section 3. Section 4 is devoted to a sufficient condition permitting to derive the
boundedness of f1o™ in R2,

Notation

e for any open set w of R?, @ denotes the closure of w in R?;
o Y :=(0,1)%
e H(Y) denotes the space of the Y-periodic functions which belong to Hj,c(IR?);

2 Statement of the results

Let p > 1, and let © be a bounded open set of R? with a Lipschitz-continuous boundary.
We consider a sequence of non-negative functions f,, : R? x R? — [0,00), for n > 1,
satisfying the following properties:

fu(-,€) is a Y-periodic measurable function for any ¢ € R?, (2.1)

fn(y,-) is convex with f,,(y,-) > fn(y,0) for a.e. y € R?, (2.2)

there exists a non-negative sequence b,, such that

[P =1 < ful(y,&) <bu (L+[EP), VEER? ae yeR? (2.3)

Remark 2.1. In (2.2) we can replace the convexity assumption by a continuity assump-
tion. To this end, it is enough to replace the density f,(y,-) by its convexification, which
leads us to the same convergence result (see Theorem 2.3).

We define, for each fixed n > 1, the “homogenized” density fP°™ by the classical
minimization formula (see, e.g., Chapter 14 of [4]):

fhom () := inf {/ fnly, €+ Vp)dy : ¢ € Wﬁlvp(Y)} , for £ e R2. (2.4)
Y
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Thanks to the convexity and the bounds (2.3) satisfied by the function f,, the infimum
in problem (2.4) is attained, i.e.

VEER 3gf e WMH(Y) suchthat SO = [ fln6+ Vel dy  (25)
Y

We will use the De Giorgi I'-convergence theory. We refer to [11], [2] or [4] for a
general presentation and the basic properties of I'-convergence. Here, we simply recall the
following definition:

Definition 2.2. A sequence of functionals F), : LP(2) — [0, 00] is said to I'-converge to
F : LP(Q2) — [0, 00] for the strong topology of LP(1) if, for any w in LP(Q),

(i) the I-liminf inequality holds

Vu, — u strongly in LP(S2), F(u) <liminf F,(uy,), (2.6)

(ii) the I'-limsup inequality holds
3, — u strongly in LP(Q)), F(u)= lim F,(ay). (2.7)

n—oo

Any sequence satisfing (2.7) will be called a recovery sequence for F,, of limit u.

Let e, be a sequence of positive numbers, which converges to 0 as n — oco. For any
n > 1, we define the functional F,, : LP(2) — [0, cc] by

(u) := /an(;;, Vu)dz if u e WHP(Q)

F, (2.8)

00 elsewhere.
The main result of the paper is the following theorem:

Theorem 2.3. Let Q be a bounded open set of R?, with a Lipschitz continuous boundary.
In addition to conditions (2.1)-(2.3), assume that there exist a positive constant b and a
function fhom :R? — [0,00), such that

YEER?,  lim fiOM(6) = (€ <D(L+gP). (2.9)

Then, the sequence of functionals F,, defined by (2.8) T'-converges for the strong topology
of LP(R2), to the functional F defined by

F_(u):= /Q from(Vu) da (2.10)

for all u € W1P(Q).

Remark 2.4. Theorem 2.3 provides an extension of the periodic homogenization of en-
ergies even in the case of a single function; i.e., when the density f,(y,&) = f(y,&) does
not depend on n and satisfies the growth condition

€P = 1< fy,€) <bly) (L +€)), VEER?, ae yeR?,

where b € Lé(Y).

The classical framework of the periodic homogenization is based on the stronger as-
sumption b € LEO(Y), but holds true in any dimension and for non-convex vector-valued
problems (see, e.g., Section 21.3 of [4]). The two-dimensional setting allows us to relax

the right-hand side of the growth estimate (2.3), with a sequence b,, which is not neces-
sarily bounded in L; (Y). As a consequence we need to modify the definitions (2.8) of F},

and (2.4) of fhom by assuming the continuity of the functions.

4
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Remark 2.5. We can replace the assumption that 0 is an absolute minimizer of f,(y, -)
for a.e. y € R?, by the following more general one:
There exist a function 6 : [0,00) — [0, 00) and a sequence of functions ¢, in Cy(e,Y)N

Wﬁl’p(snY), such that for any n > 1,

limf(t) =0, V22 €R? [pn(@1) — n(w2)] < 0|21 — 22]), (2.11)

Von(eny) is an absolute minimizer of f,(y,-) for a.e. y € R% (2.12)

For example, the sequence defined by ¢, () := &, go(i), for x € R?, where ¢ € Wﬁl’oo(Y),
satisfies condition (2.11) with 6(¢) := ||Vl t.

3 Proof of the results

3.1 A uniform-convergence result

We have the following result which extends the uniform convergence result obtained in
the linear framework of [7]:

Proposition 3.1. Let Q be a bounded open set of R%, with a Lipschitz continuous bound-
ary. Let f, : R2 x R — [0,00) be functions satisfying conditions (2.1), (2.3) and (2.12).
Consider a function u € W1P(Q) N C(Q), and a sequence iy, in WHP(Q) which strongly
converges to u in LP(QY), with

/ fo(E, Vi) dz < c. (3.1)
Q

Let Q' be an open subset of Q. Then, there exist a subsequence of n, still denoted by n,
and a sequence u, in WYP(Q) which satisfies the convergences

Uy — u  weakly in WHP(Q) and up, — u  strongly in LS. (), (3.2)

and the energy estimate
f”(é’ Vun) dr < / fn(i, V&n) dzx + o(1). (3.3)
Qf (94

Moreover, for any open subsets w,® of Q, with w C &, the sequence u,, satisfies

[ vm)ar s [ (2 Vi) de o). (3.4

Remark 3.2. In Proposition 3.1 the case p € (1, 2] is the most relevant, since in dimension
two the embedding of W1P(€) in C(Q) is compact for p > 2.

The result of Proposition 3.1 also extends to the following periodic case with the
sequence of functionals FTﬁL’E, for € € R?, defined by

F¥(p) == /an (nz,Vo(z)) dz, for ¢ € Wﬁl’p(Y). (3.5)


https://www.researchgate.net/publication/226359602_Asymptotic_behaviour_of_equicoercive_diffusion_energies_in_dimension_two?el=1_x_8&enrichId=rgreq-3fff0d57408452f1744b4c068d241bbe-XXX&enrichSource=Y292ZXJQYWdlOzI0MjE4NDU0NztBUzoxMDMwOTc0NzcxMDc3MjVAMTQwMTU5MTc2MjU4Ng==

Proposition 3.3. Forn > 1 and £ € R?, consider go% € Wﬁl’p(Y) satisfying (2.5). Then,

there exists a sequence 1, which converges to zero weakly in Wﬁl’p (Y) and strongly in
L (Y), such that

/ fr(nw, &+ Vipp(x)) da = / fu(na, & + Vb (nz)) dz + o(1) = £ (&) + o(1). (3.6)
Y Y
Moreover, for any regular bounded open sets w,& of R?, with @ C @, we have

/ Fu (P2, € + Voo () da < [0] 190 () + o(1). (37)

Proposition 3.1 is based on the following maximum principle result:

Lemma 3.4. Let O be a bounded open subset of R%. Let ¢ be a function in W1P(O)
satisfying (2.11). Let g : O x R? — R be a function such that

(i) g(-, &) is measurable for any & € R?,
(ii) g(z,-) is strictly convex for a.e. x € O,

(7i1) g satisfies the growth condition
[P =1 < g(2,€) < B(x) A+ [E[F), VEER? ae z€O,

where 3 € L*(0),
(iv) Vo(x) is an absolute minimizer of g(x,-) for a.e. x € O.

Let G : WHP(O) — [0,00] be the functional defined by
G(u) := / g(z,Vu)dz, forue WP(0).
O

For . € WHP(0) N C(O) with G(a) < oo, consider the function u € WHP(O) defined by

the minimization problem
G(u) = min {G(v) Tv—TUE W&’p(O)} < 0.
Then, we have the following mazimum principle

in (u — <u—p< U — .e. in O.
ng(l)n(u ) <wu (p_rral%x(u ) a.e. in

Proof of Proposition 3.1. The proof is an adaptation of the proof of Theorem 2.1 in [7]

to the present nonlinear framework. Therefore, we will give the main steps of the proof
without specifying the details.
Define the function g, : Q x R? — [0, 00) by

1
n(@,€) = fa(2,€) + —|& = Vipu(@)I", for (z,§) € A xR,
and the functional G,, : WHP(Q2) — [0, 00] by
Gn(u) :== / gn(z, Vu)dz, for u € WHP(Q).

Note that, by the convexity of f,(y,-) and (2.12), the function g,(z,-) is a strictly convex
function in R? with Vi, (z) as an absolute minimum.

6
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Using a density argument and the continuity of the functional v — fQ/ fn(z,Vv)dz in
WLP(Q), we can assume that @, is regular without modifying the right-hand side of (3.3).
By estimate (3.1) combined with the equicoercivity of ¢, (z,-) (as a consequence of (2.3))
the sequence 1, is bounded in W1P(€2) and thus weakly converges to u in W1P(£2). Then,
by virtue of the regularity of 2, up to a subsequence, 4, converges uniformly to u in a
relatively closed subset K of €2, such that for a given ¢ € (1,p), the g-capacity Cy(2\ K)
of Q\ K can be chosen arbitrarily small. By Lemma 2.8 of [7] (which is specific to
dimension two) the diameter of any connected component O of Q \ K is bounded by a

1
constant times Cy(2\ K)2-7. Therefore, there exists an increasing sequence ny, k > 1, of
positive integers and a sequence K} of relatively closed subsets of {2 such that

. 1
Vi >ng, i —ullpek,) < o (3.8)
and for any connected component O of Q \ K,
i 1
diam (O) < T (3.9)

Now, for any n € [ny, ng,1), define the function u,, € WP(Q) by the following procedure:

e in any connected component O of Q\ K} such that O C ', u, is defined by the
minimization problem

/ gn(x, Vuy,) dr = min {/ gn(z,Vv)der : v—1a, € Wol’p(O)} , (3.10)
O o

® u, := U, elsewhere.

Taking into account (3.1) it is easy to check that u, € W'P(Q) and u, — 4, € Wol’p(Q).
Thanks to Lemma 3.4 we have, for any connected component of Q \ K},

Vn € [ng, ng+1), rgion (U, — on) < Up — pn < max (U, — @n) a.e. in O. (3.11)
Consider the increasing sequence of open subsets of Q' defined by
!/ !/ . !/ 2
e = {x € Q' : dist (z,09) > k‘}’ for k > 1.
Note that by estimate (3.9) any connected component O such that O N Q) # O, satisfies
O NN = O and thus 0O C Kj. Then, estimates (3.8), (3.11) and the triangle inequality

imply that

1
Vg, fun =l oy < sup (Ju@) —uly)|+ ea(x) — en)]).
T,y €
lz—y|<%

This, combined with the uniform continuity of u in Q and (2.11), yields

lim (sup || wn, —UHLOO(Q;)) =0,

k—oo n>ny

which implies the uniform convergence (3.2).
On the other hand, by the construction of u, we have

Vn>1, Uy, — Uy, € Wol’p(Q') and  Gp(u,) = / gn(x, Vuy) de < G,(4y,). (3.12)
Q/

7
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Estimate (3.12) combined with the equicoercivity of g, (z, -), estimate (3.1) and the bound-
edness of 1, in W1P?(Q), implies that u, is also bounded in WP (2). Therefore, u,, satisfies
the weak convergence in (3.2). Again by (3.12) we get

1
Gulu) = [ fuETVu)dot [ V0, = Ve da
— /fn(;i,Vun)dx—i-o(l)
Q/
< Gn(ﬂn)—i—o(l):/ fu(, Vi) dz + o(1),
Q/

which yields (3.3).
Finally, for k large enough, any connected component O of Q\ Kj, with O Nw # O,
satisfies O C @ \ Kj. Hence, from the definitions of g, and w, we deduce that for any

ne [nk7 nk+1)a

/W\Kk fa(Z,Vuy) dz < Z /Ofn(;i,Vun) d:rg/aj fo(Z, Vi) dz + o(1).

O Co\Ky \ K
This combined with the equality w,, = 4, in K}, implies (3.4) and concludes the proof.[]

Proof of Proposition 3.3. Let us start by the following remark: In Proposition 3.1,
when Q := (—k, k)2, for an integer k& > 2, and 1, is a sequence of Y-periodic functions
which weakly converges to u in WP (Q), the closed sets K on which the convergence of 1,
is uniform are Y-periodic. Indeed, the open sets 2 \ K of arbitrary small capacity are
built from sets of the type {x € Q : |uy(z) — u(x)| > €}, € > 0, (see, e.g., Theorem 7
of [12]) which are clearly Y-periodic. Therefore, the sequence w,, defined by (3.10) is also
Y -periodic. So, the procedure of Proposition 3.1 preserves the periodicity.

Let & € R2. First of all, using a density argument and the continuity of the functional
o [y fo(y, €+ V) dy in Wﬁl’p(Y), there exists a sequence 1, in C'ﬁ1 (Y) which is bounded

in Wﬁl’p (V) and satisfies

/Y Fo(y € + Vi (y)) dy = /Y Fau(: €+ Vi) dy + o(1) = F20(€) + 0(1).  (3.13)

On the other hand, for any integer k > 2, the sequence F!¢ defined by (3.5) reads as

1
Fﬁ’é(gp) = @ /(k k)2 fn(n‘r?f + V(p(l')) dm? fOl“ 2 € WﬁLp(Y)a

and the continuous functions %&n(na:) weakly converge to zero (continuous) in Wﬁl’p (Y).
Then, by the preliminary remark there exists a sequence v, which weakly converges to
zero in Wﬁl’p (Y) and strongly in L{°(Y'), such that

FiW) = [ fulna, 4+ T0,(0) da
< FRE (L, (na)) +o(1) = / fo(n@, € + Vipp(nz)) dz + o(1).
Y
This, combined with (3.13) and the Y-periodicity of Un, yields the first estimate

/Y fo (0, € + Vb () dex < 20 (E) + o(1). (3.14)



On the other hand, let @Zn be the Y-periodic function defined by

bl =2 Y w(““), for y € R2. (3.15)

n
k€{0,...,n—1}2

By the definition (2.4) of f1o™ the Y-periodicity of Vs thns (-, €), and by the convexity
of fn(z,-), we have

from(e) < / Fu(: € + Vi (y)) dy = / fu(n, € + Vin(ne)) dz (y = n)
Y Y

1

< —
_n2

fn(nm,f + Vo (z + %)) dx
HE{O,..Z,TL—l}2 /Y

, (3.16)

/{G{O,...,n—l}2

Therefore, (3.14) and (3.16) imply the desired estimate (3.6).
On the other hand, similarly to (3.4) we obtain, owing to the construction of the
function ), from %wn(nx), the inequality

/ fn (nx,f + Vd)n(fv)) dx < [ fn (na:,f + V?f)n(nx)) dz + o(1).
Then, by the Y-periodicity of ¥y, combined with the regularity of @ we get

[ fnlna + Visn(a)) do < 161 [ a6+ Vo) dy + o),

which implies inequality (3.7) by taking into account (3.13). O

Proof of Lemma 3.4. First note that the existence and the uniqueness of the function u
is a consequence of the coerciveness and the strict convexity of g(x,-) combined with
G(1) < 0o. Set m := mingp (& — ¢). Since the negative part of u — ¢ —m, (u — @ —m)~
belongs to W&’p(O) (see Lemma 2.7 of [7]) and Vp(z) is an absolute minimum of g(z, -),
we have

Gu) <Gu+(u—p—m)") :/{ }g(:c,Vu)d:C—F/{ }g(x,Vgp)dx
u—p>m u—p<m
= z,Vu)dz z, V) —g(x,Vu)) dx
JRCACEEY BN CCA LR
< G(u),

Hence, by the convexity of G we deduce that
1
Glu)<Gu+i(u—p-—m)") < §<G(u) +G(u+ (u—p— m)*)> < G(u),

which yields

1

/ {2 <g(x, Vu) + g (z, Vu+ V(u— ¢ — m)‘)) —g(z,Vu+iVu—p— m)_)] dx = 0.
O

This combined with the strict convexity of g(x,-) implies that V(u — ¢ —m)~ = 0 a.e.

in O. Therefore, we obtain m < u — ¢ a.e. in O. Similarly, we get u — ¢ < maxyo (i — @)

a.e. in O. g
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3.2 Proof of Theorem 2.3

3.2.1 Proof of the I'-limsup inequality

By condition (2.9) the functional F_ of (2.10) is continuous in W!?(§). Therefore, it is
enough to prove the I'-limsup inequality for piecewise-affine functions, which are a dense
set in W1P(Q) (see, e.g., [2] Remark 1.29).

Let D be a disk of R? such that @ C D, and consider a piecewise-affine function
u: D — R? associated with a triangulation (7})1<i<m of D such that

m
U= Z 17, ¢', where g(x) =€ z+¢, foreR? ¢eR, zeD. (3.17)
i=1

It is known (see, e.g., [18]) that there exist k subsets Ji,...,J; of {1,...m}, such that
the following max-min representation holds:

u=\/ N\g D (3.18)
j=1 i€J;

Up to refining the triangulation (using the lines {¢° = ¢} when ¢° # ¢’) we can assume
that for any § > 0 small enough, the triangles Ti‘s defined by

TS :={x eT; : dist (x,0T}) > 6}, forie{l,...,m}, (3.19)
satisfy for any 7,7 =1,...,m,
gi(r) < ¢'(z), Vie J;\{i} st. g #£g, ifieJ;
VoeTy?, . (3.20)
g'(z) > /\ler g'(z), elsewhere.

We denote by h the maximum of the diameters of T;, and by €2, the union of the triangles
T, such that ;N # (. For any ¢ € R2, consider a function ¢ € Wﬁl’p(Y) satisfyng (2.5).

By virtue of Proposition 3.1 applied to the functions z — g¢'(z) + &, gog(%), for
i=1,...,m, there exist sequences v}, € WP(D) which weakly converge to ¢g* in WP (D)
> (T;), such that for any 4,7 = 1,...,m, with T; C Qp, we have

loc

and strongly in L
| nzviya < [ f(E8 Ve @) dot o)

/T_m fa(Z,V0}) do S/ Fal(E. 60 + Vg (£)) da,

TINT?S
where Ti‘s are the enlarged triangles defined by
T? = {z e R? : dist (z,T;) < 6}, forie{l,...,m}. (3.21)

This combined with the periodicity of the functions go% implies that

/T Ja(E Vo) de < T SR +o(1)

(3.22)
[ mlzvi)de < TTEE + o).
T\T? "
In analogy to representation (3.18), we then define the function u,, for n > 1, by
k .
un =\ N\ vi ae inQ. (3.23)
j=1 i€J;
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Thanks to the uniform convergence of vi in 7Y combined with property (3.20), we get
that for n large enough,

Vie{l,...,m}, up(z)=0'(z) ae zeT’. (3.24)

Using the following inequality, which is a consequence of definition (3.23) and of the bound
from below of (2.3),

fn(é,vun) < an(é,Vv%) +m—1 forae x&Qy, (3.25)
j=1

we deduce from (3.24) and (3.22) that

/fn - ,Vun d;v< Z / fn - ,Vun dx—l—/ fn(ﬁ,Vun)dx

N\ T8
T CQh Tl \Tl

<y / fu(E, V0, dx—i—Z/ 6n,§7+V<pn(n))da:+O(6)

S 26
T:CQp i,j=1 TIT;

<Z\T| 2 (E) Z\T‘S TP| fao™ () + o(1) + 0(0)

,7=1

Therefore, by the definitions (3.19), (3.21) of the triangles T?, T and the definition (3.17)
of u together with convergence (2.9) we obtain

limsup/gfn(;i,Vun) dr < Z ‘Ti‘fiom(fi)+0(5)

n—eo TiCQh

_ / 2o (Tu) da + O(h) + O(5),
Q
which yields the I'-limsup inequality.

3.2.2 Proof of the I'-liminf inequality

The proof is based on the blow-up method due to Fonseca and Miiller [14] and to
Lemma 3.5 which leads us to periodic boundary conditions.

Since LP(Q)) is separable, there exists a subsequence, still denoted by n, such that
the sequence F,, in (2.8) I'-converges to a functional F. Let u € LP(Q2) be such that
F(u) < co. Then, consider a sequence w,, which strongly converges to u in LP(€2) and
such that F,(u,) is bounded. By the equicoercivity of F), (as a consequence of (2.3)) the
sequence u, weakly converges to u in W1HP(Q).

Blow-up method of [14] (see also [5] for statement adapted to homogenization theory):
Define the measure p,, v, by

_/fn(;‘;,Vun)dx
B
:/ |Vuy, P dz,

B

Note that by the coercivity condition (2.3) of f,, we have v, < u, + L, where L is the
Lebesgue measure on R2. By the boundedness of Fj,(u,) = (), up to a subsequence

for any Borel set B C (. (3.26)
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n, Vn, weakly-+ converge respectively to the Radon measures p,v in M(Q2). By lower
semicontinuity and the Radon-Nikodym decomposition of u, v we have

lim inf F}, (uy,) = lminf p,, () > p(Q) = / d—’udx + 15 (92) > / dp dz,

n—oo n—oo

d d
liminf F,(uy,) > liminf v, () > v(Q2) = / Wi + v4(Q) > / av dr,

n—oo n—oo

where g, vs denote respectively the singular parts of u, v. Therefore, it remains to prove
that the regular part of p satisfies the pointwise inequality

d
ﬁ(xo) > from(Vu(zg))  ae. x0 € Q. (3.27)
Now, fix a Lebesgue point g common to %, % and Vu. The Besicovitch derivation
theorem implies that

d Y Y
) =1 ”(xo_;p ) — lim 1 N"(mojp )
dx p—0 P p—0 n—oo P (3 28)
dp, o v(zo+pY) o ve(zo+pY) '
— () = lim 5 = lim lim —————,
dx p—0 P p—0 n—oo P

where the limits in n hold for any p but a countable set (since p, v are finite). Moreover,
since ¢ is a Lebesgue point for Vu, we have (see, e.g., Theorem 3.4.2. of [19])

.1 /
lim —
p—0 p zo+pY

Hence, by the strong convergence of u, to uw in LP(2), we get that

p

u(x) — u(l‘o) - VU(xO) ) (I’ — "PUO) dr = 0.

p

p

un(z) — u(xo) — Vu(wo) - (¥ — o) dzr = 0. (3.29)

P

. . 1
lim lim —
p—0 n—o0 o= o4y

Then, using a diagonal extraction we deduce from (3.28) and (3.29) that there exist
a subsequence of n, still denoted by n, and a positive sequence p, such that p, and
Mn = €n/pn tend to zero, and such that the following limits hold

g ) oot (3.30)
v
W (1p) = lim / VunlP de,
d n—oo P zo+pnY
1 — — A — p
lim 2/ Un(@) = ulwo) = Vulo) - (x =) | ) ) (3.31)
o0 P Jao+pnY Pn
Making the change of variables
iy = un (0 + pny) — u(z:o)7 where = T — xo’ (3.32)
pn pn

in (3.30) and (3.31), it follows that

dx n—oo Jy n—00

d . ~1, ~ . I~ 2
i(ajO) = lim fn(yﬂ;%y vzn) dy > lim Sup/n —— fn(yﬂ;%ov vzn) dy

d
(xo) = lim [ [Vup(wo + pay)Pdy = lim / V2, [P dy < oo,
Y n—e Jy

dﬂ? n—oo

(3.33)

12


https://www.researchgate.net/publication/265669200_Weakly_differentiable_functions_Sobolev_spaces_and_functions_of_bounded_variation?el=1_x_8&enrichId=rgreq-3fff0d57408452f1744b4c068d241bbe-XXX&enrichSource=Y292ZXJQYWdlOzI0MjE4NDU0NztBUzoxMDMwOTc0NzcxMDc3MjVAMTQwMTU5MTc2MjU4Ng==

lim [ |2, — Vu(xo)-y|Pdy = 0. (3.34)

n—oo

Therefore, the sequence 2, weakly converges to Vu(zg) -y in WP(Y). In the same way
this weak convergence holds in W'P(RY) for any R > 1, since 2, is defined in the very
large domain p; ! (—z¢ + Q).

Then, the following result allows us to recover periodic boundary conditions:

Lemma 3.5. We have the inequality

n—oo

limsup/ fn(%zlmo,v,é’n) dy
Y’ (3.35)
-1
> lim sup (inf {/ fn(H’;’iLm, Vz)dy : z— Vu(zo) -y € Wﬁl’p(linY)}) ,
KEnY "

n—oo
where Ky, := N[, 1] tends to 1.

The proof of this result is postponed to the end of this section.

We can now conclude the proof. By a convexity argument and a translation (see, e.g.,
[3]) we obtain that

" {/ 1 fn(@? VZ) dy : z— Vu(zo) -y € Wﬁlyp (Un[nﬁl]y)}
N [nn 1Y "

> (malz ) inf{/y fa(y, V2)dy 2 — Vu(w) -y € Wﬁl’p(Y)}

“1\2 shom -
= (nulny, 1]) fho (Vu(zo)) = fio (Vu(zo)) + o(1)
(by (2.9)). Combined with (3.35) and (3.33), this implies the desired inequality (3.27).

Proof of Lemma 3.5. Without loss of generality we can assume that o = 0 and 7, = %
For 6 € (0, %), set Qs := (8,1 —6)? and consider the two Y-periodic functions w* defined
by their restriction to Y:

wr(y) ;= £dist (y, Y \ Qs), foryeY. (3.36)

Each function w™ is piecewise-affine and its graph restricted to Y is a tetrahedron the basis
of which is @)5. Then, applying the proof of the I'-limsup inequality with the functions
y—&-y+ %go’%(ny), for ¢ € {Vu(xg) + Vw™} (which is a set of 9 vectors), thanks to
Proposition 3.3 we can construct two sequences wff which satisfy a max-min representation
of type (3.23) and the following properties:

wE — Vu(z) -y +wt  weakly in VVll’p(RQ) and strongly in L2 (R?), (3.37)

n ocC

wE = Vu(zg) -y + 1, around dY, where 1, € Wﬁl’p(Y), (3.38)

/ fn(ny, Vw;f) dy < O(9) +o(1). (3.39)
Y\Qas

By construction, (3.38) is a consequence of the fact that w™ = 0 in a neighborhood of 9Y’,
while estimate (3.39) is deduced from (3.7).

On the other hand, by virtue of Proposition 3.1 there exists a sequence z, in WhP(Y)
such that

2y — Vu(zo)-y weakly in WP (Y) and strongly in L2 (Y), (3.40)
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/ Fu(ny, V) dy < / fu(ny, Vn) dy + o(1). (3.41)
Y Y

Now, consider the function z, defined by

Zn = (W) Azp) Vw, inY, (3.42)
namely z, is “sandwiched” between w; and w; . Since w;} = w, = Vu(zo) -y + ¢n
around JY, we have

Zn = Vu(zo) -y + 1, around 0Y. (3.43)

Moreover, by the uniform convergence of z, — wl to —w* in Qs combined with the fact
that 4 w™ is a positive continuous function in Qg, we get that for any n large enough,

Zn = zp  a.e. in Q5. (3.44)
Then, using that (similarly to (3.25))
fn(ny,VZz,) < fa(ny, Vz,) + folny, V) + folny, Vw, ) +2 ae. inY,

we deduce from (3.44) and (3.39) that

/ fn(ny7 Vén) dy = fn(nya vzn) dy + / fn(ny7 vgn) dy
Y Q2s Y\Q2s

/ fn(ny7 VZn) dy+/ fn(nyvvw:) dy
Y Y\Q2s

IN

+/ Folny, V) dy + 2|V \ Qugl
Y\Q2s

< / fu(ny, Vzn) dy + o(1) + O(5).
Y

Finally, combining the previous estimate with (3.43) and (3.41) we obtain that

it { [ 5l V2 dy 5 2= Vaten) -y € W) < [ fulon T2 dy + o))+ 00),

which yields the thesis. O

4 A condition for the boundedness of f:om

4.1 The main result

In this section we restrict ourselves to the sequence of functionals F), (2.8) defined with
the microscopic scale ¢, = % Then, we have the following result:

Theorem 4.1. Let Q2 be a bounded open set of R%. In addition to conditions (2.1),
(2.2), and (2.3), assume that there exists C > 0 such htat the density fn(y,-) satisfies the
estimate

fa(y,26) <C(1+ fu(y,8)), VEER? forae ye R (4.1)

Also assume that for any € € R?, there exists a minimizer go% of (2.5) such that

@5 € Cx(Y). (4.2)

Let F be the T-limit of a subsequence of F,, defined by (2.8).

Then, a necessary and sufficient condition for the boundedness in R? of the sequence
fhom yn (2.4), is that there exists a non-zero function u € WYP(R?), with compact support
in §Q, such that F(u) < oco.

14



Theorem 2.3 clearly shows that the boundedness in R? of f1°™ implies that there exists
a non-zero function v € W1P(R?), with compact support in ©, such that F(u) < oo (F is
actually finite on the whole space W1P(Q)). The present section is devoted to the proof
of the converse. First of all, we will establish a general result in the convex case about
the membership of regular functions in the domain of the I'-limit.

4.2 A general result

Let Q be a bounded open set of R?. Consider a sequence of functions g, :  x R? — [0, 00)
which satisfy the homogeneity condition (4.1) and the following ones:

gn (-, €) is measurable for any ¢ € R?, (4.3)

gn(z,-) is convex for a.e. z € R?, (4.4)
there exists a function b, in L*°(€2) such that
[P =1 < gn(,6) S bu(x) L+ [EP), VEER?, forae z €, (4.5)

gn(2,28) < C (1 —l—gn(w,ﬁ)), Ve eR? for ae x e (4.6)

Then, consider the sequence of convex functionals G,, : LP(2) — [0, oo] defined by

z,Vu)dx ifv L
Gn(v) = /an( Vo) duifv € WhH() (4.7)

00 elsewhere.

Thanks to the separability of LP(Q2) we may assume that the sequence G,, I'-converges to
a functional G : LP(Q2) — [0, 00] of domain D(G). The following result gives a sufficient
condition for regular functions to be in the domain of G:

Proposition 4.2. Assume that there exist # € Q and w°, w',w? € C*(Q) which satisfy
0 € int (co (Vuw?(2), Vw'(2), Vw?(2))) (4.8)

and sequences wt , for i = 0,1,2, which strongly converge to w' in L>(Q), with

lim sup/ gn(z, V) dx < oo. (4.9)
Q

n—oo

Then, there exists § > 0 such that C}(B(&,0)) C D(G).

First note that all the L°°-strong convergences in the sequel are a consequence of
Proposition 3.1.

Proof. Consider € > 0 small enough which will be chosen later, and define the function

z = (w' — w® w? — w?). Since

int (co (Vw®(2), Vw' (&), Vw?(2))) # 0,

the Jacobian matrix Dz(#) is invertible. Then, there exists dp > 0 such that z is a C'-
diffeomorphism from B(#, ) into an open set O C R2. Taking dp small enough, we can
also assume that

Va € B(d,6), |Vuw'(z)— Vu'(#)

<e and ’Dz(x)_l - Dz(i)_1| <e.
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Now, consider u € C*(B(&,480)) with [|Vul|pe(p(s,60)) < €, and define R := (u—w") oz}
which belongs to C'(O). Then, we have

Va € B(#,60), u(z)=wo(z)+ R(z2(z)) and Vu(z)=Vu'(z)+ Dz(z)TVR(z(z)),
which gives

VR(z(z)) = (Dz(2)") " V(u— u®)(x),

-1

where 7 denoted the transposition. Defining 1 := —(Dz(2)") ™ Vw°(z), we get

IVR(z(z)) —n| < |Vu(z)||Dz(z)"'|+ [Dz(z) ] |[Vu'(z) — Vu(2)
+|Vu®(2)| |Dz(z) "' — Dz(2) 7| (4.10)
<2¢e(|Dz(#)7 " +¢) +e|Vu'(d)].

On the other hand, note that n = (n1,72) is also defined by the equality
0= (1—m —n)Vw'(&) + mVw' (2) + neVw?(2),

which by (4.8) implies that 71 > 0, 72 > 0 and 7; + 72 < 1. Then, taking ¢ small enough
in (4.10) we can assume that these strict inequalities also hold for the components of
VR(z), ie.

O R(z) >0, 02R(z) >0 and O1R(z)+ 0R(z) < 1. (4.11)

Now, define z, := (w} —w?, w2 —wd) and u,, := w) + Ro z, in B(%,d), with § = §o/2.

The function u,, is well defined because Z(B(:i', 5)) is a compact subset of O, hence its
distance to 0O is positive. Since z, strongly converges to z in L>° (B (z, 5)), we have that
for n large enough, z, (B(:%, 5)) C O. Clearly, u,, strongly converges to v in B(z,J) and
satisfies

Vu, = (1= 01 R(2n) — 02R(23) ) Vs, + 92 R(2,)Vwy, + 93 R(2,) V.

Thanks to (4.11) and to the uniform convergence of 0;R(2,) to 0;R(z), we get that Vu,
is a convex combination of the Vuw?, for i = 1,2, 3, hence by (4.9) we obtain that

lim sup/ gn(x, Vuy,) dr < +oo. (4.12)
B(&,5)

n—oo

Therefore, we have proved the existence of §,¢ > 0 such that for any v € C! (B(i‘, 25)),
with ||Vul|pee(pz26)) < €, there exists a sequence u, in W'P(B(&,6)) which strongly
converges to u in L (B(i,é)) and satisfies (4.12). Moreover, if the support of u is
contained in B(Z,¢), then we can easily construct a function u, with compact support in
B(z,9) so that u, is defined in the whole set Q. This establishes Proposition 4.2 for any
u e CHQ) with [|Vul| @) <e.

If u does not satisfy this restriction, then we apply the result to v := eu/ (2 ||VUHLOO(Q)),
and we consider the sequence u, := 2 ||Vul| (@) vn/€, Where v, is the sequence relating
to v. We use property (4.6) to conclude. O

As a consequence of Proposition 4.2 we have the following result in the periodic case:

Corollary 4.3. In addition to conditions (4.3)—(4.6) assume that for all £ € R? we have
gn(2,8) = fu(nz, &) for a.e. x € Q, where f,(-,€) is Y -periodic. Also assume that there

exists a non-zero function in W1P(Q) N D(G) with compact support in 2. Then, we have
CHQ) Cc D(G).
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Proof. Let u € WHP(Q2)ND(G) be with compact support in Q, and consider a sequence u,
which weakly converges to u in WP(Q) and such that G, (u,) is bounded. Then, by
periodicity and by a translation argument, we have that for any 7 € R?, with small
enough norm, there exist a sequence u7, in W1P(2) which weakly converges to u(-+ 7) in
WLP(Q), such that (see, e.g., Chapters 23-24 of [11] for more details)

limsup Gy, (u],) = limsup Gy, (uy,).

n—oo n—oo
Hence, we deduce that for any nonnegative p € C°(R?) and any 71, ...,7, € R?, with
Yoty p(7i) > 0, the function
m
ZP(%’) u(- + ;)
i=1
m
Z p(Ti)
i=1

also belongs to D(G), as well as the function

/ u(z —y) p(y) dy
R2 )

/R L Py)dy

Therefore, we are led to the case where u is a non-zero function in C2°(Q2) N D(G).

Now, from Lemma 4.4 below we deduce that for any ¢ € R?, with small enough norm,
there exists x €  such that Vu(z) = . Using the translated functions u(-+ 7) as before,
we thus get that any point of ) satisfies the assumptions of Proposition 4.2, which implies
that C1(Q2) ¢ D(G). O

Lemma 4.4. Let Q a bounded open set of Q C R2. Consider a function u € C*(Q)NC(Q)
with u = 0 on 09, such that there exists xo € Q with u(xo) # 0. Then, for any & € R?
with

o)l
max |zg — x|’
€02

there exists x € Q such that Vu(zx) = €.

€] < (4.13)

Proof. We can assume that 2o = 0 and u(0) > 0. For ¢ € RY, we consider y € Q such
that

u(z) —5‘:6:1;16&5; (u(y) —€-y).

If x € 09, then we have u(z) = 0 and

0)<—¢-2<
u(0) < Sw_\ilgégg\yl,

hence (0)
u
&l > ————.
Inaxy€89|y‘
Conversely, if
u(0
|§|< HHé{LA7
yeIN
then z is a maximizer of (y — u(y) — £ - y) in Q, which implies that Vu(z) = . O
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4.3 Proof of Theorem 4.1

We need the following result which is essentially based on the continuity assumption (4.2):

Lemma 4.5. Assume that the continuity condition (4.2) holds. Then, for any & € R?, the
sequence of functions wb, defined by w%(x) =&+ % gog(nm), x € R2, strongly converges
to & -z in L2 (R?).

Proof. Let € be a bounded open set of R?. The sequence ws, clearly converges to the
continuous function ¢ -z weakly in WP (€2). Moreover, since ¢ is a Y-periodic minimizer

of (2.5), we have for any open set O C €,
/ fn(nz, Vus) dz = min {/ falnz, Vs, + Vo) dr : ¢ € Wol’p(O)} . (4.14)
O O

Then, taking into account the continuity of wg, the construction of the proof of Proposi-
tion 3.1 (compare (3.10) to (4.14)) shows that the sequence w$, strongly converges to & - z
in L (£2). O

loc

As a consequence of Corollary 4.3 we have that C}(Q) C D(F) for any bounded open
set of R?%. Let Q be the unit disk of R?, and fix § > 0. Let ¢ € C!((1+ 26)Q2) with ¢ =1
in (149). Then, by Corollary 4.3 and Proposition 3.1 applied to the open set (1+20)S2,
there exists a sequence (,, which converges to ¢(x)¢ - = weakly in lep((l + 26)9) and
strongly in L>((1 + 6)Q), such that

n—oo

lim sup/ fn(nz,V{,) dx < oo. (4.15)
(146)

Similarly, for a function ¢ € CL((1+6)Q2) with 0 < ¢ < 1in (14 6)Q and ¢ =1 in €,
there exists a sequence ¢,, which converges to ¢ weakly in WP ((1 + 26)9) and strongly
in L= ((1 + 6)Q), such that

n—oo

lim sup/ fn(nz, V) dr < co. (4.16)
(1+8)Q2

Using truncations we can also assume that 0 < ¢, <1in (14 6)Q and ¢, =1 in Q.
On the one hand, using successively the minimization property (4.14) of w$, and the
convexity (2.2) of f,(nz,-), we have

fn (mc, ng) dx < / fn (nm, V(wﬁ + on(Cn — wg)) dx
(1+0)82 (146)
(1+4)

1+6)Q

1 1
< 3 / on fn(nx,2VE,) dx + 2/ fn (nx, 2(Cn — wg)an) dx
(146)Q (146)0

1
2

_l’_

/ (1 —vn) fn (nw, 2Vw§l) dx,
(14+6)Q

hence by estimate (4.1) we get

/ fn(nz, wal) dx
(1+6)Q

C C
< — n(nz, V(,) dr + — n—wa P / n(nz, Vo) dr 417
2 u+®gf( Gn) ZHC f (146)9) U+®Qf( ©n) (4.17)
+ ¢ fn(na, ng) dx (since ¢, = 1in Q).
2 Jassoo\n
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On the other hand, the Y-periodicity of Vs, implies that

(1+0)2 -1
fn nx,waL dr =~ / fn nm,waZ dzx. 4.18
/(1+6)Q\Q ( ) n—oo (1+6)?  Juten ( ) (4.18)

Moreover, the uniform convergence of ¢, and Lemma 4.5 combined with estimates (4.15)
and (4.16) give

c C
- n TLCU,V n dx + = n — wg POO / n nx,V n dx S C. 4.19
2 (1+6)Qf (nz, Ven) 5 lle Iz asar) (M)Qf ( Pn) (4.19)

Therefore, using estimates (4.18) and (4.19) in (4.17), and choosing

2 _
CatoP-1_,
2 (1+0)?

(which holds for § small enough), it follows that

/ fn (na:, Vwﬁ) dx < c,
(1+6)Q

which by periodicity implies that the sequence f2°™(¢) is bounded. O
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